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ABSTRACT

We propose an optimization-based estimation of Value-at-Risk that corrects for the e¤ect of

measurement errors in prices. We show that measurement errors might pose serious problems for

estimating risk measures like Value-at-Risk. In particular, when the stock prices are contaminated,

the existing estimators of Value-at-Risk are inconsistent and might lead to an underestimation

of risk, which might result in extreme leverage ratios within the held portfolios. Using Fourier

transform and a deconvolution kernel estimator of the probability distribution function of true

latent prices, we derive a robust estimator of Value-at-Risk in the presence of measurement errors.

Monte Carlo simulations and a real data analysis illustrate satisfactory performance of the proposed

method.
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estimating risk measures like Value-at-Risk. In particular, when the stock prices are contaminated,

the existing estimators of Value-at-Risk are inconsistent and might lead to an underestimation

of risk, which might result in extreme leverage ratios within the held portfolios. Using Fourier

transform and a deconvolution kernel estimator of the probability distribution function of true
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1 Introduction

Since its �rst appearance in the 1980s, Value-at-Risk (VaR) has become the most widely used risk

management tool in �nancial services industry. Indeed, VaR has gained ground because it is a

relatively simple measure to estimate and it was established by the Basel II regulatory framework

as the benchmark method for market risk capital requirements calculation; see Basel Committee

on Banking Supervision (1996, 2006). In addition to its use as a risk measure, VaR can be used

as the basis for portfolio optimization; see e.g. Lwin et al. (2017), Yiu (2004), and Alexander

and Baptista (2008). Due to its popularity as a tool for controlling risk, �nancial managers are

rightfully concerned with the precision of VaR estimation. One problem that might a¤ect this es-

timation is e¤ectively the presence of measurement errors in assets�prices, which can be caused by

non-synchronous trading, rounding errors, infrequent trading, market microstructure noise, manip-

ulations (smoothing, extra revenues, fraudulent exchanges, informationless trading), etc. Finance

literature has investigated the impact of contaminated prices on the estimation of volatility and

developed robust methods to identify the variance of true stock prices; see e.g. Zhou (1996); An-

dersen et al. (2001); Zhang et al. (2005); Bandi et al. (2006); Barndor¤-Nielsen et al. (2011);

Hansen and Lunde (2006); and Mancino and Sanfelici (2008). However, no attention is paid to

the e¤ect of this contamination on the VaR estimation, and thus no robust estimation technique is

available under measurement error.

The presence of measurement error (known as market microstructure noise) in high-frequency

prices has been well established in the literature; see Madhavan (2000) for a survey on market

microstructure noise. In addition, several papers have investigated the presence of measurement

errors in low-frequency prices/returns. For instance, by collecting speci�c information on risk man-

agement from the annual reports of the largest 200 US and international commercial banks for the

period 2005-2008, Frésard et al. (2011) �nd that only a very small fraction of �nancial institutions

(less than 6 %) uses uncontaminated returns to estimate their VaR models. The large fraction uses

contaminated data which include intraday revenues, fees, or commissions. They also show that all

of the available backtesting procedures are highly sensitive to data contamination. For example,

using the �tra¢ c light� approach developed by the Basel Committee, 23.5% of the VaR models

are rejected when tested with uncontaminated data, whereas only 10.8% are rejected when tested

with returns that include both fees and intraday trading revenues. Therefore, data contamination

has undesirable implications for model validation and can lead to the acceptance of misspeci�ed

1



VaR models, and therefore signi�cantly reduced regulatory capital. Furthermore, Pérignon et al.

(2008) assess the accuracy of banks� risk management systems based on daily VaR and pro�t-

and-loss data. They �nd evidence supporting the idea that banks exhibit a systematic bias in

their VaR estimates. They attribute this bias to several factors, including extreme cautiousness,

underestimation of diversi�cation e¤ects, and measurement errors.

None of the above papers, however, is interested in developing robust estimation techniques to

correct for the e¤ect of measurement errors. In this paper, we propose a semiparametric approach

for the estimation of VaR in the presence of measurement errors in stock prices. It is worth

mentioning that, both theoretically and computationally, it is more straightforward to deal with

the measurement errors in the context of variance than in the context of VaR, as it is generally

simpler to work with the moments than with the quantiles. Furthermore, working with an additive

measurement error model makes the derivation of robust estimation techniques much easier for

variance than for quantiles (VaR). We remind the reader that an additive measurement error

model de�nes the measurement error as the di¤erence between the observed stock price and the

true (latent) stock price. For a general discussion on additive and non-additive error models, the

reader is referred to Schennach (2016).

To develop our robust estimator of VaR, we consider a di¤erent approach than the one used

in the literature to derive robust measures of variance. To deal with the contamination, we �rst

use a deconvolution kernel estimator for the density function of the true latent portfolio returns.1

There is a rich literature on using density deconvolution for estimating probability density func-

tions. Recently, Adusumilli et al. (2020) have studied inference on the cumulative distribution

function (CDF) in the context of classical measurement error problem using density deconvolution.

They also applied their results to various contexts; such as building con�dence bands for CDF and

its quantiles, and for performing various goodness-of-�t tests for parametric models of densities and

tests for stochastic dominance. For a review on deconvolution methods, the readers can consult

Meister (2009), Fan (1991), Hall and Lahiri (2008), Dattner et al. (2011) among others. Thereafter,

we use Fourier inversion to calculate the probability distribution function of the latent portfolio

1We remind the reader that the concept of deconvolution corresponds to computing the inverse of the convolution

operation of two functions. Convolution operation on two functions, say f and g, produces a third function (f � g)

that expresses how the shape of one is modi�ed by the other. It is de�ned as the integral of the product of the two

functions after one is reversed and shifted. In the context of a measurement error problem, Kernel deconvolution

density estimation consists in estimating the density of a variable of interest (here the density of the true stock price)

that is observable only with some measurement error.
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returns. We then use power series representations of sine and exponential functions to approximate

the integral in the inversion formula and de�ne an optimization problem that make the calculation

of VaR computationally feasible. Roughly speaking, power series representations are about rep-

resenting common functions as polynomials with in�nitely many terms, thus integrating a power

series is as easy as integrating a polynomial.

The derivation of robust estimator of VaR is �rst made under the assumption that the density

of measurement error is known, but the distribution of the observed portfolio returns is always

treated as unknown and estimated nonparametrically. Thereafter, we relax this assumption and

suggest a feasible way to deal with the measurement error�s distribution. In particular, we follow

the literature and assume that the measurement error is normally distributed but with unknown

variance that we estimate nonparametrically using high-frequency data and a consistent estimator

of variance of measurement error from Zhang et al. (2005). It is worth noting that assuming that

the measurement error is normally distributed does not contradict the fact that returns can be

non-normally distributed.

We conduct a set of Monte Carlo simulations to examine the performance of our approach

under the presence of measurement error. We provide a comparison with a model-free estimator

of VaR that does not adjust for the measurement error. We investigate the performance of our

method for known and unknown density of the measurement error and the simulation results are

very encouraging. Furthermore, we apply our approach to high-frequency data to estimate the

VaR of �ve international market indices. We compare our results with the unadjusted VaR that

we obtain using a model-free estimator that simply computes the sample quantiles based on the

�ve indices�returns. The empirical results indicate that ignoring the measurement error leads to

an underestimation of risk.

