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Investigating the Foundations of Physical Law 

7 Nilpotent quantum field theory 

 

 

A perturbation calculation 

 

We are now ready to extend the discussion to a yet higher level of complexity to show 

that fundamental considerations still apply there, and lead us to results not so far 

achieved by any other method. Some of the calculations will be more involved than 

the ones we have done previously, but they are necessary to show how far the 

fundamental ideas can be influential, even at a level of relative complexity, and can 

solve problems for which there are no current answers. These will be followed by a 

less technical consideration of some more general aspects of the nilpotent quantum 

theory. 

 

A significant amount of quantum field theory is already present in nilpotent quantum 

mechanics, where the nilpotent operator already provides interaction over the entire 

quantum field. Nilpotent ‘wavefunctions’ are the result of creation and annihilation 

operators acting on the vacuum state and come already second quantized. The 

mathematical proof of this is given in Zero to Infinity, in addition to results in QED, 

including an electron scattering calculation and a derivation of renormalization for 

interacting particles. Renormalization, in the sense of rescaling, as the interacting 

electric charges are screened by the vacuum field, should still apply as in conventional 

QED. What should no longer apply, if the nilpotent formalism is a more 

fundamentally symmetric, and in this sense more ‘natural’, version of quantum 

mechanics, is the need for the infinite self-energy term that has caused such problems 

in the past. If the nilpotent formalisms derives from the symmetries which are most 

fundamental in nature, then something of this kind should only arise as an artefact of 

alternative mathematical structures in which these symmetries are not fully preserved. 

 

In the last lecture, we saw that an exact supersymmetry appears as a consequence of 

the nilpotent formalism and its representation of vacuum. In this case, we should 

expect a free fermion in vacuum to produce its own loop cancellations and its energy 

to acquire a finite value without renormalization. Free fermion plus boson loops 

should cancel at all levels of calculation, and there should be no hierarchy problem. 

We can examine this possibility by performing a basic perturbation calculation for 

first order coupling in QED, and seeing if it leads to zero in the case of a free fermion. 

Let us suppose a fermion acted on by the electromagnetic potentials φ, A. Then, using 

only the lead terms of the spinors for simplicity, we have the standard equation 

 

   ( ) 0=







+−∇−






 −

∂
∂

− ψφ meiiei
t

jiikk A , 



2 

 

which can be rearranged as 
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We now apply a perturbation expansion to ψ, so that 

 

                                                     ψ = ψ0 + ψ1 + ψ2 + … , 

with  

                                              ψ0 = (ikE + ip + jm) e
–i(Et – p.r)

  

 

as the solution of the unperturbed equation: 
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which represents zeroth-order coupling, or a free fermion of momentum p. 

 

Using the perturbation expansion, we can write 
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from which we can extract the first-order coupling, from the first iteration of the 

perturbation expansion, as 
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If, using a standard technique, we expand (kφ + iiA) as a Fourier series, and sum over 

momentum k, we obtain 

 

                                        (kφ + iiA) = ψ (kφ�(k) + iiA (k)) e
ik.r

, 

so that 
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If we now expand ψ1 as 
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and, equating individual terms, 

 

           (ikE + i(p + k) + jm) v1(E, p + k) = –e (kφ (k) + iiA (k))�( ikE + ip + jm). 

 

We can write this in the form 

 

           v1(E, p + k) = –e[ikE + i(p + k) + ijm]
–1

 (kφ(k) + ii A (k))(ikE + ip + jm)  

 

which means that 
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This is the wavefunction for first-order coupling, with a fermion absorbing or emitting 

a photon of momentum k.  

 

But, if we observe the process in the rest frame of the fermion and eliminate any 

external source of potential, then k = 0, and the only possible potential (kφ + iiA) that 

could apply is the internal, self-interacting one, not dependent on k, which, in the rest 

frame, will reduce to the static value, kφ, with φ as a self-potential. In this case, ψ1 

becomes 

                            [ ] ( )( ) ( )p.rpp −−− ++++−= EtiemEimEie jikkjik φψ 1

1 , 

 

as the summation is no longer strictly required for a single order of the pure self-

interaction. Since we can also write this as 

 

                                                                                                                , 

 

we see that ψ1 = 0, for any fixed value of ψ. Clearly, this will also apply to higher 

orders of self-interaction. In other words, we have a first indication that a non-

interacting nilpotent fermion requires no renormalization as a result of its self-energy. 

 

The process could also be adapted for interacting particles, subject to external 

potentials. Here we can imagine redefining the E and p operators to incorporate 

external potentials to make them ‘internal’, while simultaneously changing the 

( )( )( ) ( )p.rpp −−++−++−= EtiemEimEie φψ kjikjik1
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structure of the phase factor to accommodate this. The change of phase factor would, 

of course, require a corresponding change in the amplitude, which could be taken as 

redetermining the value of the coupling constant, e, as required. Ultimately, however, 

it is the structure of (ikE + ip + jm) as a nilpotent which seemingly eliminates the 

infinite self-interaction terms in the perturbation expansion at the same time as 

showing that they are merely an expression of the nature of the nilpotent vacuum as a 

reflection of the exactly supersymmetric nature of the original particle state. 

