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Abstract

This paper studies collusion via information sharing in the context of auctions.
The model of collusion via information sharing builds on Aumann’s (1976) descrip-
tion of knowledge. Robustness of auction mechanisms to collusion via information
sharing is defined as the impossibility of an agreement to collude. A cartel can
agree to collude on a contract if it is common knowledge within that cartel that
the contract is incentive compatible and individually rational. Robust mecha-
nisms are characterized in a number of settings where some, all, or no bidders are
bound by limited liability. Finally, the characterization is used in a simple IPV
setting to design a mechanism that is both optimal and robust to collusion.
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1 Introduction

Auction bidders can extract rents from knowing how much allocations are worth to
them. Given the rent from information, they have an incentive to protect its privacy
from the auctioneer. In contrast, with regard to sharing information with their peers,
the bidders’ incentives are precisely reversed. When bidders’ information is pooled,
rather than dispersed, they can achieve even higher rents through coordinated action.

This paper focuses on collusion via information sharing among bidders. Infor-
mation sharing is different from, and stronger than, cheap-talk communication; it
implies a prior commitment to disclosure, which is equivalent to granting access to
future data. In auctions, information sharing allows bidder cartels to overcome an
important obstacle to successful collusion, the asymmetry of information. Hence any
sharing technology that can serve as a commitment device will be used by cartels of
auction bidders. This paper is concerned with the auctioneer’s response to the threat
of collusion via information sharing.

The focus on collusion via information sharing is novel to the literature, which
has emphasized the cartels’ role in the enforcement of actions rather than in the
enforcement of information exchange (e.g., Laffont and Martimort, 1997). In contrast
to the extant literature, I assume that the members of a cartel can disobey its bidding
recommendation but can not withhold the information they had previously committed
to share. Consequently, the role of monetary side payments is different. In the extant
literature, action-enforcing cartels use the payments to counteract the asymmetries
of information and induce truth-telling. In contrast, in this paper cartels employ the
payments to induce obedience to the cartel’s plan of action.

The objective is three-fold: (1) set up the model of collusion via information shar-
ing, (2) characterize auction mechanisms robust to such collusion, and (3) use the
characterization to design a robust mechanism.

The model of collusion via information sharing builds on Aumann’s (1976) repre-
sentation of knowledge as a partition of the type (valuation) space. Aumann’s knowl-
edge structures emerge initially when the bidders learn their own values and are
subsequently refined as result of information exchange between the bidders. The
model offers a notion of agreeing to collude and its counterpart, the robustness of an
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auction mechanism to collusion. For a variety of information sharing technologies as
well as transfer schemes, I study whether and how bidder collusion via information
sharing can be prevented.

The difficulty in studying this type of collusion is due to the possibility of infor-
mation sharing and the failure of Revelation Principle it implies.1 Consequently, the
analysis can not benefit from the reduction to a class of direct mechanisms. More-
over, I show that robustness to collusion via information sharing can only be achieved
by introducing more complex games of communication between the bidders and the
auctioneer.

In the first set of results, I find that depending on the bidders’ ability to commit
to transfers, mechanisms’ robustness to collusion can be immediately achieved, or, in
contrast, impossible. In particular, when bidders cannot commit to side-transfers the
auctioneer can prevent collusion at virtually no cost by extending the set of messages.
For example, in a special case where bidders can obtain hard evidence of collusion,
collusion can be easily precluded by rewarding whistle-blowers. In contrast to that
result, even moderate information sharing upsets any efficient auction in the case
where all bidders can commit to pay side transfers. A direct implication of this nega-
tive result is that if both information sharing and enforcement of actions are available
to the cartel, there is no benefit of running an auction whatsoever.

Another set of results relates to the intermediate case where the cartel members
who are designated to win are the ones who can commit to side payments, as means
of rewarding cooperation. The non-designated members from the cartel’s plan may
be deprived of the reward if they deviate, but no money can be extracted from them.
In this setup I derive sufficient and necessary conditions for mechanisms’ robustness
to collusion via information sharing. The sufficient condition for robustness bears
similarity to zero- (fixed-) sum games, as the cartel plays against the set of possi-
ble defectors when it shares the spoils from collusion. The cartel chooses the bidding
manipulation so as to minimize the sum of gains from possible deviations while maxi-
mizing the surplus from collusion. The test is whether the cartel can always generate

1Green and Laffont (1986) discuss the necessary and sufficient conditions underlying the Revela-
tion Principle (see e.g., Myerson, 1979). The possibility of certifiable messages, as in collusion via
information sharing, violates the necessary condition.
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enough surplus and share it with the potential defectors to induce them to comply.
If the answer is negative, the mechanism is robust. The sufficient condition is also
necessary in open IPV auctions when information sharing is complete.

The characterization offers an insight into designing robust auction mechanisms:
one seeks to induce a conflict of interest within a prospective cartel to prevent it
from rationally forming in the first place. Specifically, deviations from any collusive
plot must yield greater payoffs than the surplus from collusion itself. An example of
auction mechanism achieving this is described in Section 5. The auction is simultane-
ously designed to yield the optimal revenue in a symmetric IPV setting (that is, under
the conditions of Revenue equivalence theorem). This is in contrast to Che and Kim
(2009), Pavlov (2008), Gruyer (2009), and Feige et al. (2013) who show that robust-
ness to collusion with enforcing cartels may lead to a loss of revenue. In that sense,
collusion via information sharing may be seen as less problematic for the auctioneer
than collusion via controlled bidding.

With respect to communication surrounding a bidding process and its effect on ro-
bustness, our analysis generates several qualitative predictions. First, it is not true in
general that the more information is shared within the cartel, the more the cartel can
achieve. Indeed on the one hand, better information allows the cartel fine-tune the
bidding manipulation to its precise data; but on the other, better information equally
expands the possibilities for individual deviations from the cartel’s plot. Thus coop-
eration may break down as bidders become more informed. Second, including extra
communication between the bidders and the auctioneer has an ambiguous effect on
the robustness, as well. While it may give the necessary leeway for individual cartel
members to defect, it also creates a larger menu of possible manipulations for the car-
tel to choose from. (One of the examples uses an integer game à-la Maskin (1999) to
rule out whistle-blowing as part of the cartel’s manipulation.) The auction designer
has to navigate carefully between the competing objectives. Third, and final effect is
unambiguous. Eliciting less information about the auction’s course and outcome is
always to the auctioneer’s advantage. The reason is that the less cartels can observe
and punish deviations, the easier it is to deviate, the better for robustness.
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Related Literature

It has been long understood that standard auction procedures are prone to collusion.
However, few alternative auction designs have been proposed. A clever framework for
designing collusion-robust auctions was presented by Laffont and Martimort (1997)
and applied to auctions by Che and Kim (2009); Pavlov (2008) and others. The ap-
proach is to model collusion organized by a side-contractor, as in Mailath and Zemsky
(1991); McAfee and McMillan (1992), and subsequently to employ the Revelation prin-
ciple (e.g., Myerson, 1979). The side contractor is benevolent to the cartel but faces
information asymmetry, like the auctioneer. By the Revelation principle, if a mech-
anism is robust to collusion sustained by a side-contract that satisfies truth-telling
and participation constraints, then it is robust to any side contract that is achieved
via an arbitrary negotiation process. It is noted that without truth-telling incentive
constraints (specifically, under the assumption of complete information within the
cartel) the auctioneer cannot do better than charge monopoly prices (see, e.g., De-
quiedt, 2007). This negative result holds under the assumption that the cartel is able
to enforce actions during the auction, or equivalently, to observe deviations and ‘shoot
the traitor‘. It may not hold if bidders are autonomous and not all deviations are
observable by design. This paper considers precisely such possibilities and requires
that compliance within cartels be a rational response to the incentives. Formally, I
replace truth-telling by obedience incentive constraints and show that the auctioneer
may be able to do better much than reducing the auction to monopoly pricing.