The rest of the paper is organized as follows. In Section 2, we introduce the additive measure-

ment error model for the asset prices and show how to estimate the characteristic and distribution

functions of latent portfolio returns. In Section 3, we derive an optimization-based estimator of

VaR of latent portfolio returns. Section 4 analyzes the performance [bias, standard deviation, and

root mean square error] of our method through a Monte Carlo experiment. In Section 5, we use

our approach and high-frequency data to estimate the adjusted VaR of �ve stock indices. Section 6

concludes, and all mathematical proofs and tables of Monte Carlo simulation results are presented

in the Appendix.
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2 Framework

The methodology that we develop here works for both individual assets and portfolios. The exposi-

tion is made for a portfolio of assets, but an individual asset is a special case by setting all portfolio

weights equal to zero, except the weight of the asset in question. Formally, we assume that there

are n risky assets in the economy. We denote by Pt = (p1;t; :::::; pn;t)0 and P �t = (p
�
1;t; :::::; p

�
n;t)

0 the

vectors of observed and true latent log prices of the n assets at time t; respectively. We suppose

that the observed price of each asset j can be contaminated by a measurement error:

pj;t = p
�
j;t + �j;t; for j = 1; : : : ; n and t = 1; : : : ; T; (1)

where pj;t (p�j;t) is the observed (true latent) log price of asset j; and �j;t is the measurement error

which we assume to be independent and identically distributed (i.i.d.) with mean zero and variance

�2� . The assumption of i.i.d measurement error might be avoided, but this will be at the cost of

complicating the calculation of our estimator of VaR. This might require the estimation of the

distribution of measurement error (which is very di¢ cult in practice), or in the best case scenario

(if we make an assumption on the distribution of measurement error as we do in this paper), we will

need to estimate the moments of the measurement error (e.g. its variance as we do in this paper),

but also its dependence/correlation structure. The i.i.d. assumption, however, is compelling and

widely used in the literature; see for example Zhang et al. (2005), Gri¢ n and Oomen (2011),

Schennach (2004, 2016) among others. In addition, the vector errors �t = (�1;t; ::::; �n;t)0 is assumed

to be independent of the vector of true latent prices P �t . The elements of �t are also assumed to be

cross-sectionally independent and normally distributed; i.e., �t � N(0; �2�In); with In is an n � n

identity matrix. In this section, we assume that the variance of the measurement error is known,

but later on we will relax this assumption and discuss how to estimate �2� :

Using Equation (1), the observed and true (latent) returns of a portfolio of n assets are linked

as follows:

rp;t = r
�
p;t + et; (2)

where rp;t =
Pn
j=1 !jrj;t is the observed portfolio return, r

�
p;t =

Pn
j=1 !jr

�
j;t is the true latent

portfolio return; et =
Pn
j=1 !juj;t denotes the measurement error in the portfolio returns, with

! = (!1; ::::; !n)
0 is a known vector of weights that are attributed to each risky asset in the

portfolio and uj;t = �j;t � �j;t�1; for j = 1; :::; n; is an error term that is identically distributed

(normally distributed) with mean zero and variance �2u = 2�
2
� . Here, the assets�returns correspond
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to continuously compounded returns (�rst di¤erences of log assets�prices). It is also worth noting

that the distributions of observed and true latent returns are unknown. This implies that even

when the measurement error uj;t is normally distributed, the observed and true latent returns can

be non-normally distributed.

Since P �t and �t are independent processes, using Equation (2) and Fourier transform, we obtain:

�rp(s) = �r�p(s)�e(s); (3)

where �rp(s), �r�p(s), and �e(s) represent the characteristic functions of rp;t, r
�
p;t and et, respectively.

On the one hand, under the assumption �j;t �N(0; �2� ); the characteristic function of measure-

ment error et is given by:

�e(s) = E

24exp
0@is nX

j=1

!juj;t

1A35 = exp
0@�s2�2� nX

j=1

!2j

1A : (4)

On the other hand, the characteristic function of the observed portfolio returns �rp(s) can be

estimated using its empirical analogue:

�̂rp(s) =
1

T

TX
t=1

exp (isrp;t) ; (5)

where T is the number of observations and i is a complex number with i2 = �1. Combining

equations (3), (4) and (5), an estimator of the characteristic function of the true latent portfolio

returns �r�p(s) is given by:

�̂r�p(s) =
�̂rp(s)

�e(s)
=
1

T

TX
t=1

exp

0@isrp;t + s2�2� nX
j=1

!2j

1A :
Nevertheless, later we will be interested in the estimation of the probability distribution function

of r�p;t; which is de�ned (by Fourier transform) as the integral of exp(�isr�p)�̂r�p(s). However, this

integral is not well-de�ned as �̂r�p(s) is neither integrable nor square integrable over R. In this case,

�̂r�p(s) will not be a good estimator of �r�p(s) for large values of s. One way to overcome this issue

is by regularizing �̂r�p(s) as follows:

�̂r�p(s) =
�̂rp(s)

�e(s)
Kft(sb); (6)

where Kft(sb) is a Fourier transform of a kernel function with a bandwidth b; see Adusumilli, Otsu,

and Whang (2020) and Otsu and Taylor (2020). Hereafter, we assume �e(s) 6= 0 for all s 2 R,
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and Kft(s) = 1(�1 � s � 1) with 1(�) designating an indicator function. Using the latter kernel,

the function �̂r�p(s) in Equation (6) is supported on [�1=b; 1=b] and bounded whenever �e(s) 6= 0,

8s 2 R. Therefore, the regularized estimator �̂r�p(s) is well-de�ned. Note that K
ft(s) is the Fourier

transform of the sinc kernel K(x) = sin(x)=(�x) popularly adopted in the deconvolution method.

These assumptions are common in the literature; see for example Otsu and Taylor (2020). Other

forms of Kft(s) can also be considered without a¤ecting our main results. Thus, we obtain the

following semiparametric estimator of the characteristic function of the latent portfolio returns:

�̂r�p(s) =
�̂rp(s)

�e(s)
Kft(sb) =

1

T

TX
t=1

exp

0@isrp;t + s2�2� nX
j=1

!2j

1AKft(sb): (7)

Notice that other semiparametric estimators of �r�p(s) can be obtained by considering other

nonparamateric estimators of �rp(s). To avoid some undesirable properties of the empirical char-

acteristic function in (5) for large s, we can use a kernel-based estimator of �rp(s); see e.g., Ab-

dushukurov and Norboev (2017) and Su and White (2007). Formally, we de�ne a kernel function

k(u) : R ! R that satis�es
R +1
�1 k(u)du = 1; and we recall the kernel estimator of the cumulative

distribution function of rp;t, say F (rp) ;

FT (rp) =
1

T

TX
t=1

�KT (rp � rp;t) ; (8)

where �KT (rp) = �K
�
rp
hT

�
and �K (�) is a distribution function with the density k(rp) = @ �K(rp)

@rp
;

and hT represents a bandwidth parameter that controls the degree of smoothing the distribution

function of rp. Using Equation (8), a kernel estimator of the characteristic function �rp(s) is given

by:

�̂rp(s) =

Z +1

�1
exp (isrp;t) dFT (rp;t) ; (9)

where FT (rp;t) = 1
T

PT
i=1KT (rp;t � rp;i): The asymptotic properties of the estimator in (9) can be

found in Abdushukurov and Norboev (2017). We next plug the above estimator �̂rp(s) in Equation

(6) to obtain an alternative semiparametric estimator of �r�p(s).

We can now use �̂r�p(s) to derive an estimator of the probability distribution function of the true

latent portfolio returns r�p;t. A standard Fourier-inversion formula [see Gil-Pelaez (1951)] implies

Pr
�
r�p;t < r

�
p

�
=
1

2
� 1

�

Z 1

0

Im
h
�r�p(s) exp(�isr

�
p)
i

s
ds; for r�p 2 R; (10)

which we can estimate as follows:

cPr �r�p;t < r�p� = 1

2
� 1

T

TX
t=1

L

�
rp;t � r�p

b

�
; (11)
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where Im[�] stands for the imaginary part of a complex number, L(u) = 1
�

R 1
0
sin(su)
s

1
�e(

s
b
)ds is the

so-called deconvolution kernel, b is the bandwidth parameter converging to zero at a suitable rate

as sample size increases, and �e is the Fourier transform of the density of the measurement error e.