 

Cancellation of loops 

 

If the previous argument is correct, then we should also be able to achieve the same 

result using the supersymmetric properties of the nilpotent operator to cancel fermion 

and boson loops directly. This is precisely what we would expect from a nilpotent 

system, where the total energy is zero, and one way of realising this would be to 

combine negative energy fermions with positive energy bosons. In the nilpotent 

formulation, as we have seen, every fermionic state has an intrinsic supersymmetric 

spin 1 bosonic vacuum partner with the same energy, momentum and mass. If we 

represent a spin ½ fermion by, say, (± ikE ± ip + jm), and a spin –½ fermion by (± ikE 

m  ip + jm), then each of these is unchanged by postmultiplication any number of 

times by the vacuum operator k (± ikE ± ip + jm) or k (± ikE m  ip + jm). However 

 

(± ikE ± ip + jm) k (± ikE ± ip + jm) k (± ikE ± ip + jm) k (± ikE ± ip + jm) ... 

and 

(± ikE m  ip + jm) k (± ikE m  ip + jm) k (± ikE m  ip + jm) k (± ikE m  ip + jm) ... 

 

are indistinguishable from 

 

 (± ikE ± ip + jm) (m  ikE ± ip + jm) (± ikE ± ip + jm) (m  ikE ± ip + jm) ... 

and 

 (± ikE m  ip + jm) (m  ikE m  ip + jm) (± ikE m  ip + jm) (m  ikE m  ip + jm) ... 

 

which alternate spin ½ and spin –½ fermions with spin 1 and spin –1 bosons. In effect 

the fermion generates its own vacuum boson partner, with the same E, p and m. Since 

the nilpotent structure is founded on zero totality, with the vacuum and fermion being 

in both zero superposition and zero combination, we may assume that this is an 

indication that the total energy made by positive boson and negative fermion loops is 

zero. 

 

The calculation is surprisingly easy, if we use results obtained from conventional 

QED. In fact, we can reduce it to simple arithmetic! Using a result from Peter West, 

Introduction to Supersymmetry and Supergravity (World Scientific, 1986), p. 15, we 

find that the vacuum energy for a particle of mass m and spin j is given by: 
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Here we see quartic, quadratic and logarithmic divergences. To remove these, we 

need to ensure that 
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The first condition requires equal numbers of fermionic and bosonic degrees of 

freedom. If we have j = ± ½ for the fermionic loops and j = ± 1 for the bosonic loops, 

then 

 (–)
2j

 (2j + 1)
 
= –2  for  j = ½ 

 (–)
2j

 (2j + 1) = 3  for  j = 1 

 (–)
2j

 (2j + 1)
 
= 0  for  j = –½ 

 (–)
2j

 (2j + 1)
 
= –1  for  j = –1 

giving a total of 
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as required. 

 

The other two conditions additionally require the fermions and bosons to have equal 

masses, which is true if the supersymmetry is intrinsic. Since all three conditions are 

fulfilled in the nilpotent formalism, it would appear that the intrinsic supersymmetry 

automatically removes the ultraviolet divergence. 

 

The same hierarchy problem of divergence at each level of calculation also applies to 

bosons, most famously in the case of the spin 0 Higgs boson, but the same reasoning 

should also apply here. For a spin 0 boson, we have a fundamental structure of either 

 

                                             (± ikE ± ip + jm) (m  ikE m  ip + jm) 

or 

                                             (± ikE m  ip + jm) (m  ikE ± ip + jm) 

 

with a combination of spin ½ and spin –½ fermions / antifermions (to which we can 

again apply vacuum operators). (The application of vacuum operators to the two 

partners in the combination would leave alternate creations of fermion and boson as 

before.) Since 

     (–)
2j

 (2j + 1)
2j

 = 1  for   j = 0 
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we can find a combination of spin ½ and spin 0, together with spin –½ and spin 0, 

which will lead to 

                                              ( ) ( ) 01012121
2

=+++−=+−∑ j
j

j

 

again as required, and, with m common to fermions and bosons, also fulfilling the 

second and third conditions. It would appear from this argument that the divergence is 

again removed and, in particular, that there is no reason to expect a hierarchy problem 

for the Higgs boson. 

 

An additional, related problem is the matter / antimatter asymmetry between fermions 

and antifermions. Answers to this long-standing problem have been generally sought 

for in cosmology. It is assumed that almost equal amounts of fermions and 

antifermions were created in the big bang, with the fermions slightly in excess. 