Empirically the type of collusion where cartels can not enforce the members’ ac-
tions was studied in McMillan (1991); Porter and Zona (1993); Hendricks and Porter
(1989); Pesendorfer (2000); Levenstein and Suslow (2006), among others. Non-enforcing
bidder cartels have also been the subject of multiple theoretical studies. For a re-
view of this literature, see Rachmilevitch (2013) as well as the earlier studies in-
cluding Graham and Marshall (1987); Robinson (1985); von Ungern-Sternberg (1988).
Schummer (2000) studies manipulations by two bidders where one of them rewards
the other for misrepresenting his type, which is similar to the intermediate case cov-
ered in the present paper. Enforcing and non-enforcing cartels are compared in Mar-
shall and Marx (2007) in the context of first- and second-price auctions.
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In another related paper, Marshall and Marx (2009) study the effect of the amount
of information revealed by the seller on the viability of collusion. They find that car-
tels where only the winner pays can collude efficiently in the second-price auction,
unless the winner’s true identity remains unknown. The present paper complements
their analysis by looking at how the auctioneer’s strategy in terms of outcome disclo-
sure affects the robustness of mechanisms.

Computer science has tackled several aspects of bidder collusion. Chen and Micali
(2012); Deckelbaum and Micali (2016) design indirect auction mechanisms, a feature
that relates their work to mine. Indirect mechanisms allow for richer communication
than direct mechanisms where the bidders only submit their bids to the auctioneer.
The above papers are concerned with the effect of collusion on allocative efficiency, as
opposed to seller’s revenue (this paper). The mechanisms guarantee that the object is
allocated to the highest valuation bidder, despite that a significant part of the seller’s
revenue may be lost. Goldberg and Hartline (2005) use a collusion model with bribes
and describe auctions that are approximately efficient and revenue maximizing in a
setup where items are in excess supply.

The literature has also studied other types of collusion, for example, collusion via
resale (Garratt et al., 2009) and collusion via repeated interactions (Aoyagi (2003,
2007); Skrzypacz and Hopenhayn (2004); Vergote (2011); Abdulkadiroglu and Chung
(2003)). Along with the models of collusion by action enforcing cartels and the present
collusion via information sharing, these models ought not to be seen as competing,
but complementary tools in the auctioneer’s toolbox. The economic environment in
which the auction takes place, the nature of object at sale, and of the bidders (people,
automata, or corporations, e.g.) are the factors that should all be taken into account
when choosing are the relevant collusion model to inform auction design in practice.
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2 The Setup

There is a set N = {1, 2, ..n} of bidders, the number of bidders is greater than two. The
seller is referred to as player 0, and the extended set of players is N0 = N ∪ {0}.2 The
auction results in allocation (x0, x1, ...xn) ∈ X, where xi is the set of goods assigned to
player i. xi = ∅, for some i ∈ N , implies that bidder i does not win anything in the
auction. Bidder i’ valuation vi maps the allocation into a positive real number,

vi : X→ R+. (1)

The image vi (X) is compact in R+. The bidders’ valuation functions are drawn ran-
domly from the set V, assumed discrete.3 This setup allows for correlation in value
functions, as well as allocation externalities. In the special case of independent pri-
vate values, the functions vi, i ∈ N , are drawn independently and each vi only depends
on xi.

The state space Ω = Vn × A0 is the product of the space of buyers’ valuations and
the seller’s signals, whose role is discussed below. A typical element of Ω is denoted ω,

ω = (v1, ..vn, a0) . (2)

We will consider a normal-form representation of the auction game. An auction mech-
anism,

M = (A,O,P) , (3)

is defined by three elements: the set of actions A, the outcome function O, and the
public disclosure operator P.

A ≡ ×i∈N0Ai, where Ai is the set of player i’s actions, assumed discrete. In the sim-
2The setup can be re-framed to describe procurements, or reverse auctions: the lowest bidder wins

the procurement contract; the analysis is completely symmetric.
3The assumption that V is discrete implies that valuations are known with a finite degree of preci-

sion, e.g., up to one cent of a dollar. Assuming that the space of actions (bids) is also discrete allows
us to disregard infinitesimal deviations, and to assure that all infima and suprema in strategies are
attained.
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plest case of a direct mechanism, Ai = V, for all i ∈ N .4 A0 corresponds to
the seller’s randomization device.5

O ≡ (OX,O1, ..On) : A→ X× Rn is the (pure) outcome function that maps the action
set A into the product of the set of allocations X and payments that buyers
make to the seller Rn.6 I focus on winner-pay auctions, such that OXi (a) =

∅ implies Oi (a) = 0.7 This excludes entry fees and all pay auctions, in
particular.

P (a,O(a)), also denoted (P ◦ O) (a), is the public disclosure operator, a projection of
actions and outcomes onto a reduced space of information, a projection of
A × X × Rn. P is what the auctioneer discloses publicly during and after
the auction. For instance, P ◦ O = OX implies that the auction is seal-ed
bid and only the final allocation is public.

All three elements A,O, and P are set by the auction designer, e.g.,. in a way to
preclude collusion. Note that public disclosure may be subject to regulation as well as
practical limitations. (For instance, the identity on the winner of a takeover bid can
not typically be concealed.) To fix ideas, I assume that P is such that at least the final
allocation becomes public.8

For a given mechanismM = (A,O,P), bidder i’s utility is given by

Ui (a) = (vi ◦ OX −Oi) (a), (4)

where OX(a) ∈ X denotes the allocation and Oi(a) ∈ R+ bidder i’s payment to the
seller. The seller’s revenue at a equals

∑
i∈N Oi (a).

4Footnote 1 on page 4 discusses how the Revelation Principle relates to the current setup.
5For example, if A0 is the set of all possible orderings of N then the random draw a0 breaks ties in

a single-unit auction.
6The outcome is ’purified’, or made deterministic, by the appropriately choosing A0.
7OXi (a) = ∅ implies that no items are allocated to bidder i.
8Formally, if (P ◦ O) (a) = (P ◦ O) (a′) for some a, a′ ∈ A then OX(a) = OX(a′). OX(a) denotes the

allocation resulting from a.
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3 The Model of Collusion

The strength of cartels’ commitment to information sharing, actions and transfers is
exogenous. For a given cartel C ⊆ N , it is characterized by a collusion environment

K = (CC ,SC , TC)C⊆N (5)

where CC is an information sharing technology, SC is a set of feasible bidding ma-
nipulations and TC is a set of feasible transfers. CC is discussed in Subsection 3.1,
while SC and TC , composing the space of side-contracts, are discussed in Subsection
3.2. The game evolves according to the following time-line.9

1 (ex ante). The auction mechanismM and the collusion environment K are fixed.

2 (ex ante). Cartel C ⊆ N , |C | ≥ 2, forms exogenously.10

3 (interim-(3)). Nature draws a random state ω. Players learn their private signals.

4 (interim-(4)). Information is shared according to CC and a side-contract

(sC , tC) ∈ SC × TC is signed.

5 (ex post). The auction is run.

6 (ex post). Side transfers tC are exchanged within the cartel.

With regard to information, I distinguish four stages: ex ante, interim-(3), interim-(4)
and ex post. At the ex ante stage, the players have no payoff-relevant information.
At the interim stage 3 the bidders learn their valuations. At the interim stage 4,
the bidders receive further information. Finally, ex post, bidders observe whatever is

9The timing is similar to Laffont and Martimort (1997): first, a prior framework agreement, then
a specific contract, and finally the execution of contractual payments. The stage where the grand
contract is accepted is omitted, since the bidder can guarantee zero payoff in the auction and hence
acceptance is trivial.

10Exogenous coalition formation is a common assumption in the auction literature. A notable excep-
tion is Biran and Forges (2011), who first study interim coalition formation.
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disclosed publicly about the actions and outcomes of the auction (as well as their own
actions). I assume that the bidders start with the same prior belief and update their
beliefs according to the Bayes rule. Information sharing that occurs at the interim
stages is discussed in more detail below.

3.1 CC : Information structure and information sharing

The knowledge of bidder i at stage t of the game is represented by a partition I(t)i of
the state space Ω (Aumann, 1976). The partition is made up of sets of states that
are indistinguishable to the bidder at t. Specifically, I(t)i (ω) is the set of all states that
bidder i considers possible at state ω, whereas any subset of Ω/I(t)i (ω) is assigned zero
probability at t. We say that a bidder knows an event E at ω if I(t)i (ω)⊆E .