Figure 1: Tail of convoluting Normal and Student distributions

Note [Source Nason (2006)]: Tail part of p.d.f. of rt= r�t+et (solid line); standard normal density for et

(dashed line); sphered Student�s t distribution of 3 degrees of freedom for r�t (dotted line).

In the next section, we use the result in Equation (11) to derive an optimization-based estimator

of VaR which is robust to the measurement errors that a¤ect stock prices. We shall �rst consider

Figure 1 [see Nason (2006)] to illustrate the undesirable impact that measurement errors can have

on risk estimation. The �gure shows the right tail parts of standard normal distribution (dashed

line), here et, Student�s t distribution with 3 degrees of freedom (dotted line), here r�t , and their

sum rt = r�t + et (solid line). The latter can be viewed as an additive measurement error model,

where rt represents the observed stock or portfolio return, r�t is the true latent stock or portfolio

return, and et is a measurement error. The density of rt can be represented as the convolution of

the density functions of et and r�t . The �gure shows that the right tail of the distribution of r
�
t

(true latent return) dominates the right tail of the distribution of rt (observed return), and similar

situation occurs at the left tail since the distributions of rt; r�t ; and et are all symmetric. Therefore,

the existing estimators of VaR that ignore the measurement error are inconsistent and lead to an

underestimation of risk. Underestimating risk might have disastrous e¤ects and the �nancial crisis

of 2008 being an example. We all know that this crisis was in part due to underestimating the risk

magnitude of portfolios of subprime mortgages, which resulted in extreme leverage ratios within

these portfolios and left institutions unable to cover billions of dollars in losses as subprime mortgage
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values collapsed. Consequently, providing robust estimation methods for VaR under measurement

error should be extremely valuable for risk analysis.

3 VaR under measurement error

VaR is a quantile measure that quanti�es the worst expected loss over a given horizon (typically a

day or a week) at a given statistical con�dence level � (typically 5% or 10%). Several parametric

and nonparametric approaches have been used to derive estimators of VaR; for a review the reader

can consult Abad, Benito, and López (2014). The level of di¢ culty of these approaches depends

on the assumptions made about the underlying process of returns. As we allow for the latter to

capture more stylized e¤ects, the estimation approach becomes more complex. In addition, except

when the returns follow elliptical conditional distribution, the estimation of VaR generally requires

the use of either simulation or optimization methods. All these estimation techniques, however,

are sensitive to the presence of measurement errors in assets�prices. In the following, we use the

results from the previous section to derive an optimization-based semi-nonparametric estimator of

VaR when the assets�prices are contaminated.

We now follow the convention and let the VaR of the true latent portfolio returns, say V aR�(r�p;t),

be a positive quantity. Then, replacing r�p by �V aR�(r�p;t) in Equation (11) leads to

cPr �r�p;t < �V aR�(r�p;t)� = 1

2
� 1

�

1

T

TX
t=1

Z 1

0

exp
�
s2

b2
�2�
Pn
j=1 !

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds: (12)

Following a similar approach to Du¢ e and Pan (2001) and Taamouti (2009), V aR�(r�p;t) can then

be calculated by inverting the distribution function in (12). However, for reasons we explain below,

analytically inverting the function (12) is not feasible and a numerical solution is required. We

have the following proposition which can be deduced from Equation (12).

Proposition 1 The VaR of the true latent portfolio return r�p;t in (2), at a nominal coverage rate

�, denoted by V aR�(r�p;t), is the solution of the following equation:

1

T

TX
t=1

Z 1

0

exp
�
s2

b2
�2�
Pn
j=1 !

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
� = 0;

where rp;t is the observed portfolio return in (2), �2� is the variance of the measurement error, !j

for j = 1; :::; n are the portfolio weights, and b is the bandwidth parameter.
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From Proposition 1, V aR�(r�p;t) can be obtained by numerically solving the equation:

f
�
V aR�(r�p;t)

�
=
1

T

TX
t=1

Z 1

0

exp
�
s2

b2
�2�
Pn
j=1 !

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
� = 0:

(13)

The function f
�
V aR�(r�p;t)

�
can be rewritten as follows:

f
�
V aR�(r�p;t)

�
= ��

hcPr �r�p;t < �V aR�(r�p;t)�� �i : (14)

From Equation (14) and the properties of the probability distribution function [monotonically

increasing, limx!�1cPr �r�p;t < x� = 0, and limx!+1cPr �r�p;t < x� = 1], we can show that Equation
(13) admits a unique solution. Another way to calculate V aR�(r�p;t) is considering the following

optimization problem:

[V aR
�
(r�p;t) = Argmin

V aR�(r�p;t)

24 1
T

TX
t=1

Z 1

0

exp
�
s2

b2
�2�
Pn
j=1 !

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
�

352 :
(15)

In practice, an exact solution for the above minimization problem is not feasible, since the integral

term in (15) is di¢ cult to assess. This issue can be solved using a numerical integration based

on equally spaced abscissas as in Davies (1973) and Davies (1980); see Du¢ e and Pan (2001) and

Taamouti (2009). However, this approach introduces two types of errors: the discretization error

and the truncation error. In this paper, we instead propose a closed-form expression for the Fourier

inversion in (10) by regularizing the estimated characteristic function �̂r�p(s) using the characteristic

function Kft(sb), which is de�ned on s 2 [�1=b; 1=b], and by using power series representation of

the function sin (�). Speci�cally, from power series representations of sin(�) and exp(�) functions,

we obtain the following corollary [see the proof of Corollary 1 in the Appendix].

Corollary 1 The VaR of the true latent portfolio return r�p;t in (2), at a nominal coverage rate �,

denoted by V aR�(r�p;t), is the solution of the following optimization problem:

[V aR
�
(r�p;t) = Argmin

V aR�(r�p;t)

264 1
T

TX
t=1

1X
i;j=0

ai

i!

(�1)j
�
rp;t+V aR�(r�p;t)

b

�1+2j
(1 + 2j)!(2i+ 2j + 1)

�
�
1

2
� �

�
�

375
2

; (16)

where a =
�2�
Pn
j=1 !

2
j

b2
> 0, rp;t is the observed portfolio return in (2), �2� is the variance of the

measurement error, !j for j = 1; :::; n are the portfolio weights, and b is the bandwidth parameter.
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The optimization problem in (16) depends on the in�nite sum
P1
i;j=0, which has to be truncated.

Thus, the estimation of V aR�(r�p;t) will involve a truncation error that we need to control. For

� =
rp;t+V aR�(r�p;t)

b , the in�nite sum can be decomposed as follows:

S =

1X
i;j=0

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
= Sl;k +Rl;k = Sl;k +R

(1)
l;k +R

(2)
l;k +R

(3)
l;k ; (17)

where the truncated and remaining terms Sl;k and Rl;k (R
(1)
l;k ; R

(2)
l;k ; and R

(3)
l;k ) are de�ned in the

Appendix [see Equation (22)]. Furthermore, we show that the remaining terms R(1)l;k ; R
(2)
l;k ; and R

(3)
l;k

are bounded [see equations (23), (24), and (25) of the Appendix], and consequently lim
l;k�!1

n
R
(s)
l;k

o
=

0; for s = 1; 2; 3 [see the proof in the Appendix]: However, how large should l and k be in practice

to make the remaining term negligible is a question that we investigated extensively by simulation.

For the data generating processes that we consider in Section 4 and a bandwidth b; which we select

according to the rule of thumb b = c � (2= log T )1=2 [see Otsu and Taylor (2020)], we �nd that

taking l = k = 10 in Formula (17) yields satisfactory results. Speci�cally, we �nd that there is no

improvement in terms of bias and Mean Square Error when we increase l and k beyond 10.

The above calculation of VaR, however, depends on the unknown variance of the measurement

error �2� : We next discuss how one can estimate this variance using high-frequency data. A more

general approach for the estimation of unknown density of the measurement error, say fe, is also

available but requires the use of repeated measurements of the true latent portfolio returns. In

other words, if we further assume that the Fourier transform of the measurement error �e (s) is

real-valued, that is, the density fe is symmetric around zero, then - if repeated measurements of

the true latent portfolio returns are available - we can estimate �e (s) using the estimator proposed

by Delaigle et al. (2008). In �nance, however, repeated measurements for asset prices are scarce.