Following this, the mysterious process of baryogenesis led to the annihilation of all 

the antifermions. But, there are very good reasons for seeing the asymmetry as 

generic, and, in fact, not an asymmetry at all. According to our foundational ideas, we 

have two vector spaces, characterised in the nilpotent representation by positive and 

negative energies. Between these two spaces, there are the same number of fermions 

and antifermions. Just as fermions, with E, can be seen as the characteristic particles 

defining real (observable) space, antifermions, with –E, can be seen as the 

characteristic particles defining vacuum space. In this description, there will not be a 

symmetry between the two particle types in either of the spaces. In the nilpotent 

structure, there are two energies, two directions of time, two directions of spin, two 

fermions and two antifermions. There are even two causalities: forward causality for 

the local state, the thing we observe; and backward or reverse causality for the 

unobservable nonlocal vacuum, which contains all the future causes of everything that 

will happen. The first corresponds with E and t, the second with –E and –t. Every 

fundamental concept provides us with a totality zero. Only rest mass has a purely 

positive value, but this is not fundamental, being a concept whose main purpose is to 

separate the observational part of the structure from that which is not observed. 

 

Propagators 

 

An aspect of quantum field theory which benefits massively from being cast in the 

nilpotent, or, we could say, fundamental, formalism is the use of propagators (which 

are, in principle, Green’s functions). Though this is a rather technical subject, it does 

show the power of the nilpotent concepts in a particularly direct way, and also shows 

the significance of the dual spaces in creating fermions as point singularities. Here, 

again, there is a divergence which is not fundamental, but which we can show to be a 

result of using a less symmetric mathematical formalism. In addition, the concept of 

boson propagator has not been fully worked out, as there are in fact three boson 
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propagators corresponding to the three different types of boson, and not a generic one 

which doesn’t quite correspond to any of them. 

 

We have seen that a physical singularity (perhaps the only one that can exist) emerges 

from the combination of two dual vector spaces, at the same time as a zitterbewegung 

is generated through the switching between them, which is equivalent to the switching 

between +iE and –iE. Now, the conventional Feynman formalism for the particle 

propagator produces a ‘pole’ or singularity at exactly the division or ‘switchover’ 

between these two energy states, or between fermion and antifermion. It is a problem 

because it leads to a divergence at that point, which can only be dealt with by a 

mathematical subterfuge. In the nilpotent theory, however, the pole is no longer a 

‘naked’ singularity, causing an infinite divergence, but one accommodated within the 

dual spaces on which the theory is founded. The nilpotent formalism incorporates the 

pole automatically without divergence because of its direct inclusion of vacuum 

states. Conventional theory assumes that a fermion propagator takes the form 

 

                                                      SF(p) = 
1

p/  – m
 = 

p/  + m

 p
2
 – m

2 , 

 

where p/  represents γµ∂µ, or its eigenvalue, and that there is a singularity or ‘pole’ (p0) 

where p
2
 – m

2
 = 0, the ‘pole’ being the origin of positron states. On either side of the 

pole there are positive energy states moving forwards in time, and negative energy 

states moving backwards in time, the terms (p/  + m) and (– p/  + m) being used to 

project out, respectively, the positive and negative energy states. The normal solution 

is to add an infinitesimal term iε to p
2
 – m

2
, so that iSF(p) becomes 
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and take a contour integral over the complex variable to give the solution 
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with summations over the up and down spin states. 

 

This mathematical subterfuge is unnecessary in the nilpotent formalism because the 

denominator of the propagator term is always a nonzero scalar. We write 
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and choose our usual interpretation of the reciprocal of a nilpotent to give: 



8 

 

 

             ( )
( )

( )( )
( )

( )2224

1

mpE

mEi

mEimEi

mEi

mEi ++
−±

=
−±+±±

−±
=

+±±
jik

jikjik

jik

jik

p

pp

p

p

m

m

m
, 

 

which is finite at all values. The integral is now simply 

 

                  SF (x – x') = 
⌡
⌠

 d
3
p 

1

(2π)
3 

m

2E
θ(t − t') Ψ(x) Ψ− (x'), 

in which Ψ(x) is the usual 

 

                                          Ψ(x) = (± ikE ± ip + jm) exp (ipx), 

 

with the phase factor written as a 4-vector, and the adjoint term becomes 

 

                                     Ψ− (x') = (m ikE ± ip + jm) (ik) exp (–ipx'). 

 

Since the nilpotent formalism comes as a complete package with a single phase term, 

automatic second quantization, and the negative energy states matched with reverse 

time states, there is no averaging over spin states or separation of positive and 

negative energy states on opposite sides of a pole. The particle structure is itself the 

singularity. There is no division between the particle and antiparticle because the two 

come as a single unit incorporating real space and vacuum space on an equal footing. 

 

The fermion propagator can also be used to define boson propagators. In conventional 

theory, we derive the boson propagator directly from the Klein-Gordon equation, 

while recognizing that its mathematical form depends on the choice of gauge: 

 

                                                         ∆F(x – x') = 
p/  + m

 p
2
 – m

2 . 