Partitions I(3)i , i ∈ N , at stage 3 emerge from the bidders’ observation of their own
values.11 Partitions I(4)i , i ∈ N , are the refinements of I(3)i , i ∈ N , that result from
information sharing.

The model of information sharing within cartel C ⊆ N includes a fictitious omni-
scient mediator. The mediator observes all of the cartel’s information such that his
knowledge is given by the join of the cartel members’ partitions ∨i∈CI(3)i . The me-
diator imparts arbitrary bits of his knowledge to the cartel members. The resulting
stage-4 partitions are as follows:

I(4)i = I(3)i ∨ Ci

(
∨j∈CI(3)j

)
, (6)

where Ci (·) is some (weak) coarsening of the partition.12,13 The collection of coarsen-
ing operators for cartel C is denoted CC = (Ci)i∈C .

The coarsening operators CC determine the degree of information sharing, from
complete information sharing (no coarsening) to null information sharing (maximal
coarsening). Formally, information sharing Č is complete in C if Či (A) ≡ A, or equiva-
lently, I(4)i = ∨j∈CI(3)i , for all i ∈ N . Information sharing Ĉ is null in C if Ĉi (A) ≡ {Ω},

11For all ω = (a0, v1, ..vn) and ω = (a′0, v
′
1, ..v

′
n), I(3)i (ω) = I(3)i (ω′) if and only if vi = v′i.

12Partition A of Ω is coarser than partition B of Ω if for any ω ∈ Ω, A (ω) ⊇ B (ω).
13For any bidder i who does not collude, or equivalently, is the sole member of his cartel, I(4)i = I(3)i .

11



or equivalently, I(4)i = I(3)i . Information sharing C e is efficient if the bidders learn
what the efficient allocation among them is. Table 1 illustrates the various degrees of
information sharing.

v1\v2 0 2 4 v1\v2 0 2 4 v1\v2 0 2 4
1 · · · 1 · · · 1 · · ·
3 · · · 3 · · · 3 · · ·
5 · · · 5 · · · 5 · · ·

Table 1: Examples of information sharing between two bidders in a single-unit auction.
Bidder 1’s interim-(4) knowledge partitions when his type v1 takes values 1, 3, or 5 and
Bidder 2’s type v2 takes values 0, 2, or 4. Left: Complete; Center: Null; Right: A case of
efficient information sharing (knowing which bidder has the highest valuation).

The following definition of common knowledge, as well as the rest of the analysis,
focus on stage-4 partitions only. Hence the superscript (4) will be omitted: I(4)i ≡ Ii,
i ∈ N , from here on.

Definition 2 (Aumann, 1976). An event E ⊆ Ω is common knowledge in C ⊆ N at
ω ∈ E if IC (ω) ⊆ E , where IC ≡ ∧i∈CIi is the meet of partitions Ii.

Table 2 provides an illustration to cartel’s common knowledge.

v1\v2 0 2 4 v1\v2 0 2 4 v1\v2 0 2 4
1 · · · 1 · · · 1 · · ·
3 · · · 3 · · · 3 · · ·
5 · · · 5 · · · 5 · · ·

Table 2: Examples of information sharing between two bidders in a single-unit auction.
Common knowledge partitions in the example of Table 1, if Bidder 2’s knowledge partitions
are symmetric to those of the Bidder 1. Left: Complete; Center: Null; Right: Efficient infor-
mation sharing.

A strategy si ∈ Si, i ∈ N , is a Ii−measurable function that maps the state space
Ω into the action set Ai. We focus on pure strategies; for a fixed strategy profile
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sN ≡ (si)i∈N , the state of the world ω uniquely determines the outcome of the auction
(O ◦ sN) (ω) ∈ X× Rn

+, and the bidder’s auction payoffs Ui (sN (ω) ;ω) ≡ (Ui ◦ sN) (ω).14

The strategy profile that serves as benchmark for comparison with the cartel’s
manipulations is denoted s∗N ≡ (s∗i )i∈N . The appropriate benchmark may depend on
the application, but typically it is a non-cooperative equilibrium of the mechanism.

The analysis of cartel behavior focuses on the game reduced to the cartel C ⊆ N .
Payoffs U∗i of the reduced game are derived from payoffs Ui of the original game where
the residual set of bidders N/C play s∗N/C = (s∗i )i∈N/C .15 Formally,

U∗i ◦ sC ≡ Ui ◦
(
sC , s

∗
N/C

)
(7)

for all i ∈ C, if C 6= N . Otherwise if C = N , (U∗i ◦ sC) (ω) = (Ui ◦ sC) (ω). The cartel’s
collusion surplus ∆W ∗

C from playing sC = (si)i∈C as opposed to s∗C = (s∗i )i∈C is defined
as the change in the cartel’s welfare,

∆W ∗
C ◦ sC ≡

∑
i∈C

U∗i ◦ sC −
∑
i∈C

U∗i ◦ s∗C . (8)

3.2 (SC , TC) : Side Contracts

A side contract is a bidding manipulation and a system of ex-post transfers that sup-
port it. The contract is offered to the cartel at stage 4 after the information is ex-
changed. The total payoff to cartel member i ∈ C is the sum of his auction payoff and
the (possibly negative) side transfers:

Ui (a;ω) + ti (a) . (9)

14Note that we omit a0 as we write (O ◦ sN ) (ω) ≡ O (sN (ω)) as opposed to O (sN (ω) , a0). Recall that
ω = (v1, ..vn, a0), hence no information is lost from the omission.

15In Bernheim et al. (1987), e.g., the residual player set N/C plays Nash equilibrium strategies. See
Bierbrauer and Hellwig (2016) for a discussion.
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3.2.1 Bidding manipulation (SC)

To break the cartel’s indifference we restrict attention to profitable joint deviations.
That is, SC is such that E (∆W ∗

C ◦ sC) (ω̃) | ω̃ ∈ IC (ω) > 0 for all sC ∈ SC , ω∈ Ω. Bidder
i is a designated bidder under sC if OXi ◦

(
sC , s

∗
N/C

)
6= ∅ with positive probability.16

Let SαC denote the set of all manipulations sc such that the set of designated bidders,
denoted Cα (sC), is a non-trivial subset of C.

3.2.2 Transfers (TC)

The feasible transfer set TC is a set of transfer profiles tC = (ti)i∈C , where
ti : ×i∈N∪{0}Ai → R, for all i ∈ C, are (P ◦ O)×IC−measurable functions. ti represents
the payment received by bidder i (recall (9)); the measurability condition implies that
payment is conditional on the auction’s public outcome and the cartel’s knowledge,
and in particular on whether any deviations have been detected.17 The set of feasible
transfers is given by

TC ≡

{
ti (·) : ∀i ∈ C, ∀a ∈ ×i∈N0Ai, ti (a) ≥ 0,

∑
i∈C

ti (a) ≤ 0

}
, (10)

where C ⊆ C is the set of bidders with limited liability, i.e., bidders unable to commit
to pay. The robustness analysis in Section 4 considers three cases where the set of
bidders whose liability is limited vary. In particular, we look at C = C, C = ∅,
and C = C/Cα (sC), for all sC ∈ SαC , and the corresponding sets of side contracts
denoted

(
SC , TLLC

)
,
(
SC , TULC

)
, (SαC , TαC ). The first two cases correspond to the weakest

and the strongest possible cartel, whereas the latter corresponds to an intermediate
case where the designated bidders can commit to share their profits with the non-
designated ones.

16OXi (a) = ∅ implies that no items are allocated to bidder i.
17A deviation from strategy sub-profile sC ∈ ×i∈CSi is undetected by C ⊆ N at ω ∈ Ω and a′ ∈
×i∈N0Ai if (P ◦ O ◦ s) (ω̃) = (P ◦ O) (a′), for some ω̃ ∈ ∧i∈CIi (ω). Otherwise, the deviation is detected.
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3.2.3 Incentive Compatibility and Individual Rationality

The incentive compatibility and individual rationality of side contracts is evaluated
at stage 4, when the cartel selects a contract from the feasible set (SC , TC).

