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ABSTRACT

This paper shows the recent success of valuation risk (tireference shocks in Epstein-
Zin utility) in resolving asset pricing puzzles rests sémsly on an undesirable asymptote that
occurs because the preference specification fails to patikey restriction on the weights in
the Epstein-Zin time-aggregator. When we revise the peefars to satisfy the restriction in
a simple asset pricing model, the puzzles resurface. Haywewlen estimating a sequence
of Bansal-Yaron long-run risk models, we find valuation risider the revised specification
consistently improves the ability of the models to matclepsice and cash-flow dynamics.
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1 INTRODUCTION

In standard asset pricing models, uncertainty enters gftrthue supply side of the economy, either
through endowment shocks in a Lucas (1978) tree model omptivity shocks in a production
economy model. Recently, several papers introduced desidadincertainty or “valuation risk”
as a potential explanation of key asset pricing puzzlesudlierque et al., 2016, 2015; Creal and
Wu, 2017; Maurer, 2012; Nakata and Tanaka, 2016; Schoshetidl., 2018). In macroeconomic
parlance, valuation risk is typically referred to as a disadactor or time preference shotk.

The literature contends valuation risk is an importantichetieant of key asset pricing moments
when itis embedded in Epstein and Zin (1991) recursive peafees. We show the success of val-
uation risk rests on an undesirable asymptote that persdaeletermination of asset prices. The
influence of the asymptote is easily identified in a stylizeztel. In that model, an intertemporal
elasticity of substitution (IES) marginally above one peeslan arbitrarily large equity premium
and an arbitrarily low risk-free rate, while an IES slightiglow one predicts the opposite results.
The asymptote significantly affects equilibrium outcomesnewhen the IES is well above unity.

In a business cycle model, de Groot et al. (2018) show thatEistein-Zin preferences, time-
varying weights in a CES time-aggregator must surhtimprevent an undesirable asymptote from
determining equilibrium outcomes. The current speciftzatn the literature fails to impose this
restriction. de Groot et al. (2018) propose an alternatiem¢eforth, the “revised specification”)
that eliminates the asymptote and ensures that preferaneegell-defined when the IES is one.

This paper makes two key contributions to the literaturestFt analytically shows the change
to the preference specification profoundly alters the dayuilm determination of asset prices. For
example, the same IES and risk aversion (RA) parameterseeahtb very different values for
the equity premium and risk-free rate and comparativecstasiuch as the response of the equity
premium to the IES, switch sign. Second, it empirically veleates of the role of valuation risk
in explaining asset pricing and cash-flow moments. We fingr &$timating a sequence of models
under the revised specification, the role and contributioratuation risk change dramatically.

For intuition, consider the log-stochastic discount fa¢8DF) under Epstein-Zin preferences

th = Qlogﬁ + G(dt — w&t+1) — (9/¢)Aét+1 + (6 — 1)TA'y7t+1, (1)

where the first, third, and fourth terms—the subjectivealisit factor (5), log-consumption growth
(A¢;41), and the log-return on the endowmeit(;,)—are all standard in this class of asset pricing
models. The second term captures valuation risk, wheiie a time preference shock. In the
current literaturepy = 0. Once we revise the preferences and re-derive the log-S®findw = 3.

Time preference shocks have been widely used in the maeratiire (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rdierg and Woodford (1997); Smets and Wouters (2003)).



When we apply this single alteration to the model, the agsghpg predictions are starkly different.
The asymptote in the current valuation risk specificatioreiated to the preference parameter

0 =(1—~)/(1—1/¢) that enters the log-SDF, wheteis RA and is the IES. Under constant

relative risk aversion (CRRA) preferences= 1/v. In this casef = 1 and the log-SDF becomes

Myy1 = log B+ (4 — wag1) — Al /7). (2

The return on the endowment drops outhf 6o the log-SDF is simply composed of the subjective
discount factor and consumption growth terms. The advantédepstein-Zin preferences is that
they decoupley and), so it is possible to simultaneously have high RA and a high However,
there is a nonlinear relationship betwegmnd ), as shown irfigure 1 A vertical asymptote
occurs aty = 1: 6 tends to infinity as) approaches from below while the opposite occurs as
1 approaches from above. When the IES equalsé is undefined. In addition to the vertical
asvmptote irf. there is also a horizontal asvmptotel at ~ as the IES becomes perfectlv elastic.
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Figure 1: Preference paramefen the stochastic discount factor from a model with Epstéimpreferences.