In the context of high-frequency data, a consistent nonparametric estimator of the variance

of the measurement error (market microstructure noise) can be obtained as a by-product of the

results in Zhang et al. (2005). Formally, assuming that the full grid containing all of the observation

points is given by G = ft0; :::; tmg and using the consistent estimator of the variance of the market

microstructure noise provided in Zhang et al. (2005, page 1402), a consistent estimator of the

variance of the market microstructure noise e over a time period [0; t] can be obtained as follows:

�̂2e = 2�̂
2
�

0@ nX
j=1

!2j

1A = �̂2u

0@ nX
j=1

!2j

1A =

0@ nX
j=1

!2j

1A241=m X
ti�1;ti2G;ti�t

(pti � pti�1)2
35 ; (18)

where pti�1 (resp. pti) is the price of the index at the intraday time ti�1 (resp. ti) and m is the

number of sampling intervals over [0; t]:
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4 Monte Carlo simulations

We conduct Monte Carlo simulations to examine the performance of our VaR estimation technique

that adjusts for the e¤ect of measurement error in the prices [hereafter adjusted VaR]. We provide

a comparison with a model-free estimator of VaR that does not adjust for the measurement error

[hereafter unadjusted VaR]. We assess the performance of our approach under two cases: when the

measurement error density fe is speci�ed and when it is misspeci�ed.

4.1 Case of speci�ed density of measurement error

We suppose that the observed and true portfolio returns are related according to Equation (2). We

�rst consider that the density fe of the measurement error in Equation (2) is correctly speci�ed

and given by a standard normal distribution, i.e., et � i:i:d:N(0; 1); and we simulate the true

portfolio returns from the following data generating processes (DGPs) that represent di¤erent

contexts encountered in practice:

Model 1: The true portfolio return r�p;t follows an AR(1) process:

r�p;t = 0:5r
�
p;t�1 + �t; with �t � i:i:d:N(0; 1): (19)

Model 2: The true portfolio return r�p;t follows an MA(2) process:

r�p;t = �t + 0:65�t�1 + 0:24�t�2; with �t � i:i:d:N(0; 1): (20)

Model 3: The true portfolio return r�p;t is generated from a GARCH (1,1) model:

r�p;t = �t�t; with �t � i:i:d:N(0; 1) and �2t = 0:05 + 0:85�2t�1 + 0:1r�2p;t�1: (21)

We then use the simulated true returns r�p;t and the standard normal measurement error to simulate

the observed returns rp;t using Equation (2). Note that the above DGPs and the corresponding

parameters are only selected to re�ect the commonly used �nancial time series models in the

simulation design, which o¤ers a wide range of dependent structures. For example, similar choices

are also considered in Chen and Tang (2015).

For each of the above models, we analytically calculate the 1%, 5% and 10% VaR of true portfolio

return r�p;t. The values are reported in Table 1 and will be used to assess the bias (Bias), standard

deviation (Std.), and root mean square error (RMSE) of the adjusted and unadjusted estimates of

VaR calculated using our estimation technique and a model-free estimator (see below) that does

not take into account the measurement error, respectively. The sample sizes range from T = 125

11



Table 1: True VaR for AR(1), MA(2) and GARCH(1,1) models

VaR of true portfolio returns r�p;t

� = 1% � = 5% � = 10%

Model 1: AR(1) �2:6861 �1:8992 �1:4797

Model 2: MA(2) �2:8301 �2:0012 �1:5592

Model 3: GARCH(1,1) �2:4320 �1:6235 �1:2399

Note: This table reports the true VaR using Model 1 [Equation (19)], Model 2 [Equation (20)], and Model

3 [Equation (21)]. The results are obtained using 10000 replications.

to T = 500, which corresponds to data ranging from 6 months to 2 years. From each model, we

generate T + 1000 observations and then discard the �rst 1000 observations to minimize the e¤ect

of the initial values. All the results are based on 1000 replications, except for the calculation of the

true VaRs we use 10000 replications.

To calculate the unadjusted VaR, we simply use the sample quantile estimator based on observed

portfolio returns frp;tgTt=1 that are contaminated by the measurement error, i.e.

[V aR
�
(rpt) = inf

�
u : Frp;T (u) � �

	
; for � = 1%; 5%; 10%;

where Frp;T (u) = T
�1PT

t=1 1(rp;t � u) is the empirical cumulative distribution function of conta-

minated portfolio return rp;t, and 1 (�) is an indicator function.

We next use our approach to compute the adjusted VaR. To control for the truncation errors,

in Formula (17) we take l = k = 10. In addition, our approach requires the use of bandwidth

parameter b. In this simulation study, we follow Otsu and Taylor (2020) to select the bandwidth

b according to the rule of thumb b = c � (2= log T )1=2. We do not provide a theory to guide the

choice of a data-driven bandwidth for our semiparametric estimation approach. However, in order

to help select this important parameter, we consider a battery of simulations for di¤erent values of

c; which varies in the grid f1; 1:5; 2; 2:5; 3g. This allows us to assess the sensitivity of our adjusted

VaR estimates to di¤erent values of the bandwidth parameter b. As we see in the tables below,

we can identify the optimal values of c that work for almost all DGPs under consideration. More

precisely, if we choose c = 2 or c = 2:5, the gains in terms of RMSE over unadjusted approach are

generally very signi�cant.

Tables 2 to 4 report the simulation results for the 1% VaR using Model 1 to Model 3. The

results for the 5% and 10% VaRs using the same DGPs can be found in Tables A.1 to A.6 of the

12



Table 2: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.1989 0.7527 0.7786

c = 1:5 0.7052 0.3191 0.7740

c = 2:0 0.1743 0.2335 0.2913 -0.8366 0.4954 0.9723

c = 2:5 -0.3834 0.2140 0.4391

c = 3:0 -0.9840 0.2162 1.0075

T = 250

c = 1:0 0.8214 0.6374 1.0397

c = 1:5 0.8095 0.3763 0.8927

c = 2:0 0.3264 0.1643 0.3654 -0.8356 0.3785 0.9173

c = 2:5 -0.2062 0.1619 0.2622

c = 3:0 -0.7629 0.1544 0.7784

T = 500

c = 1:0 1.3505 0.3548 1.3963

c = 1:5 0.8411 0.4680 0.9625

c = 2:0 0.4481 0.1213 0.4642 -0.8585 0.2681 0.8994

c = 2:5 -0.0528 0.1107 0.1226

c = 3:0 -0.5735 0.1059 0.5832
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Table 3: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.4626 0.7203 0.8561

c = 1:5 0.8192 0.2760 0.8644

c = 2:0 0.2806 0.2254 0.3599 -0.8084 0.5085 0.9550

c = 2:5 -0.2988 0.2150 0.3681

c = 3:0 -0.8600 0.2031 0.8837

T = 250

c = 1:0 1.0920 0.5570 1.2258

c = 1:5 0.9087 0.2380 0.9393

c = 2:0 0.4129 0.1660 0.4450 -0.8038 0.3831 0.8905

c = 2:5 -0.1044 0.1532 0.1854

c = 3:0 -0.6400 0.1358 0.6543

T = 500

c = 1:0 1.4877 0.3176 1.5213

c = 1:5 0.9428 0.3809 1.0168

c = 2:0 0.5354 0.1209 0.5489 -0.8179 0.2702 0.8613

c = 2:5 0.0495 0.1123 0.1228

c = 3:0 -0.4565 0.1046 0.4683
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Appendix A.2. Considering �rst the bias of the VaR estimates, the tables show that our estimation

approach dominates the unadjusted VaR estimation. These results are encouraging and seem to be

consistent with the theory. The performance of our method shows some variation across the di¤erent

bandwidth choices. However, it is not surprising to see that our semiparametric approach depends

on the bandwidth parameter when faced with the measurement error. Considering a battery of

simulations for di¤erent values of c; we �nd that the performance of our technique is generally much

better for c = 2:0 or 2:5. Concerning the standard deviation (Std.) of the VaR estimates, we again

�nd that the adjusted VaR dominates the unadjusted VaR in most of the cases. We also note that

there is a clear trade-o¤ between bias and variance, which is intuitive and known in the classical

nonparametric estimation literature. However, we see that the balance is well achieved with c = 2:0

or 2:5, as is evident from the tables. Regarding the root mean square error (RMSE), a common

point to all the results is that the estimated adjusted VaR has in general a smaller RMSE than the

unadjusted VaR. Thus, from these simulations we conclude that accounting for measurement error

is indeed very important to draw the correct conclusions and must not simply be ignored.