A contract (sC , tC) is obedience incentive compatible at ω ∈ Ω if no member of C
can profitably deviate from the collusive manipulation. Specifically, for all i ∈ C and
s′i ∈ Si,

E [((U∗i + t∗i ) ◦ sC) | Ii (ω)] ≥ E
[(

(U∗i + t∗i ) ◦
(
s′i, sC/i

))
| Ii (ω)

]
, (11)

where E [g | Ii (ω)] ≡ E [g (ω̃) | ω̃ ∈ Ii (ω)], and t∗i ◦ sC ≡ ti ◦
(
sC , s

∗
N/C

)
for all i ∈ C. I

require that the inequality be strict for all deviations that may lead to a change in
outcome compared to sC ; the set of such deviations is denoted S ′i(sC).18 The incentive
compatibility amounts to obedience of the cartel’s manipulation.

A contract (sC , tC) is individually rational at ω ∈ Ω if each member is at least as
well off colluding as he is playing non-cooperatively. I.e., for all i ∈ C,

E [((U∗i + t∗i ) ◦ sC) | Ii (ω)] ≥ E [(U∗i ◦ s∗C) | Ii (ω)] . (12)

The constraint of individual rationality implies that the contract (sC , tC) involves no
regret of information sharing. Specifically, it states that the utility of collusion is
greater than the utility in the non-cooperative equilibrium conditional on the infor-
mation at stage 4 when the contract is signed.

4 Robustness to Collusion

Our analysis of the robustness of mechanisms to bidder collusion relies on the follow-
ing definitions.

18The requirement of strict incentive compatibility in such cases can be interpreted as a trembling-
hand refinement; the cartel should not accept a contract where the outcome is upset if one of the
member’s breaks the indifference unfavorably. If we did not impose this refinement then the results of
Theorems 1 and 2 would be unchanged, while the inequality in Theorems 3 and 4 would become strict.
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Definition 3. A cartel C ⊆ N can agree to collude in (M,KC), if there exists a side
contract, and a state ω ∈ Ω such that it is common knowledge among the cartel
that the side contract is incentive compatible and individually rational at ω.

Definition 4. An auctionM is robust to collusion via information sharingK ≡ (KC)C⊆N
if no cartel C ⊆ N can agree to collude.

By definition, the robustness to collusion via information sharing depends not only on
how much information is shared (C ) in K, but also on the bidders’ power to commit
to exchanging ex post transfers (T ) that help sustain the manipulation during the
auction.19 This section shows that depending on the components C and T of the
collusive environment K robustness can be virtually free to achieve or impossible.

We will first consider the case where the bidders cannot commit to ex-post trans-
fers at all. Put differently, the set of feasible contracts is

(
SC , TLLC

)
. The following

theorem states that any mechanism can be made robust to collusion via non-null in-
formation sharing at an arbitrary small cost.

Theorem 1. Suppose bidders’ types are independent. Consider an arbitrary mech-
anism M, its equilibrium s∗ and collusion environment K =

(
CC ,SC , TLLC

)
C⊆N

where CC , for all C ⊆ N is strictly non-null. There exists a mechanismM′ such
that (1) s∗ constitutes an equilibrium ofM′ (2)M′ is robust to K and (3) the cost
of implementingM′ as opposed toM is arbitrarily small.

Proof. See Appendix A.1.
In a special case where bidders can present hard evidence of collusion, such as

records of collusive negotiations, the proof can be substantially simplified. We con-
struct such a proof based on the integer game (e.g., Maskin, 1999) below.

Proof in a special case. If M is (already) robust, then let M′ = M. If M is not
robust, M′ is constructed by expanding the original action set Ai, for all i ∈ N , to
allow bidders to present any evidence of collusion. The whistle-blower becomes the
dictator: he solely determines the final allocation and receives a small reward of ε > 0.
If there is more than one whistle-blower, the dictator is chosen according to the high-
est integer given alongside the report of collusion. Since the whistle-blower’s liability

19This observation mirrors some of the previous analysis, for example Laffont and Martimort (1997).
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is limited, it becomes profitable to report collusion to the seller, even if the bidder is
already getting his best value with the manipulation (due to ε). The integer game
guarantees that whistle blowing cannot be part of an incentive compatible manipula-
tion. �

Let us now consider the opposite case where all the bidders can commit to ex-
changing transfers ex post, such that the relevant space of side contracts is

(
SC , TULC

)
.

A negative result obtains in this setup. In particular, the following theorem states
that no efficient auction, including such mechanisms as the first- and second-price
auctions, is robust to collusion, under efficient information sharing.

Theorem 2. SupposeM is an efficient auction. M is not robust toK =
(
C e
C ,SC , TULC

)
C⊆N .

Proof. See Appendix A.2.
The proof shows that the grand cartel can enforce any manipulation due to the fol-

lowing argument. Any profitable deviation from the collusive strategy must involve a
change in allocation, which is public, or a decrease in auction payment. Since trans-
fers are conditional on the public outcome and are unbounded from below, the cartel
can impose fines that are large enough to preclude deviations resulting in allocation
changes. Decreasing payment will not be feasible if the cartel initially selects the
manipulation that leads to the lowest possible revenue among those that lead to the
efficient allocation. A simple implication of Theorem 2’s result is that action-enforcing
cartels make robustness impossible in this setup.

The quasi-universal robustness stated in Theorem 1 is in sharp contrast with the
negative result of Theorem 2. This contrast emphasizes the role of ex post transfers;
depending on the possibility to commit to money transfers ex post robustness can be
immediate or impossible. In intermediary cases, robustness obtains under certain
conditions. Below, we look at designated bidder scenarios spanned by the set of side
contracts (SαC , TαC ) (see (10)). Recall that in this case the bidders designated to win,
and only they, can commit to side-payments ex post. The next theorem states that
an auction is robust to collusion if no cartel can restrict the non-designated bidders’
payoff to be less than the cartel’s own surplus under the chosen manipulation.

Theorem 3. Suppose the net defection value VMω ≥ 0 ∀ω∈ Ω. M is robust to
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K = (CC ,SαC , TαC )C⊆N . The net defection value VMω is defined as follows:

min
C⊆N,
sC∈SC

max
s′
C/Cα

∈S′
C/Cα

(sC)

E

 ∑
i∈C/Cα

(
U∗i ◦

(
s′i, sC/i

)
− U∗i ◦ s∗C

)
−∆W ∗

C ◦ sC

 | IC (ω)

 . (13)

VMω is the lowest net defection payoff the cartels achieve when the defecting bidders
try to maximize it. It is similar to a fixed-sum game where the surplus from collusion
is to be shared.

Proof. See Appendix A.3.
Let us look at the contra-positive first. Consider the following equivalent state-

ment: If an auction is non-robust then the defection value is negative in at least one
state of nature. Non-robustness implies that there exists a cartel that can agree to
collude, i.e., at least one cartel can find a feasible side contract to satisfy common
knowledge of individual rationality and incentive compatibility at some state. As an
illustration, suppose that this is true of a cartel with just two bidders, the designated
leader and non-designated follower. To prevent the follower’s deviation the contract
must be such that the reward for cooperation outweighs the benefit of whatever the
follower can achieve by deviating. But for individual rationality to hold on the leader’s
side, the leader’s extra surplus from collusion, less the reward he pays to the follower,
must make the leader at least as well off as he was in the non.cooperative equilib-
rium. Thus, the surplus from collusion must exceed the follower’s best payoff from
deviation. In sum, this implies that the net defection value is negative at the state
where the bidders agreed to collude, of equivalently ∃ω∈ Ω such that VMω < 0.

The intuition behind the theorem relates to the No-trade result of Milgrom and
Stokey (1982):20 Agreement to collude fails whenever the cartel cannot agree to dis-
agree on the price of collusion. Consider a cartel member’s cooperation a ’good’ that
the buyer (designated leader) considers purchasing from the seller (non-designated
follower); the value of cooperation is private information of its seller. In a robust
mechanism, where there can be no trade, the leader would have to pay more to in-
duce cooperation than what he gains from it. In the other direction, any reward that

20The No-trade Theorem that is also derived from Aumann’s (1976) model.
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leaves the leader with a positive surplus would be insufficient to shut down incentives
to deviate from the collusive manipulation of bids.

A simple yet important corollary of Theorem 3 follows.

Corollary. Suppose mechanism M = (A,O,P) satisfies the conditions of Theorem 3
and hence is robust to K. If a new mechanism M′ = (A,O,P ′) is obtained by
reducing the public disclosure of outcomes, thenM′ is also robust to K.