 

This is because the Klein-Gordon operator 
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is the only scalar product which can emerge from a linear differential operator defined 

as in the two bracketed terms on the left. The Klein-Gordon equation, however, is not 

specific to boson states or an identifier of them. It merely defines a universal zero 

condition which is true for all states, whether bosonic or fermionic. And, the 

propagator defined by conventional theory does not correspond to any known bosonic 

state. Instead, we have three boson propagators. 
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Where the spin 1 bosons are massless (as in QED), we will have expressions like: 
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EiEi
xxF

m

1
. 

 

Clearly, the relationship of the fermion and boson propagators is of the form 

 

                                             SF (x – x') = (i γµ ∂µ + m) ∆F (x – x'), 

or, in our notation, 

                                          SF (x – x') = (± ikE ± ip + jm) ∆F (x – x'). 

 

which is exactly the same relationship as is defined between fermion and boson in the 

nilpotent formalism. Now, using 
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which is the same as the conventional fermion propagator up to a factor (p/  + m), we 

can perform a contour integral which is similar to that for the fermion to produce 

 

                              i∆F (x – x') = ⌡⌠  d
3
p 

1

(2π)
3 

1

2ω θ(t – t') φ(x)φ*(x'). 

 

Here, ω takes the place of E / m, while φ(x) and φ(x') are now scalar wavefunctions. 

However, in our notation, they will be scalar products of (± ikE ± ip + jm) exp (ipx) 

and (m  ikE ± ip + jm) exp (ipx') and φ(x)φ*(x') reduces to a product of a scalar term, 

which can be removed by normalization, and exp ip(x – x'). 

 

In off-mass-shell conditions, where E
2
 ≠ p

2
 + m

2
, poles in the propagator are a 

mathematical, rather than physical, problem, and removed by the use of iε and the 

contour integral, which is ad hoc but effective. But, in the specific case of massless 

bosons, such as the photon or gluon, conventional theory cannot prevent ‘infrared’ 

divergences appearing in the expression for the propagator when such bosons are 

emitted from an initial or final stage which is on the mass shell. Such divergences, 

however, do not occur where there is no naked pole, as in the nilpotent expression. 
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The nilpotent definition of the boson propagator not only shows that one of the 

principal divergences in quantum electrodynamics is, as the procedure used to remove 

it would suggest, merely an artefact of the mathematical structure we have imposed, 

and not of a fundamentally physical nature, but also suggests that the formalism 

which removes it is a more exact representation of the fundamental physics. 

Ultimately, this is because it allows an exact representation of the vacuum 

simultaneously with the fermionic state, in line with the dual spaces needed to 

generate a fermion singularity. 

 

A weak interaction calculation 
 

To complete the more technical aspects of nilpotent quantum field theory, we can 

show how it would be used in a weak interaction calculation in the usual four-point 

Fermi interaction approximation. Though there is nothing here that can’t be done by 

conventional methods, it is interesting to see how a different approach could possibly 

be more fertile in more complex problems. Conventionally, in describing a weak 

interaction, such as muon decay, we calculate the traces of the tensors using the trace 

theorem: 

Tr [γµ
 (1 – γ5

) p/ 1γν
 (1 – γ5

) p/ 2] Tr [γµ (1 – γ5
) p/ 3γν (1 – γ5

) p/ 4] 

= 256 (p1 . p2) (p3 . p4) 

 

This is because, for an invariant amplitude M, for muon decay, 
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and the spin-averaged probability, 
2
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Using nilpotents we can take a different approach, by directly investigating the 

‘bosonic’ states at the two vertices. First we take: 

 

 γµ
  = γ0

 + γ1
 + γ2

 + γ3
 = ik + ii + ji + ki = ik + 1i, 

 

combining the vectors i, j, k, for convenience, into the single unit 1. Then: 
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(1 – γ5
) = (1 – ij) 

 γµ
 (1 – γ5

) = (ik + 1i) (1 – ij) = ik + i + 1i – ik1 

Here, we assume: 

p/ 1 = (± ikE1 ± i p1), 

 

but, by directly incorporating a mass term, we could use: 

 

(± ikE1 ± i p1 + jm1). 

 

So                                         γµ
 (1 – γ5

) p/ 1γν(1 – γ5
) p/ 3 

         = (ik + 1i)(1 – ij)(± ikE1 ± i p1) (ik + 1i)(1 – ij)(± ikE2 ± i p2) 

         = (ik + 1i – i – i1k) (± ikE1 ± i p1) (ik + 1i – i – i1k)(± ikE2 ± i p2). 