Finally, additional results (not reported, but available upon request) were obtained by consider-

ing alternative values (e.g. highly persistent AR process) for the coe¢ cients of Models 1�3 and for

the variance of the measurement error (�2e = 2). For the coe¢ cients of models, we �nd that higher

persistence makes the variance of both adjusted and unadjusted VaRs signi�cantly higher than in

the less persistent case. Although these results show that the adjusted VaR does not perform well

compared to the unadjusted VaR, we emphasize that this happens under the very high persistent

level of the underlying time series process, and in this case any estimator should be used with care

since high persistence is known to have a negative impact on the estimators developed under the

stationarity assumption. Furthermore, it is well established that stock returns are weakly persis-

tent, see for example Ding et al. (1993). For the variance of the measurement error, the additional

results show that a larger variance of the measurement error a¤ects notoriously the performance

of the unadjusted VaR, while our proposed adjusted VaR still works reasonably well and delivers

much smaller bias and RMSEs. The latter �nding is not unexpected since a larger variance will

further reduce the information in the contaminated returns, and as such, an (unadjusted) estima-

tor that does not address the measurement error will fail to uncover useful information from the

contaminated returns.
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Table 4: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.3953 0.6979 0.8021

c = 1:5 0.6222 0.3182 0.6989

c = 2:0 0.0384 0.1892 0.1930 -0.8670 0.5477 1.0255

c = 2:5 -0.5667 0.1683 0.5911

c = 3:0 -1.1629 0.1540 1.1730

T = 250

c = 1:0 0.1343 0.7663 0.7780

c = 1:5 0.6920 0.4332 0.8164

c = 2:0 0.1967 0.1411 0.2421 -0.8647 0.4362 0.9685

c = 2:5 -0.3781 0.1274 0.3989

c = 3:0 -0.9269 0.1141 0.9339

T = 500

c = 1:0 0.8847 0.7202 1.1407

c = 1:5 0.3774 1.0178 1.0855

c = 2:0 0.3233 0.1034 0.3394 -0.8816 0.3085 0.9340

c = 2:5 -0.2052 0.0906 0.2243

c = 3:0 -0.7398 0.0823 0.7444

16



4.2 Case of misspeci�ed density of measurement error

We run additional simulations to investigate the performance of our approach when the distribution

of the measurement error is misspeci�ed. Speci�cally, we still estimate our adjusted VaR using

Formula (16) in Corollary 1, which we construct from the characteristic function of standard normal,

but the measurement errors are in fact generated from non-normal distributions. We consider the

same simulation setup as in Section 4.1, but we now generate the measurement error according

to: (i) a Student�s t distribution with 5 degrees of freedom, say t(5); and (ii) a mixture of normal

distributions, say 0:5N(0; 1) + 0:5N(5; 1).

The bias, standard deviation, and root mean square error of the adjusted and unadjusted 1%

VaR estimates under t(5) and mixture distributions are reported in Tables 5-7 and Tables A.7-A.9

of the Appendix A.2, respectively. To save space, we do not report the results for the other coverage

rates [5% and 10%], but they are available upon request. For each of the misspeci�cation cases,

the above tables show similar patterns to those found for the correctly speci�ed case [Section 4.1].

This indicates a good degree of robustness of our proposed methodology to various deviations to

the misspeci�ed measurement errors. In particular, we �nd that the estimates of the adjusted VaR

perform better than the estimates of the unadjusted VaR. As in the speci�ed measurement error

density case, we �nd that the performance of our approach depends on the bandwidth parameter.

But again, after providing a battery of simulations for di¤erent values of c, we see that the per-

formance of our method is generally much better in terms of bias, standard deviation, root mean

square error when c = 2:0 or 2:5.

Finally, we consider another simulation exercise where we compare the performance of the

adjusted and unadjusted approaches when the measurement error is not present in the data. We

use the same simulation setup as in Section 4.1. The simulation results are reported in Tables

A.10-A.12. One should expect that the unadjusted approach will perform better than our approach,

however when we examine the above tables we see that the adjusted approach is doing well compared

to the unadjusted one. It is true that the unadjusted estimator generally leads to a smaller bias,

but when the �optimal�bandwidth parameter [c = 2:5 or c = 2:0] is used, the adjusted estimator

has much smaller variance and consequently a smaller mean square error for all the DGPs under

consideration.
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Table 5: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with Student�s t(5)

measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.3671 0.9794 1.0460

c = 1:5 0.7557 0.4717 0.8909

c = 2:0 0.2247 0.3198 0.3909 -0.9909 0.6771 1.2001

c = 2:5 -0.3913 0.2715 0.4762

c = 3:0 -0.9725 0.2211 0.9973

T = 250

c = 1:0 1.0682 1.0054 1.4669

c = 1:5 0.8367 0.5841 1.0204

c = 2:0 0.3573 0.2788 0.4532 -0.9583 0.4680 1.0665

c = 2:5 -0.1845 0.1539 0.2403

c = 3:0 -0.7459 0.1485 0.7606

T = 500

c = 1:0 1.7290 0.9493 1.9725

c = 1:5 0.8563 0.7922 1.1665

c = 2:0 0.4818 0.4557 0.6631 -0.9557 0.3196 1.0077

c = 2:5 -0.0342 0.1077 0.1129

c = 3:0 -0.5512 0.1059 0.5613
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Table 6: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with Student�s t(5)

measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.6103 0.9902 1.1632

c = 1:5 0.8831 0.5677 1.0499

c = 2:0 0.2994 0.2492 0.3895 -0.9571 0.6736 1.1704

c = 2:5 -0.2848 0.2297 0.3659

c = 3:0 -0.8506 0.2092 0.8759

T = 250

c = 1:0 1.3156 0.9433 1.6188

c = 1:5 0.9656 0.2983 1.0106

c = 2:0 0.4392 0.2754 0.5184 -0.9018 0.4732 1.0184

c = 2:5 -0.0778 0.1736 0.1902

c = 3:0 -0.6322 0.1476 0.6492

T = 500

c = 1:0 1.8755 0.9434 2.0994

c = 1:5 1.0148 0.6881 1.2261

c = 2:0 0.5783 0.2252 0.6206 -0.9166 0.3273 0.9733

c = 2:5 0.0620 0.1121 0.1281

c = 3:0 -0.4517 0.1301 0.4701
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Table 7: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with Student�s

t(5) measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.0854 0.9749 0.9786

c = 1:5 0.6637 0.3147 0.7345

c = 2:0 0.0459 0.1913 0.1968 -1.0642 0.7198 1.2847

c = 2:5 -0.5472 0.1747 0.5744

c = 3:0 -1.1578 0.1582 1.1685

T = 250

c = 1:0 0.5376 1.1656 1.2836

c = 1:5 0.6982 0.6209 0.9343

c = 2:0 0.2183 0.3468 0.4098 -1.0061 0.5119 1.1288

c = 2:5 -0.3538 0.1218 0.3742

c = 3:0 -0.9169 0.1164 0.9243

T = 500

c = 1:0 1.3423 1.1259 1.7519

c = 1:5 -0.0641 1.3668 1.3683

c = 2:0 0.3640 0.1790 0.4056 -1.0216 0.3715 1.0871

c = 2:5 -0.1873 0.0930 0.2091

c = 3:0 -0.7293 0.0818 0.7339
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Table 8: Time-span of the high-frequency data

Index From To No. of Observations

CAC 40 02/01/2000 29/12/2017 458,353

DAX 30 31/05/2009 29/12/2017 227,508

FTSE 100 04/01/2000 29/12/2017 501,185

FTSE MIB 03/01/2000 29/12/2017 508,175

S&P 500 03/01/2000 29/12/2017 394,898

Note: This table reports the time-span and the number of observations on the sparse trade price series

collected at a �ve minute sampling frequency for the indixes CAC 40, DAX 30, FTSE 100, FTSE MIB, and

S&P 500.