Proof. See footnote 24 on page 26.
The corollary suggests that reducing public disclosure can only hinder collusion.

For example if an open auction is robust to collusion, then it will stay robust if only the
the final allocation is revealed. This is due to the fact that the ex post side transfers
that cartels exchange are conditional on coarser information in the latter mechanism,
and hence the cartel cannot possibly sustain more manipulations compared to the
former mechanism. Indeed, one of the most prominent cases of collusion occurred
in the FCC spectrum auction whose design featured extensive public disclosure (see
Perry and Reny, 1999). Marshall and Marx (2009) reach a similar conclusion and
develop further insights on the effect of outcome disclosure.

The final result shows that the sufficient condition of Theorem 3 is also necessary
for the robustness of open IPV auctions when information sharing is complete.

Theorem 4. SupposeM is open21 and robust to K =
(
ČC ,SαC , TαC

)
C⊆N in an indepen-

dent private valuation setting. Then VMω ≥ 0 ∀ω∈ Ω (see (13)).

Proof. See Appendix A.4.
The condition on the net defection value VMω offers a robustness test for existing

auction mechanisms in a natural situation where cooperation can be rewarded in
cartels. Importantly, it can also be used to inform robust auction design. The next
section constructs a mechanism where the net defection value is always non-negative.

21An auction mechanismM is open if P ◦ O = O.
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5 Auction with Target Bids

In this section, I use the result of Theorem 3 to construct an auction that is robust
to collusion via information sharing. We assume that one indivisible unit is on sale
and one bidder can be designated. The mechanism, dubbed Auction with Target Bids
(ATB), is a modification of Myerson (1981) or Riley and Samuelson (1981) optimal
auction with an extended message space.

The auction proceeds in two rounds. In the first round, each bidder places a pre-
liminary bid βi and chooses a target bidder. In the second round, the final bids are
calculated and the Vickrey assignment is made.

Round 1. Each bidder i submits a preliminary bid βi ≥ 0 and a target bidder identity
τ(i) ∈ N (self-targeting is permitted). The preliminary bid of the seller is β0 =

c−1(v0), where c(x) ≡ x− 1−F (x)
f(x)

is assumed to be strictly increasing. (We assume
here that bids and values are continuous).

Round 2. The final bids bi of i ∈ N are determined as follows:

b0 = β0, (14)

bi = min
j∈N0

−i∪{τ(i)}

{
βj : βj ∈

[
min

{
βi, βτ(i)

}
; max

{
βi, βτ(i)

}]}
, (15)

The object is allocated to the highest bidder who pays the second highest bid. Equal
bids are treated as one. In case of a tie, the bidder with the lower preliminary bid
wins. If there is a tie in preliminary bids, too, then the winner is chosen uniformly at
random. First, we observe that:

Lemma. Truthful bidding is weakly dominant within the class of self-targeting strate-
gies.

Proof. Follows from Vickrey (1961).

Due to the presumed symmetry of types and strategies, the bidders are indifferent
between targets and may therefore choose a target at random. In the absence of
information about the target bidder’s valuation targeting another bidder is too risky
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as it often leads to a bid lower than one’s true willingness to pay. Any serious bidder
is better off playing the ’Vickrey’ strategy of the lemma above, i.e., self-targeting and
bidding his true value. The next proposition states that this is, in fact, an equilibrium.

Proposition 1. Let bidders’ values be drawn independently according to the proba-
bility distribution function f : V → R+. Suppose f is non-increasing, has no
atoms and full support on V, and c(x) ≡ x − 1−F (x)

f(x)
is strictly increasing (My-

erson’s (1981) regularity condition). The profile of strategies where all bidders
self-target and bid their true valuations constitutes a strict Bayes-Nash equilib-
rium of the Auction with Target Bids.

Proof. See Appendix A.5.

An immediate corollary of the proposition is the following.

Corollary. The equilibrium outcome of the Auction with Target Bids coincides with
the outcome the Vickrey auction with the optimal reserve price unless a tie in
valuations occurs.

In the sense of this corollary, the Vickrey auction is the direct-revelation counterpart
of the auction with target bids. The case of ties in bidders’ valuations must be ex-
cluded from the equivalence statement because the auctions have different outcomes:
the ATB treats equal bids as one, unlike the Vickrey auction. Note that in the con-
tinuous case ties occur with zero probability, hence revenue equivalence holds almost
surely.

Proposition 2. The Auction with Target Bids is robust to collusion via information
sharing K = (CC ,SαC , TαC )C⊆N .

Proof. See Appendix A.6.
The robustness of the auction with target bids to collusion is due to the way

whistle-blowing is incorporated into the auction procedure. By introducing bid tar-
geting the mechanism combines two pieces of information: the identity of a colluding
bidder (whistle-blower’s information) and his preliminary bid (auctioneer’s informa-
tion) to increase the whistle blower’s chances to win the auction. The mechanism thus
creates scope for profitable deviations from the cartel’s manipulation of bids.
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6 Discussion

This paper introduces a model of collusion via information sharing, characterizes auc-
tion mechanisms robust to such collusion, and designs a robust mechanism, the Auc-
tion with target bids.

Collusion via information sharing is a type of collusion where auction bidders can
commit to exchanging information. The power of commitment with respect to both the
information and payments determines whether and when collusion can be prevented.
Theorems 1 and 2 outline the limits of auction design in face of collusion via informa-
tion sharing: robustness to collusion can be impossible or quasi costless depending on
the cartels’ commitment power. In a natural intermediate case a necessary and suf-
ficient condition is provided in Theorems 3 and 4. In general, as soon as the cartels’
commitment power is limited, there is scope for collusion-robust auction design – and
the design does not reduce to the choice of reserve prices and assignment rules as per
Revelation principle. In a departure from direct mechanisms we show that managing
communication is instrumental in precluding collusion. For example, public elicita-
tion of all the information about the auction’s course can only reinforce cooperation
within bidder cartels. In contrast, communicating some of that information through a
private channel can introduce conflicts of interest within a cartel and lead to collusion
failure.

Specifically, as a way of managing communication in the context of bidder collu-
sion via information exchange, the designer may consider introducing seller-to-buyer
communication into the auction mechanism. To illustrate, the seller’s information is
used by a member of a cartel to construct a profitable deviation in the Auction with
target bids. In practice, private and partial seller-to-buyer communication has been
used in auctions if not to preclude collusion then to serve a related purpose of rein-
forcing competition. For example, a common practice in notary real estate auction in
France is that the seller would contact several high bidders after the first round of
offers and communicate the currently winning bid and ask if they wanted to make a
better offer. Another instrument whose use is exemplified in the Auction with target
bids is extending the space of bidders’ actions to include messages other than bids.
Thereby, whistle-blower leniency becomes an integral part of auction design. This,
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too, mirrors the real-life leniency programs and whistle blower rewards used by com-
petition authorities and regulators around the world (e.g., US Security and Exchange
Commission, European Commission, Bundeskartellamt). Similar to auction design,
their goal is to introduce a conflict of interest between the members of a cartel and
thus to preclude cartel formation in the first place.

A Appendix

A.1 Proof of Theorem 1.

Consider an arbitrary collusion environment and an auction mechanism M. If the
original mechanismM is robust then the theorem holds trivially. IfM is not robust,
one can expand M by adding prior stages and extra payments. Let
Π ≡ −max

i∈X
max
vi∈V

max
x∈X
{vi (x)}

1. Each bidder is presented with a decision problem. The auctioneer draws two
random allocations xi1, x

i
2 from X and a number mi

1,m
i
2 from the interval[

0, max
x,ω,i

ui (x;ω)

]
, uniformly and independently across i ∈ N . In a private com-

munication with bidder i the auctioneer asks if i prefers xi1 and mi
1, or xi2 and mi

2.
Bidder i’s decision is denoted ci (xi1, xi2,mi

1,m
i
2) ∈ {(xi1,mi

1) , (x
i
2,m

i
2)}.

2. Each bidder i ∈ N sends a private message to the auctioneer. The message is of
the following form: ”The true state is in Ei ⊆ Ω, and the integer is ki”. Bidder i’s
message is denoted (Ei, ki).