Using 

                          (ik)(± ikE1 ± i p1) (ik) = (± ikE1 +
– i p1) 

                          (1i)(± ikE1 ± i p1) (1i) = (± ikE1 +
– i p1) 

                        (–i)(± ikE1 ± i p1) (–i) = (± ikE1 +
– i p1) 

                      (i1k) (± ikE1 ± i p1) (i1k) = (± ikE1 +
– i p1) 

 

we obtain a total of 4 (± ikE1 +– i p1) for this scalar product, or, for a state vector 

representing an antifermion (where E1 → – E1), this would become 4 ( m ikE1 m i p1). 

 

For a vertex involving a fermion, with state vector (± ikE3 ± i p3), taking over all four 

terms in the Dirac spinor, each  

 

4 ( m ikE1 m i p1) (± ikE3 ± i p3) = 4 × 4 (E1E3 – p1 p3) = – 16 (p1 . p3), 

 

and the equivalent of Tr [γµ
 (1 – γ5

) p/ 1γν
(1 – γ5

) p/ 2] Tr [γµ (1 – γ5
) p/ 3γν(1 – γ5

) p/ 4] 

becomes 256 (p1 . p3) (p2 . p4), leading once again to a spin-averaged probability: 

 

( )( )4321

22
..64 ppppG=M . 

 

This approach is only valid for antifermion-fermion vertices, where the V – A term 

γµ
(1 – γ5

) is included – that is, where the interaction is dipolar and single-handed. 

Otherwise, the product of the two scalar products does not correspond with the 

product of the two traces. In this method, however, the terms p1 . p3 and p2 . p4 can be 

easily extended to become scalar products of nilpotent operators where mass is to be 

taken into account. 

 

BRST quantization 

 

Though the Dirac nilpotent operator is automatically second quantized, and so already 

incorporates a full quantum field representation, it is interesting to look at more 
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conventional approaches to field quantization. One of these helps us to demonstrate 

the relation between charge and energy operators, on which our formalism was 

constructed. In standard theory, field quantization requires gauge fixing (or removal 

of gauge invariance) before propagators can be constructed. The canonical 

quantization of the electromagnetic field uses Coulomb gauge, but this means that 

Lorentz invariance must be broken. The path integral approach allows us to use any 

gauge, and so maintain Lorentz invariance, but the problem now is the introduction of 

nonphysical or ‘fictitious’ Fadeev-Popov ghost fields. A version used in string theory 

(BRST) eliminates the ghost fields by packaging all the information into a single 

operator, applied to the Lagrangian. 

 

Significantly, the BRST operator (δBRST) is a nilpotent. This operator can be used to 

construct a Noether current (Jµ), corresponding to a nilpotent BRST conserved 

fermionic charge (QBRST). The condition for defining a physical state then becomes 

 

                                                     QBRST ψ  = 0. 

 

In the Dirac nilpotent formulation, (± ikE ± ip + jm), which applies only to physical 

(mass shell) states, is already second quantized, and a nilpotent operator of the form 

δBRST. It is, also, a nilpotent charge operator of the form QBRST, but extended to 

incorporate weak and strong, as well as electromagnetic, charges. It is, finally, in its 

eigenvalue form, identical to ψ . So the three possible meanings for the expression 

(± ikE ± ip + jm) apply, respectively, to: E and p interpreted as differential operators 

in time and space; E, p and m as coefficients determining the nature of the charges 

specified by k, i and j; and E and p interpreted as eigenvalues of energy and 

momentum. The nilpotent Dirac operator thus supplies simultaneously all the 

characteristics which the separate BRST terms δBRST, QBRST, and ψ  require. 

 

Mass generation 

 

If we consider the boson structures we have outlined as defining the vertices for boson 

production via the weak interaction, then it appears from the impossibility of creating 

a massless spin 0 boson and the two sharply defined helicity states for hypothetical 

massless fermions (lecture 5) that the pure weak interaction requires left-handed 

fermions and right-handed antifermions. In other words, it requires both a charge-

conjugation violation and a simultaneous parity or time-reversal violation. 

 

We can see in principle how this leads to mass generation by some process at least 

resembling the Higgs mechanism. Let us imagine a fermionic vacuum state with zero 

mass, say (ikE + ip). An ideal vacuum would maintain exact and absolute C, P and T 

symmetries. Under C transformation, (ikE + ip) would become (–ikE – ip), with 

which it would be indistinguishable under normalization. No bosonic state is required 
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for such a transformation, where the states are identical. If, however, the vacuum state 

is degenerate in some way under charge conjugation (as supposed in the weak 

interaction), then (ikE + ip)`will be transformable into a state which can be 

distinguished from it, and the bosonic state (ikE + ip) (–ikE – ip) will necessarily 

exist,  the (ikE + ip) here being the new state, and the (–ikE – ip) being the 

annihilation of the old state. This can only be true, however, if the state has nonzero 

mass and becomes the spin 0 ‘Higgs boson’ (ikE + ip + jm) (–ikE – ip + jm). The 

mechanism, which produces this state, and removes the masslessness of the boson, 

requires the fixing of a gauge for the weak interaction (a ‘filled’ weak vacuum), which 

manifests itself in the massive intermediate bosons, W and Z. 