Under Epstein and Zin (1989) preferences and the gendializia de Groot et al. (2018) to
include valuation risk, the asymptotefigure 1does not affect asset prices. There is a well-defined
equilibrium when the IES equalsand asset prices are robust to small variations in the IE8- Co
tinuity is preserved because the weights in the time-aggoe@lways sum to unity. An alternative
interpretation is that the time-aggregator maintains tek-linown property that a CES aggregator
tends to a Cobb-Douglas aggregator as the elasticity apipesd. The current specification vio-
lates the restriction on the weights so the limiting projsrof the CES aggregator break down. As
a result, the asymptote permeates key asset pricing mopesetswhen the IES is well above
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Taken at face value, the asymptote that occurs with the muggecification can resolve the
equity premium (Mehra and Prescott, 1985) and risk-fre (\&kil, 1989) puzzles in our baseline
model withi.i.d. cash-flow risk. When we revise the preference specificatigatisfy the restric-
tion, valuation risk has a smaller role, RA is implausiblginj and the puzzles resurface because
there is no longer an asymptote. However, when estimatirepaence of long-run risk models
using a simulated method of moments procedure, we find valuask under the revised specifi-
cation consistently improves the ability of the models tdachasset price and cash-flow dynamics.

We begin by estimating the Bansal and Yaron (2004) long-iskmodel (without time-varying
uncertainty) without valuation risk and find it significantinder-predicts the standard deviation
of the risk-free rate, even when these moments are targétbdn we introduce valuation risk, it
accounts for roughly0% of the equity premium, but at the expense of over-predidtiegstandard
deviation of the risk-free rate. After targeting the riskd rate dynamics, valuation risk only ac-
counts for abou’% of the equity premium. Therefore, we find it is crucial to &trthese dynamics
to accurately measure the contribution of valuation riskil/valuation risk (with or without the
targeted risk-free rate moments) improves the fit of the damgrisk model, the model still fails
a test of over-identifying restrictions. This is becausetiodel fairs poorly in matching the low
predictability of consumption growth from the price-dieitd ratio, the high standard deviation of
dividend growth, and the weak correlation between dividgmavth and equity returns in the data.

We consider two extensions that improve the model’s fit: (Linderaction term between valu-
ation and cash-flow risk (a proxy for general equilibrium demh effects) following Albuquerque
et al. (2016) (henceforth, “Demand” model) and (2) stodbasilatility on cash-flow risk as in
Bansal and Yaron (2004) (henceforth, “SV” model). In a hoese between these extensions, we
find the Demand model wins and passes the over-identifystgctons test at the% level. How-
ever, the two extensions are complements and the combinddlpasses the test at th&; level.
This is because the demand extension lowers the correla¢itween dividend growth and equity
returns, while the SV extension offsets the effect of higladmation risk on risk-free rate dynamics.

It is common in the asset pricing literature to estimate nwdsing a simulated method of
moments procedure (eg., Adam et al., 2016; Albuquerque,2@l6; Andreasen and Jgrgensen,
2019). We build on the existing methodology in two ways. Ome run Monte Carlo estimations
of the model and calculate standard errors using differeqiiences of shocks, whereas estimates
in the literature are typically based on a particular seqaesf shocks. This approach allows us
to obtain more precise estimates and account for diffesebeveen the asymptotic and sampling
distributions of the parameters. Two, we use a rigorous step- procedure to find the global
optimum that uses simulated annealing to obtain candidati@sdand then recursively applies a
nonlinear solver to each of the candidates. We find that withpplying such rigor to this class of
models, the algorithm would settle on local optima and pidéy lead to incorrect inferences.



Related Literature This paper builds on the growing literature that examinesrtie of valua-
tion risk in asset pricing models. Maurer (2012) and Albuque et al. (2016) were the first. They
adopt the current preference specification and find valnatgk accounts for key asset pricing
moments, such as the equity premium. Albuquerque et al6)28l$o focus on resolving the cor-
relation puzzle (Campbell and Cochrane, 1999). Schoréheidl. (2018) use a Bayesian mixed-
frequency approach that allows them to target entire timeserather than specific moments.
They focus on one model with three SV processes. We examidepth the role of valuation risk
by estimating a sequence of increasingly rich models. Abletdifference from our results is that
Schorfheide et al. (2018) find a limited role for the genecaiigbrium demand channel. Creal and
Wu (2017) focus on bond premia. They also use the currentfgion, but valuation risk is tied
to consumption and inflation and does not have an indepestiaeitastic element. They find the
slope of the yield curve is largely explained by valuati@krigiven an IES estimate equallt®?2.
Nakata and Tanaka (2016) and Kliem and Meyer-Gohde (2018yserm premia in a New
Keynesian model using the current specification. The focakbrate the IES t0.11 and generate
a negative term premia. The latter estimate the IES witha prithe|0, 1] range and obtain a value
of 0.09. Both findings are a consequence of the asymptote, as we staiwtiaally. In contrast
with the literature, Rapach and Tan (2018) and Bianchi gR28I18) use the revised specification
and estimate a real business cycle model. They find valuaskman still explain a large portion
of the term premium because demand shocks interact withrtitkiption side of the econondy.
The paper proceeds as followSection 2describes the baseline model and the current and
revised preference specificatiof@ection 3analytically shows why asset prices depend so dramat-
ically on the way valuation risk enters the Epstein-Zinitytilunction. Section 4describes the data
and estimation methodolog$gection 5quantifies the effects of the valuation risk specification in
our baseline model withi.d. cash-flow risk.Section éestimates the standard long-run risk model
with and without valuation riskSection 7extends the long-run risk model to include valuation
risk shocks to cash-flow growth and stochastic volatilitycash-flow risk.Section 8concludes.