5 Empirical application

In this section, we apply the semiparametric approach we proposed in the previous sections to high-

frequency data to estimate the VaR of �ve international stock market indices over one day horizon.

We compare our results to the unadjusted approach that estimates VaR by simply computing the

sample quantiles of the �ve indices�returns.

Our data consist of high-frequency tick-by-tick trade prices on the stock market indices CAC 40,

DAX 30, FTSE 100, FTSE MIB, and S&P 500, which we obtained from the Thomson Reuter�s Tick

History (TRTH) database, over the period January 2000 to December 2017. Our interest speci�cally

lies in the sparse trade prices with a �ve minutes sampling frequency. Table 8 reports the time-

span and the number of observations corresponding to the sparse trade price series collected at a

�ve minutes sampling frequency. Evidently, the price series for each index expands to the desired

time-span, with the exception of the DAX 30 index, which has trade prices only available from

the 31st May 2009. We then use the above data to calculate the continuously compounded returns

over each �ve minutes interval by taking the di¤erence between the logarithm of the two tick prices

immediately preceding each �ve minutes mark.

As we have seen before, the implementation of the semiparametric approach to estimate VaR

requires the knowledge of the variance of the measurement error. This variance, however, is un-

known but it can be estimated using high-frequency data as shown at the end of Section 3. The

semiparametric approach introduced in Section 3 is applied to estimate the 5% and 10% VaRs of

each standardized stock index return [hereafter adjusted VaR]. We standardize the returns (returns

divided by their standard deviations) to fairly compare the VaRs of the �ve stock indices. In ad-
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Table 9: The adjusted and unadjusted estimates of VaR for high-frequency �nancial returns

Adjusted VaR Unadjusted VaR

5% 10% 5% 10%

CAC 40 -2.2623 -1.9142 -1.6491 -1.1448

DAX 30 -2.3325 -1.9741 -1.6446 -1.1624

FTSE 100 -2.2281 -1.8855 -1.5763 -1.0888

FTSE MIB -2.2415 -1.8969 -1.6105 -1.1255

S&P 500 -2.2373 -1.8936 -1.6038 -1.0849

Note: This table reports the estimated 5% and 10% VaR of standardized returns of CAC 40, DAX 30,

FTSE 100, FTSE MIB, and S&P 500, using the approach introduced in Section 3 [adjusted VaR] and the

unadjusted approach that does not adjust for the measurement error [unadjusted VaR]. Here we use c = 2:5.

dition, for comparison, we estimate the unadjusted 5% and 10% VaRs of these stock indices by

simply calculating the sample quantiles using order statistics [hereafter unadjusted VaR].

The results are reported in Table 9. As expected, for both adjusted and unadjusted estimates of

VaR, we see that the loss is higher at 5% than 10% statistical con�dence levels. Interestingly, for all

stock indices and con�dence levels, we see that the adjusted estimates of VaRs are much bigger - in

absolute value - than the unadjusted estimates. This suggests that ignoring the measurement error

might lead to an underestimation of risk. If we take the example of S&P 500 index, the adjusted

estimate of 5% VaR is 0.6335 (2.2373-1.6038) higher than the unadjusted one. Thus, an investor who

invests, for example, $100 million in the S&P 500 index and uses unadjusted VaR will think that the

magnitude of risk at 5% con�dence level is equal to $208; 494 a day [$100 million � 1.6038�0:0013

(standard deviation of S&P 500 index)], whereas the true magnitude of risk (according to the

adjusted estimate of VaR) is $290; 849 a day [$100 million � 2.2373�0:0013]. Hence, this investor

will face an unexpected additional loss of $82; 355 a day [$100 million � 0.6335�0:0013]. Finally,

Table 9 shows that the values of adjusted and unadjusted VaRs are similar across the �ve stock

indices, which might indicate that international stock markets are driven by some common factors.

6 Conclusions

We have proposed a semiparametric approach for estimating the VaR of a portfolio of contaminated

stock returns. We have shown that measurement errors cause serious problems for estimating risk,
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and unfortunately the existing methods are inconsistent in the presence of measurement error. Using

Fourier transform, we derived a robust estimator of VaR that takes into account the measurement

error. We �rst used a deconvolution kernel estimator for the density function of the true latent

portfolio returns to deal with the measurement error. Second, we used Fourier inversion to calculate

the probability distribution function of the latent portfolio returns. Thereafter, we used power

series representations of sine and exponential functions to approximate the integral in the inversion

formula and made the calculation of VaR feasible.

The derivation of robust estimator of VaR was �rst made under the assumption that the density

of measurement error is known, but the distribution of the observed portfolio returns was always

treated as unknown and estimated nonparametrically. Thereafter, we relaxed this assumption

and suggested a feasible way to deal with the measurement error�s distribution. In particular, we

followed the literature and assumed that the measurement error is normally distributed but with

unknown variance that we estimated nonparametrically using high-frequency data and a consistent

estimator of variance of measurement error from Zhang et al. (2005).

Furthermore, we conducted a set of Monte Carlo simulations to examine the performance of

our approach. We also provided a comparison with a model-free estimator of VaR that does not

take into account the measurement error. We investigated the performance of our approach for

known and unknown density of the measurement error and the simulation results were encouraging.

Finally, we used our approach and high-frequency data to estimate the adjusted VaR of �ve US

and European stock indices. We compared our results to the unadjusted VaR, which we estimated

using a model-free approach that simply computes the sample quantiles based on the �ve indices�

historical returns. The empirical results showed that ignoring measurement error generally leads

to an underestimation of risk.
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A Appendix

A.1 Proofs of theoretical results

Proof of Corollary 1. We �rst calculate the integral:Z 1

0

exp
�
as2
�
sin(�s)

s
ds;

where a =
�2�
Pn
j=1 !

2
j

b2
> 0 and � =

rp;t+V aR�(r�p;t)

b . To do that, we use power series representation of

sin(�s) function:

sin(�s) =
1X
i=0

(�1)i�1+2is1+2i
(1 + 2i)!

:

Furthermore, the power series representation of exp
�
as2
�
is given by: exp(as2) =

P1
l=0

als2l

l! : Thus,

exp(as2) sin(�s)

s
=

1X
i;j=0

ai(�1)j�1+2js2i+2j
i!(1 + 2j)!

:

Consequently,Z 1

0

exp(as2) sin(�s)

s
ds =

1X
i;j=0

ai(�1)j�1+2j
i!(1 + 2j)!

Z 1

0
s2i+2jds =

1X
i;j=0

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
:

Hence, the VaR of the latent portfolio�s return r�p;t with coverage probability �, denoted by

V aR�(r�p;t), is the solution of the following optimization problem:

[V aR
�
(r�p;t) = Argmin

V aR�(r�p;t)
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TX
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;

with a =
�2�
Pn
j=1 !

2
j

b2
> 0.