– Example: bidder i communicates his information about the other bidders’ types by
sending message (Ei, ki) such that Ei = ∪vi∈VIi (ω). If the bidder knows nothing
then ∪vi∈VIi (ω) = Ω, and his (void) message is (Ω, ki).

3. Payments.

(a) We say that decisions
(
cj
(
xj1, x

j
2,m

j
1,m

j
2

))
j 6=i are consistent with proposition

(Ei, ki) if and only if ∃ω ∈ Ei such that the decision cj
(
xj1, x

j
2,m

j
1,m

j
2

)
is ratio-

nal ∀j 6= i. If
(
cj
(
xj1, x

j
2,m

j
1,m

j
2

))
j 6=i are consistent with (Ei, ki) then bidder i,
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i ∈ N , gets the following “betting payoff”

R · Pr −1
[(
cj
(
xj1, x

j
2,m

j
1,m

j
2

))
j 6=i are consistent with (Ei, ki)

]
−R (16)

where Pr [·] is the prior probability, and R > 0; otherwise, he pays a penalty
Π� R.

– NB: Any bidder sending a void message gets a zero payoff, since

Pr

[(
cj

(
xj1, x

j
2,m

j
1,m

j
2

))
j 6=i

are consistent with (Ei, ki)
]

= 1.

(b) Moreover, if Ej, for some j, is informative about the type of bidder i, then
bidder i pays Π.

4. With a small exogenous probability π > 0 one of the bidders is selected at random
and only his choice ci (xi1, xi2,mi

1,m
i
2) is implemented. With the complementary

probability 1− π mechanismM is played.

The auctioneer withholds all information, including payments, until the auctionM is
run and final allocations are decided.22

Given the payoffs at stage 4, it is a dominant strategy of any bidder i to submit his
true preference ci (xi1, xi2,mi

1,m
i
2).

For any cartel member with non-trivial information the best reply is to report it.
Truthful reporting maximizes the reward at stage 3 and does not affect the cartel
member’s payoff at any other stage due to the assumption of type independence. This
implies that a side contract can only be incentive compatible if all information shared
is reported in stage 2.

Since information sharing is non-null and hence at least one cartel member sub-
mits a non-trivial report, at least one (other) cartel member is punished. this implies
a violation of individual rationality of the contract.

We have thus shown that there can be no incentive compatible and individually
rational contract in this augmented auction. Finally, when no information is shared
all bidders send the trivial message (Ω, ki) to avoid punishment (due to the presumed
independence of types they cannot win this lottery).

22This is to ensure that cartel members cannot retaliate during the auctionM.
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The cost of making the mechanism collusion proof this way is due to stage-2 choices
being implemented with probability π. By decreasing the probability the cost can be
set to an arbitrarily low level. �

A.2 Proof of Theorem 2.

The impossibility stated in Theorem 2 amounts to existence, under the said condi-
tions, of a cartel C ⊆ N , side contract (sC , tC) ∈ SC × TC , and state of nature ω ∈ Ω

such that it is common knowledge among the cartel that the side contract is incentive
compatible and individually rational at ω. Consider the all-inclusive cartel C = N

and its side contract (sC , tC) defined as follows.

1. The manipulation sC is such that the efficient allocation is achieved and any
action leading to a smaller payment changes the allocation.

2. The system of side transfers tC is given by:

∀i ∈ C t∗i (aC) = −max
vi∈V
x∈X

{vi (x)} , (17)

for all aC that C detects to be a deviation from sC at ω,23 and ti (aC) = 0 otherwise.

Individual Rationality Compared to the equilibrium profile s∗C , payments to the
auctioneer decrease, while the allocation does not change and when sC is played.
There are no side payments on-path, hence the individual rationality constraints
(12) hold.

Obedience To check that the incentive constraints (11) hold we show that there is no
profitable deviation form sC . Consider a deviation leading to change in allocation
x. Since allocations are public, any such deviation is detected and punished
according to (17). Consider a deviation that does not change the allocation. Such
deviation does not change the bidder’s auction payoff, and hence is not profitable.

23Footnote 17 on page 14 explains when deviations are detected.
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It remains to observe that the expected surplus from the manipulation is strictly
positive, hence sC ∈ SC , and the system of transfers satisfies budget balance and the
measurability condition, hence tC ∈ TC . �

A.3 Proof of Theorem 3.

The proof is by contradiction. Suppose the auction is non-robust to collusion via in-
formation sharing. Then there exist C, (Ii)i∈C , ω, (sC , tC) such that the members of C
agree to collude. Hence, it is C ’s common knowledge at ω ∈ Ω that (sC , tC) ∈ SαC × TαC
is an interim incentive compatible (11) and individually rational (12) side contract.24

Observe that the common knowledge partition IC ≡ ∧i∈CIi is weakly coarser than Ii
for any i ∈ C. Hence, the common knowledge of incentive compatibility implies for all
i ∈ C and s′i ∈ S ′i(sC), if the latter are non-empty,25

E
[
(U∗i + t∗i ) ◦

(
s′i, sC/i

)
| IC (ω)

]
< E [(U∗i + t∗i ) ◦ sC | IC (ω)] . (18)

By the assumption of limited liability for i ∈ C/Cα, ti(a) ≥ 0, ∀a ∈ A. Hence (18) can
be rewritten, for all i ∈ C/Cα and s′i ∈ Si, as

E
[
U∗i ◦

(
s′i, sC/i

)
| IC (ω)

]
< E [(U∗i + t∗i ) ◦ sC | IC (ω)] . (19)

Summing the incentive compatibility conditions (19) across i ∈ C/Cα and rearranging
the terms we obtain, for all i ∈ C/Cα and s′i ∈ Si,

24Note that with reduced public outcome disclosure in a mechanismM′ the respective set of feasible
transfers T ′C is a subset of TC , since contracts are measurable with respect to public outcomes. Hence,
if no agreement is possible in SC × TC then no agreement is possible in SC × T ′C .

25If all C, (Ii)i∈C , ω, (sC , tC) where C agree to collude are such that S′i(sC) is empty for at least some
i ∈ C then max

s′
C/Cα

∈S′
C/Cα

(sC)

E
[(∑

i∈C/Cα U
∗
i ◦
(
s′i, sC/i

)
−∆W ∗C ◦ sC −

∑
i∈C/Cα U

∗
i ◦ s∗C

)
| IC (ω)

]
= −∞ and

thus Vω = −∞, a contradiction to Vω ≥ 0 for all ω, obtains immediately.
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∑
i∈C/Cα

E
[
U∗i ◦

(
s′i, sC/i

)
− U∗i ◦ sC | IC (ω)

]
<

∑
i∈C/Cα

E [t∗i ◦ sC | IC (ω)] . (20)

The individual rationality condition (12) for a designated bidder i ∈ Cα can be rewrit-
ten as follows

−E [t∗i ◦ sC | Ii (ω)] ≤ E [(U∗i ◦ sC − U∗i ◦ s∗C) | Ii (ω)] . (21)

Since (12) is common knowledge at ω and IC weakly coarser than Ii, (21) implies

−E [t∗i ◦ sC | IC (ω)] ≤ E [(U∗i ◦ sC − U∗i ◦ s∗C) | IC (ω)] . (22)

Summing (22) across i ∈ Cα we obtain

−
∑
i∈Cα

E [t∗i ◦ sC | I (ω)] ≤
∑
i∈Cα

E [(U∗i ◦ sC − U∗i ◦ s∗C) | IC (ω)] . (23)

Given the budget balance constraint,
∑

i∈C/Cα ti (·) ≤ −
∑

i∈Cα tl (·), equation (23) im-
plies

∑
i∈C/Cα

E [t∗i ◦ sC | IC (ω)] ≤
∑
i∈Cα

E [(U∗l ◦ sC − U∗l ◦ s∗C) | IC (ω)] . (24)

If follows from (20) and (24) that

max
s′
C/Cα

∑
i∈C/Cα

E
[
U∗i ◦

(
s′i, sC/i

)
| IC (ω)

]
< E

[∑
i∈C

U∗i ◦ sC −
∑
i∈Cα

U∗l ◦ s∗C | IC (ω)

]
, (25)

where the maximization in s′C/Cα is over S ′C/Cα(sC) ≡ ×i∈C/CαS ′i(sC). By (8), ∆W ∗
C ◦sC ≡∑

i∈C
U∗i ◦ sC −

∑
i∈C
U∗i ◦ s∗C , hence
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max
s′
C/Cα

∑
i∈C/Cα

E
[
U∗i ◦

(
s′i, sC/i

)
| IC (ω)

]
< E

∆W ∗
C ◦ sC +

∑
i∈C/Cα

U∗i ◦ s∗C | IC (ω)

, (26)

which implies that VMω < 0. We have thus obtained a contradiction to VMω ≥ 0 ∀ω∈ Ω.
�

A.4 Proof of Theorem 4.