 

From the structures of bosons and the consideration of fermion spin, it would seem 

that mass and helicity are closely related. If the degree of left-handed helicity is 

determined by the ratio (±) ip / (±) ikE, then the addition of a mass term will change 

this ratio. Similarly, a change in the helicity ratio will also affect the mass. If the weak 

interaction is only responsive to left-handed helicity states in fermions, then right-

handed states will be intrinsically passive, so having no other function except to 

generate mass. The presence of two helicity states will be a signature of the presence 

of mass. The SU(2) of weak isospin, which, in effect, expresses the invariability of the 

weak interaction to the addition of an opposite degree of helicity (due to the presence 

of, say, mass or electric charge) is thus related indirectly to the SU(2) of spin, which is 

a simple description of the existence of two helicity states. It is significant that the 

zitterbewegung frequency, which is a measure of the switching of helicity states, 

depends only on the fermion’s mass. Mass is in some sense created by it, or is in some 

sense an expression of it. The restructuring of space and time variation or energy and 

momentum, via the phase factor, during an interaction, leads to a creation or 

annihilation of mass, which manifests itself in the restructuring of the zitterbewegung. 

 

String theory 

 

String theory was developed to try to unify the four interactions and to remove the 

divergences assumed to be a consequence of assuming that point-like particles were 

the sources of physical interactions. Fundamental theorems suggested that 10 

dimensions were the number required to remove all the anomalies from physics. The 

problem was to show why these 10 reduced to 4 dimensions of space-time in the 

world we actually observe, and the argument was that they were ‘compactified’. The 

famous analogy with a hosepipe suggested that a compactification in this form, rolling 

the dimension in a circle around an uncompactified dimension, had connections with 

the Kaluza-Klein theory which had extended Einstein’s general relativity to 5 

dimensions to include electric charge. The circle compactification also had the U(1) 

symmetry required of the electric interaction. Whether the dimensionalities of string 

theory are all spatial or temporal dimensions becomes indeterminate if the 
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compactification to the extra dimensions occurs below the Planck length, as is 

generally assumed. String theory was never intended to be a model-dependent theory, 

but this aspect was meant to be a stage in leading to a more abstract, general theory to 

which the models would be approximations. The object was to find the correct 

vacuum which would generate the required compactification. There are famously 

many possible string theories, but they can be classified into 5 types, and a theory 

known as membrane theory or M-theory proposed that the different types could be 

combined if an extra dimension was added to connect them. The objects of M-theory 

were 2-dimensional spatial objects in 1-dimensional time, as opposed to the 1-

dimensional spatial objects in 1-dimensional time of string theory.  The combination 

of the 5 types of objects in 1-dimensional string theory in M-theory, however, has not 

yet happened. There is only an indication that it might be possible. 

 

The main interest for us in string theory is not in producing a new one, but in the 

claim about the fundamental significance of 10 dimensions in removing anomalies, 

for it is immediately apparent that the nilpotent operator (± ikE ± ip + jm) can, in fact, 

be regarded as a 10-dimensional object embedded in Hilbert space or equivalent. The 

reason why it can be regarded as 10-dimensional originates in the fact that it expresses 

a fundamental duality between two ‘spaces’. Though each of these is intrinsically 3-

dimensional, each becomes expanded to five in the process of combination. Thus, 

there are five dimensions for iE, p, m and 5 for k, i, j; and six of these (all but iE and 

p, or the equivalent time and space) are compactified in the sense of being fixed. The 

double 5-dimensionality also has connections with the Kaluza-Klein theory, which 

was originally two separate theories, one of which tried to explain invariant mass and 

the other electric charge, for the fifth term in the nilpotent has both these 

characteristics and it also represents a U(1) symmetry. 

 

Now, John Baez has claimed that the 10 dimensions indicate the existence of 2-

dimensional strings (1 dimension of space, 1 of time) in an 8-dimensional space, 

which could be octonion, and has suggested that an octonion space is the true basis of 

physics. Clifford algebra has the property of incorporating different dimensionalities 

in the same expression, and the nilpotent algebra is also an 8-dimensional object in 

two related senses. Two of the dimensions are made redundant because of the 

nilpotent structure, and the whole structure originates in the combination of the 4 

dimensions of space and time and the 4 of mass and charge as a broken octonion. Yet 

another way of looking at the fermionic nilpotent is as a 3-‘dimensional’ structure in 

k, i, j, though point-like in space, with one of the three ‘dimensions’ redundant, and 

this also corresponds to the 2-dimensional objects of string theory and the 3-

dimensional ones of membrane theory. In this sense, the 2 or 3 redundant dimensions, 

which would, in string or M-theory be a string or brane connecting two 3- or 4-

dimensional systems, become reduced to a point with zero dimension. 
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A classic prescription for a perfect string theory is one in which ‘self-duality in phase 

space determines vacuum selection’ (Alon Faraggi). The nilpotent certainly fulfils this 

criterion and it is also a mass-shell system and incorporates the right groups. It 

incorporates gravity / gauge theory correspondence and the holographic principle. 