Lemma 1: A series of the form S =
P1
n (�1)n"n where either all "n are positive or all

"n are negative is called an alternating series. Then says: if j"nj decreases monotonically and

limn!1 "n = 0 then the partial sum Sq =
Pq
n(�1)nan approximates S with error bounded by the

next omitted term:

Rq =

1X
n=q

(�1)nan � j"q+1j:

Proof of Lemma 1. First of all, we know that when an alternating series converges to its

limit S, this means the partial sum of this alternating series also �alternates�above and below the

�nal limit, i.e., S2q < S < S2q+1.
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We now show jSk � Sj � "k+1 by considering two cases:

1. When k = 2q + 1, i.e., k is odd, then we have:

jS2q+1 � Sj = S2q+1 � S � S2q+1 � S2q+2 = "(2q+1)+1:

2. When k = 2q, i.e., k is even, then we have:

jS2q � Sj = S � S2q � S2q+1 � S2q = "2q+1:

Both cases rely essentially on the inequality S2q < S < S2q+1.

Proof: Bounds of the remaining terms for the truncation of the in�nite sum in

Equation (16).. First of all, note that the in�nite sum
P1
i;j=0 in the optimization problem in

Equation (16) can be decomposed as follows:

S =

1X
i;j=0

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
= Sl;k +Rl;k;

where the truncated and remaining terms Sl;k and Rl;k are given by:

Sl;k =
Pl
i=0

Pk
j=0

ai

i!
(�1)j�1+2j
(1+2j)!

1
(2i+2j+1) ;

Rl;k =
1X

i=l+1

kX
j=0

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)| {z }
R
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+
lX
i=0

1X
j=k+1
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(1 + 2j)!
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+
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(22)

with a =
�2�
Pn
j=1 !

2
j

b2
and � =

rp;t+V aR�(r�p;t)

b . The bandwidth b is selected according to the rule of

thumb b = c� (2= log T )1=2; see Otsu and Taylor (2020). Furthermore, based on the high-frequency

data [see Section 5 ] �2� is of order of magnitude of 10
�7:We next derive a bound for each remaining

term R
(1)
l;k , R

(2)
l;k and R

(3)
l;k .

1). The bound for R(1)l;k : First, observe that

R
(1)
l;k =

1X
i=l+1

1X
j=k+1

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
=

1X
j=k+1

(�1)j"j ;
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is an alternating series, where the term "j =
P1
i=l+1

ai

i!
�2j+1

(1+2j)!
1

(2i+2j+1) is decreasing to zero since

limj!1
�2j+1

(1+2j)! = 0. From Lemma 1 of this Appendix, we obtain:
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since
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i=l+1

ai
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P1
i=0

ai

i! = ea and a is a positive number de�ned in Corollary 1. Thus,

lim
l;k�!1

n
R
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l;k

o
= 0:

2). The bound for R(2)l;k : Following the same argument as the one for the bound of R
(1)
l;k , we have

R
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(1+2j)! = 0. From Lemma 1 of this Appendix, we obtain:
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Thus, as for bound of R(1)l;k ; we have lim
l;k�!1

n
R
(2)
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o
= 0:

3). The bound for R(3)l;k : Observe that:
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Now, if we de�ne �j =
j�j1+2j
(1+2j)! , we obtain:

�j+1
�j

= (
j�j3+2j
(3 + 2j)!

)=(
j�j1+2j
(1 + 2j)!

) =
�2

(2j + 3)(2j + 2)
:

From the above equation and based on D�Alembert criterion, the series
Pk
j=0

j�j1+2j
(1+2j)! converges for

k �!1; and consequently lim
l;k�!1

n
R
(3)
l;k

o
= 0:

A.2 Monte Carlo simulation results
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Table A.1: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 95% VaR for the AR(1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.5183 0.8712 1.0137

c = 1:5 0.1771 0.4417 0.4759

c = 2:0 -0.2947 0.2129 0.3636 -0.5917 0.3217 0.6735

c = 2:5 -0.8063 0.1977 0.8301

c = 3:0 -1.3169 0.2108 1.3337

T = 250

c = 1:0 0.1543 0.7206 0.7369

c = 1:5 0.2503 0.3918 0.4649

c = 2:0 -0.1672 0.1570 0.2293 -0.6069 0.2318 0.6497

c = 2:5 -0.6449 0.1500 0.6621

c = 3:0 -1.1200 0.1472 1.1296

T = 500

c = 1:0 0.7285 0.3469 0.8069

c = 1:5 0.2865 0.5020 0.5781

c = 2:0 -0.0668 0.1176 0.1353 -0.6102 0.1680 0.6329

c = 2:5 -0.5034 0.1073 0.5147

c = 3:0 -0.9610 0.1038 0.9666
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Table A.2: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 95% VaR for the MA(2) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.2425 0.8210 0.8561

c = 1:5 0.2376 0.3270 0.4042

c = 2:0 -0.2231 0.2139 0.3091 -0.5709 0.3280 0.6585

c = 2:5 -0.7270 0.2029 0.7548

c = 3:0 -1.2461 0.2011 1.2622

T = 250

c = 1:0 0.4182 0.5876 0.7212

c = 1:5 0.3095 0.3115 0.4391

c = 2:0 -0.1084 0.1546 0.1888 -0.5815 0.2363 0.6276

c = 2:5 -0.5666 0.1447 0.5848

c = 3:0 -1.0555 0.1397 1.0648

T = 500

c = 1:0 0.8183 0.2813 0.8653

c = 1:5 0.3712 0.3382 0.5022

c = 2:0 -0.0060 0.1119 0.1121 -0.5844 0.1665 0.6077

c = 2:5 -0.4353 0.1081 0.4485

c = 3:0 -0.8856 0.1019 0.8914
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Table A.3: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 95% VaR for the GARCH(1,1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -1.3376 0.7844 1.5507

c = 1:5 0.0393 0.1983 0.2021

c = 2:0 -0.4766 0.1742 0.5074 -0.6867 0.3290 0.7615

c = 2:5 -1.0081 0.1662 1.0217

c = 3:0 -1.5350 0.1512 1.5424

T = 250

c = 1:0 -0.6805 0.8463 1.0860

c = 1:5 0.0782 0.5265 0.5323

c = 2:0 -0.3426 0.1213 0.3635 -0.6912 0.2329 0.7294

c = 2:5 -0.8387 0.1095 0.8458

c = 3:0 -1.3359 0.1101 1.3404

T = 500

c = 1:0 0.1386 0.7616 0.7741

c = 1:5 -0.4823 1.4075 1.4878

c = 2:0 -0.2274 0.0931 0.2457 -0.6961 0.1716 0.7170

c = 2:5 -0.7022 0.0846 0.7073

c = 3:0 -1.1662 0.0791 1.1689

33



Table A.4: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 90% VaR for the AR(1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.8049 0.9783 1.2668

c = 1:5 0.0087 0.3893 0.3894

c = 2:0 -0.3910 0.2157 0.4466 -0.4674 0.2782 0.5439

c = 2:5 -0.8328 0.2104 0.8589

c = 3:0 -1.2632 0.2023 1.2793

T = 250

c = 1:0 -0.0657 0.7661 0.7689

c = 1:5 0.0727 0.4323 0.4384

c = 2:0 -0.2895 0.1511 0.3265 -0.4697 0.1988 0.5101

c = 2:5 -0.6933 0.1486 0.7090

c = 3:0 -1.0974 0.1466 1.1072

T = 500

c = 1:0 0.4559 0.3727 0.5888

c = 1:5 0.0738 0.5994 0.6039

c = 2:0 -0.1918 0.1104 0.2213 -0.4723 0.1378 0.4920

c = 2:5 -0.5699 0.1074 0.5800

c = 3:0 -0.9528 0.1064 0.9587
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Table A.5: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 90% VaR for the MA(2) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.5198 0.9414 1.0754