Suppose that Vω0 < 0 for some ω0 ∈ Ω. Then, for some C ⊆ N and s0C ∈ SαC

max
s′
C/Cα

∑
i∈C/Cα

E
[
U∗i ◦

(
s′i, s

0
C/i

)
| Ǐ
(
ω0
)]

< E

∆W ∗
C ◦ s0C +

∑
i∈C/Cα

U∗i ◦ s∗C | Ǐ
(
ω0
). (27)

Consider a state of nature ω = (a0, v1, ..vn) such that, for all non-designated bidders
i ∈ C/Cα, E (Ui ◦ s∗N) | Ǐ (ω) = 0. Let si(ω) = s0i (ω

0) for all i ∈ C.26 That is, we
consider state ω where the non-designated bidders’ types are such that their expected
equilibrium payoffs are zero. Thereby the actions prescribed to the non-designated
bidders are the same in ω as in the original state ω0.

Since values are independent, inequality (27) also holds when ω0 replaced by ω,

max
s′
C/Cα

∑
i∈C/Cα

E
[
U∗i ◦

(
s′i, sC/i

)
| Ǐ (ω)

]
< E

∆W ∗
C ◦ sC +

∑
i∈C/Cα

U∗i ◦ s∗C | Ǐ (ω)

. (28)

We will show that cartel C can agree to collude in ω (see Definition 3 on p. 16).
Consider the side contract (sC , tC), where the bidding manipulation sC is given

above and the transfer function tC is given by (29) - (33). Specifically, when no devia-
tion from sC is detected (see footnote 17 on page 14):

26In the private value setting, there are no allocation externalities, state ω is the one where types of
non-designated bidders are the lowest in the sense that E (Ui ◦ s∗N ) | Ǐ (ω) = 0.
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∀i ∈ C/Cα ti (aN) = δi + ε, (29)

∀i ∈ Cα ti (aN) = −E
[
U∗i ◦ sC − U∗i ◦ s∗C | Ǐ (ω)

]
, (30)

where Cα denotes the set of designated bidders under sC , ε is defined below, and δi,
i ∈ C/Cα, is i’s maximal auction payoff in deviation from si,

δi = max
s′i∈Si

E
[
U∗i ◦

(
s′i, sC/i

)
| Ǐ (ω)

]
. (31)

When deviation from sC is detected at aN :

∀i ∈ C/Cα ti (aN) = 0, (32)

∀i ∈ Cα ti (aN) = −Ki, (33)

where Ki = max
s′i

E
[
U∗i ◦

(
s′i, sC/i

)
− U∗i ◦ sC | Ǐ (ω)

]
+ ε for a small positive ε.

First, we need to verify that the transfers defined in (29) - (33) are feasible, i.e.,
that tC ∈ TαC . In all cases, the non-designated bidders’ transfer is non-negative, thus
it is left to verify that the budget is balanced. In (32) - (33), the budget balance holds
trivially. In the case of (29) - (30), we have:

−
∑
i∈Cα

E
[
t∗i ◦ sC | Ǐ (ω)

]
= E

∆W ∗
C ◦ sC +

∑
i∈C/Cα

U∗i ◦ s∗C | Ǐ (ω)

 (34)

>
∑

i∈C/Cα
E
[
U∗i ◦

(
ŝi, sC/i

)
| Ǐ (ω)

]
(35)

=
∑

i∈C/Cα
δi, (36)

where (34) follows from (30) and (8), (35) from (27), (36) is by the definition of δi (31).
Hence we can find ε > 0 such that
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−
∑
i∈Cα

E
[
t∗i ◦ sC | Ǐ (ω)

]
= E

∆W ∗
C ◦ sC +

∑
i∈C/Cα

U∗i ◦ s∗C | Ǐ (ω)

 (37)

≥
∑

i∈C/Cα

(
E
[
U∗i ◦

(
ŝi, sC/i

)
| Ǐ (ω)

]
+ ε
)

(38)

=
∑

i∈C/Cα
(δi + ε) (39)

=
∑

i∈C/Cα
E
[
t∗i ◦ sC | Ǐ (ω)

]
, (40)

implying that the budget balance holds. (Equation (38) is by definition (30)). Since the
auction is open and information sharing is complete, deviations are detected. Hence,
the incentive compatibility condition (11) for bidders i ∈ Cα holds by the construction
of transfer in (33), for all s′i,

E
[
(U∗i + t∗i ) ◦

(
s′i, sC/i

)
| Ǐ (ω)

]
< E

[
U∗i ◦ sC | Ǐ (ω)

]
. (41)

Similarly, the individual rationality condition (12) for bidders i ∈ Cα,

E
[
(U∗i + t∗i ) ◦ sC | Ǐ (ω)

]
≥ E

[
U∗i ◦ s∗C | Ǐ (ω)

]
, (42)

holds due to (30). We can then derive the incentive compatibility condition (11) for
bidders i ∈ C/Cα, as follows

∀s′i ∈ Si E
[
(U∗i + t∗i ) ◦

(
s′i, sC/i

)
| Ǐ (ω)

]
= E

[
U∗i ◦

(
s′i, sC/i

)
| Ǐ (ω)

]
(43)

≤ δi < δi + ε (44)

= E
[
t∗i ◦ sC | Ǐ (ω)

]
(45)

= E
[
(U∗i + t∗i ) ◦ sC | Ǐ (ω)

]
, (46)
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where (43) follows from (32), (44) from (31), (45) from (29), and (46) holds since i ∈
C/Cα is non-designated by definition of Cα.

The individual rationality condition (12) for bidders i ∈ C/Cα,

E
[
(U∗i + t∗i ) ◦ sC | Ǐ (ω)

]
≥ E

[
U∗i ◦ s∗C | Ǐ (ω)

]
, (47)

is satisfied because (i) the utility on the left-hand side is non-negative as i is not des-
ignated and only the winners pay, (ii) ti ≥ 0 due to limited liability for i ∈ C/Cα, and
(iii) the right-hand side is 0 by construction of the state of nature ω.

We have shown that if the Vω0 ≤ 0 for some ω0 ∈ Ω then a cartel can agree to
collude in ω. Hence Vω ≥ 0 for all ω ∈ Ω is necessary for an auction to be robust to
collusion via information sharing. �

A.5 Proof of Proposition 1.

Let us refer to sVi (ω) = (i, vi), the strategy of self-targeting and bidding the true valu-
ation, as the Vickrey strategy. Proposition 1 says that the profile of Vickrey strategies
constitutes a Bayes-Nash equilibrium:

s∗i = sVi , ∀i ∈ N. (48)

Proof

First, suppose vi < b0, the types of bidder i that are below the reserve price. It
is easy to see that for these types there is no profitable deviation from the Vickrey
strategy. The auction rules do not allow for a price lower than b0. Therefore any strat-
egy that leads to winning with a positive probability makes the bidder type vi strictly
worse off than sVi . Any strategy that never leads to winning is payoff-equivalent to sVi .
Therefore, there is no profitable deviation from the Vickrey strategy for type vi < b0.
For the rest of the proof consider vi ≥ b0.

The proof proceeds in three steps. Steps 1 and 2 identify best replies within two
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distinct classes of strategies: self-targeting (step 1) and other-targeting (step 2). In
both classes bidding the true valuation in the first round is best reply to the residual
profile of Vickrey strategies. Next, I calculate payoffs to both strategies under the
equilibrium assumption. Finally, step 3 compares the payoffs and concludes that the
optimal self-targeting is best reply to sVN/i. Thus we obtain that the Vickrey profile is
a non-cooperative equilibrium.