Though we have no need for a model-dependent theory to incorporate the 

interactions, it is important to be able to satisfy all the conditions that appeared to 

make string theory, or a more fundamental abstract theory, of which the model-

dependent theories are approximations, seemingly necessary. In a sense the reduction 

of the 2-dimensional strings or 3-dimensional membranes to points in real space is the 

ultimate reduction of the model-dependent objects of string theory or M-theory to 

abstraction – a ‘string theory without strings’. It is significant that the nilpotent 

formalism achieves this through solving the problem of vacuum. 

 

In string theory, mass is generated by the vibrations of the strings, which replace point 

particles. However, this mass-generating mechanism is already incorporated in the 

point particle concept (as the Lamb shift makes clear), and relates to the Berry phase 

and zitterbewegung. It comes from the dual vector spaces needed to define a point 

particle, because the duality ensures that zitterbewegung (and hence vacuum 

fluctuation, the Lamb shift, etc.) is the origin of fermionic mass, and it requires a pole 

or singularity. In the nilpotent theory, rest mass always comes from defining a 

singularity through a double vector space. The very act of defining a point particle is 

also the same as ensuring that it undergoes vacuum fluctuations, or equivalent, and 

therefore generates mass. Again connecting with string theory, it is the same duality 

as that between gravity and gauge theory or between the local and nonlocal. 

 

One fermion theory 

 

Of the various attempts to provide a ‘physical’ picture of quantum mechanics, one is 

especially interesting with reference to the nilpotent connection between fermion and 

vacuum. This is Wheeler’s ‘one-electron theory of the universe’, now extended to a 

‘single fermion theory’. Here, a single fermion in different spatial and temporal states 

becomes equivalent to many fermions appearing simultaneously. All the other 

fermions after the first are this fermion in different space and time states, positive and 

negative. In the nilpotent formalism, of course, each single fermion sees all other 

fermions as constituting a vacuum which is a mirror image of itself. It is relevant here 

that the usual objections against the one-fermion theory no longer apply, as the total 

fermion structure requires equal numbers of fermions and antifermions existing 

simultaneously in two different but completely dual vector spaces – ‘real’ or observed 

space and vacuum space. In addition to exact equality between fermions and 

antifermions, the dual spaces also ensure that there is no mutual annihilation. 
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A consequence of this representation is that we can take an ensemble of fermions as a 

single fermion, and so justify applying the nilpotent condition in some form to larger 

structures, as is also evident from the fact that a version of the nilpotent Dirac 

equation using a discrete version of calculus (involving commutators rather than 

differentials) applies to classically discrete, as well as quantum systems. The scale-

independence of the single fermion / ensemble duality also fits exactly with the 

renormalization group procedure. 

 

An ensemble is not localised as narrowly as a single fermion, so its vacuum will not 

be quite as nonlocal. If we take the whole universe to be a fermion, we can imagine 

all the possible space and time conditions (and bit flips in the terminology of Seth 

Lloyd) as constituting this universe – which is what we have called vacuum. This 

includes all the states to which the single fermion could possibly aspire over time. In 

other words a real single fermion includes the entire possible history of the universe 

within its event horizon (the backward causality we referred to), making sense of our 

thermodynamics and evolutionary theory, as a unique birth-ordering. However, this 

does not require determinism because we can only define the entire history if we 

localize the fermion exactly, which of course we cannot do. It is only an ideal. So, we 

have an exact idea of what we mean by nonlocal, as all the other potential states, in 

space and time, which would of course be determined by the real states. The 

symmetry is perfect. Fixing a particular moment in time is localizing in time, in the 

same way as we localize in space. 

 

Dualities in nilpotent quantum theory 

 

The nilpotent quantum theory is built upon fundamental dualities, and many dualities 

are intrinsic components of its structure. The operator and wavefunction are dual, but 

there are also dualities at many other levels. A related duality between fermion and 

vacuum originates comes from the principle that, by defining a fermion state, we are 

also defining a fundamental singularity. To define a singularity we are forced to use a 

dualistic structure by simultaneously defining what is not singular. While we can view 

the fermion as a singularity with connections leading out to the rest of the universe, 

the vacuum acts as a kind of ‘inverse singularity’, with connections from the rest of 

the universe leading into the singularity constituting the fermion state.  