c = 1:5 0.0610 0.3142 0.3201

c = 2:0 -0.3433 0.2112 0.4030 -0.4449 0.2777 0.5245

c = 2:5 -0.7749 0.2008 0.8005

c = 3:0 -1.2025 0.2012 1.2192

T = 250

c = 1:0 0.1582 0.6488 0.6678

c = 1:5 0.1302 0.3182 0.3438

c = 2:0 -0.2335 0.1390 0.2718 -0.4552 0.1971 0.4961

c = 2:5 -0.6397 0.1434 0.6555

c = 3:0 -1.0391 0.1401 1.0485

T = 500

c = 1:0 0.5451 0.2662 0.6066

c = 1:5 0.1761 0.3547 0.3960

c = 2:0 -0.1444 0.1074 0.1800 -0.4589 0.1397 0.4797

c = 2:5 -0.5182 0.1004 0.5279

c = 3:0 -0.9014 0.1006 0.9070
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Table A.6: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 90% VaR for the GARCH(1,1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -1.7152 0.8601 1.9188

c = 1:5 -0.1212 0.2618 0.2885

c = 2:0 -0.5634 0.1592 0.5854 -0.5541 0.2652 0.6143

c = 2:5 -1.0119 0.1514 1.0231

c = 3:0 -1.4607 0.1405 1.4675

T = 250

c = 1:0 -0.9770 0.9381 1.3545

c = 1:5 -0.0774 0.4375 0.4443

c = 2:0 -0.4398 0.1168 0.4551 -0.5554 0.1867 0.5860

c = 2:5 -0.8608 0.1095 0.8677

c = 3:0 -1.2842 0.0972 1.2879

T = 500

c = 1:0 -0.1552 0.8065 0.8213

c = 1:5 -0.6550 1.4626 1.6025

c = 2:0 -0.3411 0.0821 0.3508 -0.5584 0.1346 0.5744

c = 2:5 -0.7417 0.0763 0.7456

c = 3:0 -1.1405 0.0735 1.1429
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Table A.7: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with normal mixture

measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.2242 0.7193 0.7534

c = 1:5 0.6918 0.3010 0.7544

c = 2:0 0.1664 0.2214 0.2770 -0.7016 0.4428 0.8297

c = 2:5 -0.3986 0.2046 0.4481

c = 3:0 -0.9766 0.2054 0.9980

T = 250

c = 1:0 0.7986 0.5333 0.9603

c = 1:5 0.7782 0.2178 0.8081

c = 2:0 0.3127 0.1629 0.3525 -0.7086 0.3347 0.7836

c = 2:5 -0.2172 0.1512 0.2646

c = 3:0 -0.7580 0.1445 0.7716

T = 500

c = 1:0 1.1445 0.2733 1.1767

c = 1:5 0.8383 0.2956 0.8889

c = 2:0 0.4314 0.1174 0.4470 -0.7259 0.2371 0.7636

c = 2:5 -0.0642 0.1052 0.1233

c = 3:0 -0.5691 0.1018 0.5781
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Table A.8: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with normal mixture

measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.4628 0.6784 0.8213

c = 1:5 0.7629 0.3033 0.8210

c = 2:0 0.2613 0.2240 0.3442 -0.6833 0.4551 0.8210

c = 2:5 -0.2938 0.2038 0.3576

c = 3:0 -0.8780 0.2010 0.9007

T = 250

c = 1:0 0.9930 0.4417 1.0868

c = 1:5 0.8637 0.2246 0.8925

c = 2:0 0.3937 0.1594 0.4247 -0.6957 0.3492 0.7785

c = 2:5 -0.1060 0.1481 0.1822

c = 3:0 -0.6497 0.1418 0.6649

T = 500

c = 1:0 1.2706 0.2701 1.2990

c = 1:5 0.9337 0.1779 0.9505

c = 2:0 0.5111 0.1101 0.5228 -0.7028 0.2426 0.7435

c = 2:5 0.0339 0.1051 0.1104

c = 3:0 -0.4660 0.1048 0.4776
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Table A.9: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with normal

mixture measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.4889 0.7829 0.9230

c = 1:5 0.5925 0.2473 0.6420

c = 2:0 0.0293 0.1824 0.1848 -0.6861 0.5253 0.8641

c = 2:5 -0.5666 0.1688 0.5912

c = 3:0 -1.1610 0.1520 1.1709

T = 250

c = 1:0 0.0647 0.7885 0.7911

c = 1:5 0.6880 0.2817 0.7434

c = 2:0 0.1748 0.1350 0.2209 -0.7050 0.4365 0.8292

c = 2:5 -0.3801 0.1190 0.3983

c = 3:0 -0.9383 0.1197 0.9459

T = 500

c = 1:0 0.8506 0.5781 1.0285

c = 1:5 0.6384 0.6114 0.8839

c = 2:0 0.3025 0.1013 0.3190 -0.7220 0.3082 0.7851

c = 2:5 -0.2127 0.0823 0.2281

c = 3:0 -0.7445 0.0834 0.7491
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Table A.10: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with no measure-

ment errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.3574 0.3240 0.4824

c = 1:5 0.8470 0.8722 1.2158

c = 2:0 0.5068 0.1921 0.5420 0.0277 0.3983 0.3993

c = 2:5 -0.1303 0.1852 0.2264

c = 3:0 -0.7713 0.1883 0.7939

T = 250

c = 1:0 -0.1230 0.2436 0.2729

c = 1:5 0.3654 1.2783 1.3295

c = 2:0 0.6653 0.1323 0.6784 0.0466 0.2971 0.3008

c = 2:5 0.0637 0.1347 0.1490

c = 3:0 -0.5226 0.1254 0.5374

T = 500

c = 1:0 0.0718 0.2694 0.2788

c = 1:5 -1.1150 0.8139 1.3804

c = 2:0 0.8120 0.0985 0.8179 0.0055 0.2223 0.2224

c = 2:5 0.2365 0.0923 0.2539

c = 3:0 -0.3254 0.0936 0.3386
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Table A.11: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with no measure-

ment errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.2503 0.3240 0.4258

c = 1:5 1.0800 0.8722 1.2594

c = 2:0 0.6093 0.1921 0.6355 0.0473 0.4139 0.4166

c = 2:5 -0.0138 0.1852 0.1801

c = 3:0 -0.6562 0.1883 0.6789

T = 250

c = 1:0 -0.0079 0.2436 0.3222

c = 1:5 0.6609 1.2783 1.3469

c = 2:0 0.7626 0.1323 0.7751 0.0301 0.3212 0.3226

c = 2:5 0.1716 0.1347 0.2138

c = 3:0 -0.4069 0.1254 0.4260

T = 500

c = 1:0 0.2630 0.2694 0.4857

c = 1:5 -0.6736 0.8139 1.3169

c = 2:0 0.9082 0.0985 0.9131 0.0007 0.2360 0.2360

c = 2:5 0.3309 0.0923 0.3434

c = 3:0 -0.2166 0.0936 0.2340
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Table A.12: Finite-sample biases, standard deviations (Std.�s) and root mean square errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with no

measurement errors

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.4236 0.2925 0.5148

c = 1:5 0.8471 0.7002 1.0991

c = 2:0 0.3449 0.1411 0.3726 0.0664 0.5345 0.5386

c = 2:5 -0.3159 0.1542 0.3515

c = 3:0 -0.9509 0.1129 0.9576

T = 250

c = 1:0 -0.1976 0.2575 0.3246

c = 1:5 -1.0542 1.2495 1.6348

c = 2:0 0.5271 0.1018 0.5368 0.0455 0.4636 0.4658

c = 2:5 -0.1000 0.0999 0.1413

c = 3:0 -0.7034 0.0846 0.7085

T = 500

c = 1:0 0.0330 0.3749 0.3764

c = 1:5 -1.5633 0.1288 1.5686

c = 2:0 0.6685 0.0762 0.6728 0.0106 0.3416 0.3417

c = 2:5 0.0773 0.0692 0.1038

c = 3:0 -0.4977 0.0644 0.5019
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