Step 1. Self-targeting

By Lemma 1, truthful bidding is weakly dominant in the class of strategies where the
bidder self-targets. The corresponding payoffs ex post

(
Ui ◦ sVN

)
(ω) and in expectation

E | Ii(ω)Ui
(
sV , sVN/i

)
are as follows:

(
Ui ◦ sVN

)
(ω) =

[
vi −max

{
vk, k ∈ N0

−i
}]

+
(49)

E | Ii(ω)
(
Ui ◦ sVN

)
(ω) =


∫ vi
0

(vi −max {w, b0}) dF
n−1

(w) , if vi ≥ b0

0, if vi < b0
(50)

= (vi − b0)F
n−1

(b0) +

∫ vi

b0

(vi − w) dF
n−1

(w) (51)

Step 2. Other-targeting

At this step, we consider the strategies where another bidder is targeted. First, ob-
serve that in the class of other-targeting strategies, any choice of target, random or
deterministic, is optimal due to the ex ante symmetry. Suppose T (i) = j 6= i. Condi-
tional on targeting j, βi(ω) = vi, ∀ω ≡ (v, ξ) ∈ Ω is optimal. To prove the claim, fix
the preliminary bid βi and consider all possible constellations between βi, the target’s
(preliminary and final)27 bid bj and the highest residual (preliminary and final) bid b̂.
Then, I find that in those constellations where i wins, the price is less than βi.

27Under the equilibrium assumption, bidders inN/i self-target, which implies that their preliminary
bids become final.
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Let b̂ ≡
{
bk, k ∈ N0

−{i,j}

}
, the highest bid among all players (including the seller),

when i and his target j are excluded. (Under the equilibrium assumption all prelim-
inary bids become final). i wins if and only if b̂ < βi ≤ βj = vj and his winning payoff
is vi − b̂ > 0 since the price is b̂.

Payoff ex post
(
Ui ◦

(−→si , sVN/i)) (ω) , where −→si denotes the other-targeting strategy,
equals vi − b̂, if b̂ < βi < vj

0, otherwise
(52)

where T (i) = j, b̂ =
{
bk, k ∈ N0

−{i,j}

}
. Payoff in expectation:

E
[
Ui ◦

(−→si , sVN/i) | Ii (ω)
]

=

∫ +∞

βi

∫ βi

0

(vi −max {w, b0}) dF (vj) dF
n−2 (w) (53)

= (1− F (βi))

(
(vi − b0)F n−2 (b0) +

∫ βi

b0

(vi − w) dF n−2 (w)

)
(54)

Observe that since bidder i targets up and the rest of the bidders self-target, the
seller’s bid is b0 = β0 = c−1 (v0), as in Myerson (1981).

Step 3.

To obtain that E
[
Ui ◦ sVN | Ii (ω)

]
> E

[
Ui ◦

(−→si , sVN/i) | Ii (ω)
]

for all i, vi consider the
difference in the expected payoffs between the two strategies for type vi ≥ b0:

E
[
Ui
(
sVi (vi) , s

V
N/i

)
− Ui

(−→si (vi) , s
V
N/i

)
| Ii (ω)

]
(55)

substituting for (51) and (54):

= (vi − b0)F n−1 (b0) +

∫ vi

b0

(vi − w) dF n−1 (w)

− (1− F (βi))

(
(vi − b0)F n−2 (b0) +

∫ βi

b0

(vi − w) dF n−2 (w)

)
(56)

rearranging terms:
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= (vi − b0)F n−2 (b0) (F (b0)− 1 + F (βi))

+

∫ βi

b0

(vi − w)

(
n− 1

n− 2
F (w)− 1 + F (βi)

)
dF n−2 (w)

+

∫ vi

βi

(vi − w) dF n−1 (w) (57)

since vi ≥ βi ≥ b0:28

≥ (vi − b0)F n−2 (b0) (F (b0)− 1 + F (b0))

+

∫ βi

b0

(vi − w)

(
n− 1

n− 2
F (w)− 1 + F (w)

)
dF n−2 (w)

+

∫ vi

βi

(vi − w) dF n−1 (58)

rearranging terms we obtain:

= (vi − b0)F n−2 (b0) (2F (b0)− 1)

+

∫ βi

b0

(vi − w)

(
2n− 3

n− 2
F (w)− 1

)
dF n−2 (w)

+

∫ vi

βi

(vi − w) dF n−1 > 0 (59)

The inequality holds as soon as F (b0) ≥ 1
2
, which follows from the assumption that f

is non-increasing.29 The inequality in (59) implies that the Vickrey strategy yields a
greater expected payoff, and sV is thus a best reply to sVN/i, and sVN is a strict Bayes-
Nash equilibrium. �

28βi > vi is never best reply.
29F (b0) ≥ 1

2 ⇔ b0 ≡ c−1 (v0) ≥ F−1
(
1
2

)
(since c is strictly increasing(⇔ c−1 (v0) ≥ c−1 (0) ≥ F−1

(
1
2

)
≡

xmed ⇔ 0 ≥ c (xmed) = xmed − 1−F (xmed)
f(xmed)

= xmed − 1
2f(xmed)

⇔ xmedf(xmed) ≤ 1
2 ⇐ f is non-increasing.
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A.6 Proof of Proposition 2.

Proof. To prove that the ATB auction is robust to collusion via information sharing,
we show that it satisfies the sufficient condition of Theorem 3. That is, we show that
for all states ω ∈ Ω the value below is non-negative:

min
C⊆N,
sC∈SC

max
s′
C/Cα

∈S′
C/Cα

(sC)

E

 ∑
i∈C/Cα

U∗i ◦
(
s′i, sC/i

)
−∆W ∗

C ◦ sC −
∑

i∈C/Cα
U∗i ◦ s∗C

 | IC (ω)

 . (60)

In the setting with private values (no externalities), the non-designated bidders’ pay-
off under sC is zero, E

[∑
i∈C/Cα U

∗
i ◦ sC | IC (ω)

]
= 0. Moreover, since |Cα| = 1,(60) is

equivalent to

min
C⊆N,
sC∈SC

max
s′
C/{l}

∈S′
C/{l}(sC)

E

 ∑
i∈C/{l}

U∗i ◦
(
s′i, sC/i

)
− U∗l ◦ sC + U∗l ◦ s∗C

 | IC (ω)

 , (61)

where l is the designated bidder in a cartel C given the manipulation sC = (βi, τi)i∈C ∈
SαC . Consider cartel member i 6= l and deviation s′i = (β′i, τ

′
i) = (vi, l) where i bids his

true value and targets the designated bidder l. This deviation affects the outcome of
the auction if30 and only if31 bidder i wins as a result of his deviation; let us denote
this event Ei. In Ei, βl (part of sC (ω)) must be the highest preliminary bid and i’s
beta-bid β′i(vi) = vi must be the second-highest (otherwise i’s final bid could not have
been the highest, which is necessary for winning).

For any ω ∈ Ei such that
(
OXl ◦

(
sC , s

∗
N/C

))
(ω) = ∅ (bidder l is not the winner),

(U∗l ◦ sC) (ω) = 0 and hence

U∗i ◦
(
s′i, sC/i

)
− U∗l ◦ sC + U∗l ◦ s∗C = U∗i ◦

(
s′i, sC/i

)
+ U∗l ◦ s∗C ≥ 0.

For any ω ∈ Ei such that
(
OXl ◦

(
sC , s

∗
N/C

))
(ω) 6= ∅ (bidder l is the winner), sC (ω) must

30If i never wins by targeting l then sC does not create a surplus, sC /∈ SC , and the sufficient condition
holds trivially.

31One can verify that it is not possible that the deviation leads to l winning with a price different
from the price under sC .
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be such that l targets himself and pays the second-highest final bid in
(
O ◦

(
sC , s

∗
N/C

))
(ω),

let us denote it b2. Then i’s contribution to the collusion surplus is max {vi − b2, 0},
which is what he gets from deviation to s′i

U∗i ◦
(
s′i, sC/i

)
− U∗l ◦ sC + U∗l ◦ s∗C = max {vi − b2, 0} −max {vi − b2, 0} = 0.

The statement follows immediately. �
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