 

This duality ensures that vacuum is not something separated from the fermion. It is an 

intrinsic component of its definition, and of the spinor structure needed to define the 

fermion as a singular state. It is the reason why the fermion has half-integral spin – we 

can only define it by simultaneously splitting the universe into two halves which are 

mirror images of each other. The duality manifests itself physically in the 

phenomenon of zitterbewegung. Using either operator or amplitude, we define (± ikE 

± ip + jm) as a 4-spinor, with 4 terms (each of which is nilpotent) arranged as a 
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column / row vector. In the convention we have used, the ‘real’ state (the one subject 

to physical observation) is determined by the signs of E and p in the first term. The 

other three states are like three ‘dimensions’ of vacuum, the states into which the real 

term could transform by respective P, T or C transformations. The duality ensures that 

fermion and vacuum occupy separate 3-dimensional ‘spaces’, which are combined in 

the γ algebra defining the singularity state. It can be shown that these ‘spaces’, though 

seemingly different, are truly dual, each containing the same information, and that this 

duality manifests itself directly in many physical forms. 

 

Some examples of the duality can be listed. The following effects have explanations 

based on real space (coded blue), and alternative explanations based on ‘vacuum 

space’ or, as I sometimes describe it for totality zero, ‘antispace’ (coded red):  

 

Pauli exclusion  antisymmetric wavefunctions nilpotency 

angular momentum p1, p2, p3  iE, p, m 

spin ½ anticommutation of p Thomas precession 

SR velocity addition 2 space components space and time 

holographic principle space × space space × time 

 

In the case of Pauli exclusion, we can represent both p1, p2, p3 and iE, p, m on 

orthogonal axes, to give a resultant ‘vector’ that is unique for each state. There are 

two mappings, on σσσσ1
, σσσσ2

, σσσσ3
 and on ΣΣΣΣ1

, ΣΣΣΣ2
, ΣΣΣΣ3

, and these are dual. Both sets of 

coordinates yield information about the same physical quantity: angular momentum. 

For full specification, angular momentum requires three separate pieces of 

information – magnitude, direction and handedness – and this is provided when iE, p 

and m are combined. It is also provided when we use all the information incorporated 

in the p vector alone. 

 

We have already discussed how we can derive spin ½ for fermions either by taking 

the commutator of the spin pseudovector σσσσ = –1 and the Hamiltonian, and deriving 

the half-integral spin from the anticommuting aspects of the components of p, or, in 

terms of the Thomas precession, which is a relativistic correction. That is, we can 

derive spin ½ using either the (multivariate) vector properties of space (using σσσσ1
, σσσσ2

, 

σσσσ3
) or the relativistic connection between space and time (using ΣΣΣΣ1

, ΣΣΣΣ2
, ΣΣΣΣ3

); the 3-

dimensional ‘spaces’ involved are totally dual. The same applies to the velocity 

addition law in special relativity, which can be derived using either two dimensions of 

space (which generates the σσσσ1
, σσσσ2

, σσσσ3
 structure of Euclidean space) or one of space 

relativistically connected with one of time (which generates the ΣΣΣΣ1
, ΣΣΣΣ2

, ΣΣΣΣ3
 connection 

between space, time and proper time). The holographic principle provides another 

example where this occurs (and this is completely defined for the fermionic case by 

the nilpotent structure); here, the bounding ‘area’ specifying a system can be defined 

either by two spatial coordinates or one of space and one of time. 
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In all these examples, the two vector spaces required to define fermion structure as a 

singularity are completely dual, though the symmetry of one is preserved while that of 

the other is broken. As in the parameter group from which it is derived, one condition 

is necessary to define the opposite in the other, and, in this way, the opposing 

conditions ultimately provide the same information, in the same way as localised 

fermion state and nonlocalised vacuum, or operator acting on phase factor and 

amplitude. Zitterbewegung is generally interpreted as a switching between a fermion 

state and its vacuum, but it is also an expression of the duality between the ‘real’ 

space of σσσσ1
, σσσσ2

, σσσσ3
 and the ‘vacuum space’ of ΣΣΣΣ1

, ΣΣΣΣ2
, ΣΣΣΣ3

, neither of which is 

privileged. Both give an equally correct description of the state and must be 

simultaneously valid, even though we can only observe one at any given moment, and 

even the choice of broken / unbroken rotation symmetries between the components 

can be reversed by switching the space of observation from ‘real’ to ‘vacuum’ space. 

 

The intrinsically dualistic nature of the fermion is most readily apparent when it is 

described by the self-dual nilpotent form of quantum mechanics, which is founded on 

the commutative combination of two vector spaces, each of which is exactly dual to 

the other. It is remarkable that physics has never been successfully founded on a 

concept of a single space, however distorted, but it does seem to respond well to being 

structured on two! From the initial duality, many others emerge, for example, those 

between fermion and vacuum, fermion and vacuum boson, operator and amplitude, 

nilpotent and idempotent, broken and unbroken symmetries. These dualities allow the 

same mathematical structures (or the same structures but for sign changes) to describe 

apparently dissimilar objects, and so explain how the creation of a fermionic 

singularity effectively splits the universe into two halves that are mathematically and 

physically, if not observationally, equivalent. 
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