2 BASELINE ASSEFPRICING MODEL

We begin by describing our baseline model. Each petrideinotest month. There are two assets:
an endowment share, ;, that pays incomey, and is in fixed unit supply, and an equity shasg,
that pays dividendsi;, and is in zero net supply. The agent chooggss ;, s2 }°, t0 maximize

U =[(1—B)et ™" + aC BEUS) DY/, 144 >0, 3)

2Two other strands of the literature have interesting cotimes to our work. One, disaster risk (see Barro, 2009
and Gourio, 2012) can generate variation in the stochastodnt factor analogous to valuation risk. Two, Bansal
et al. (2014), identify “discount rate risk” as a compondinigk premia distinct from cash-flow and volatility risks.



as used in the current (C) asset pricing literature, or

(1 —af'B)el ™ 4 aBB(E[(UE )] Y99/0=2  for 1 # 4 > 0,

Ult =
I (A A R R forg =1

(4)

as in the revised (R) specification of de Groot et al. (2018 E, is the mathematical expec-
tation operator conditional on information available irripd t. The time-preference shocks are
denoted:{ > 0 and0 < o < 1/3.3* The key difference between the preferences is as follows:

The time-varying weights of the time-aggregato(3@j (1 — 3) anda¢ 3, do
not sum tol, whereas the weights @), (1 — a?3) anda’ 3, do sum tal.

The representative agent’s choices are constrained byoiudtldget constraint given by
Ct + PyaSie + DassSo = Dyt + Ye)S1,0-1 + (Pay + di)Sae—1, (5)
wherep, ; andp,; are the endowment and dividend claim prices. The optimadityditions imply

Tyt+1 = (py,t+1 + yt+1)/py,t7 (6)

Eymi yryen] = 1,
Et[m{+17"d,t+1] =1, 7141 = (pd,t—i-l + dt—i—l)/pd,ta (7)

wherej € {C, R}, r,+1 andr, .., are the gross returns on the endowment and dividend claims,

—1/¢ C \1- 1-1
c _ C Ct+1 (‘/t—i—l) 0l 0
miy = a; B (c—t) (W) ) (8)
R _ R 1-— aﬁrlﬁ Crs1 =1/ (Vvtil)l_,y 1_%
My = ay ( 1—al'p ) ( Ct ) (W) , (9)

andV/ is the value function that solves the agent’s constraingighigation problem.
To permit an approximate analytical solution, we rewr@ednd (7) as follows

Et[eXp(mgH + TAy,t+1)] =1, (10)
=1,

EyJexp(ri] ) + Pas41)] (11)

3Kraft and Seifried (2014) prove the continuous-time analbgecursive preferences—known as stochastic dif-
ferential utility (Duffie and Epstein, 1992)—is the contous-time limit of recursive utility if the weights of the
time-aggregator sum tb Kollmann (2016) introduces a time-varying discount fa@hoan Epstein-Zin setting similar
to our revised specification. In that setup, the discouribfas a function of endogenously determined consumption.

4In the literaturea{ typically hits current utility, rather than the risk aggatgr. However, with a small change in
the timing convention of the preference sho®,ié isomorphic to the specification used in the literature. We the
specification in 8) because it better facilitates a comparison with the reMmeferences. Sefppendix Afor details.



wherer], , is defined in {) anda; = af =~ af*/(1 — ) so the shocks in the current and revised
models are directly comparable. The common time preferehoek,a, ., ;, evolves according to

&t—l—l = pa&t + Oa€ajt+1, Eat+1 ™ N(O7 1)7 (12)

where0 < p, < 1is the persistence of the process,> 0 is the shock standard deviation, and a
hat denotes a log variable. We then apply a Campbell andeB(il088) approximation to obtain

Tyt+1 = Ryo + Ry12yt4+1 — 2yt + Ayt-‘:—l» (13)

Tdi+1 = Kdo + KaiZde+1 — 2a¢ + Adiya, (14)
wherez, ;. is the log price-endowment rati6, ;. is the log price-dividend ratio, and

kyo = 1og(1 4 exp(2y)) — ky12y, Ky = exp(Zy)/ (14 exp(Zy)), (15)
kao = 1og(1 + exp(24)) — Kar2a,  Kar = exp(2a)/(1 + exp(Zq)), (16)

are constants that are functions of the steady-state pridewment and price-dividend ratios.
To close the model, the processes for log-endowment andiladend growth are given by

Agt—l—l = Uy + OyEyt+1, Eyt+1 ™ N(O> 1)7 (17)
ACZt+1 = Ud + TayOy€yt+1 + Va0yEa i1, Edp1 ~ N(0,1), (18)

wherey,, andy, are the steady-state growth rateg,> 0 andi,0, > 0 are the shock standard

deviations, andr,, determines the covariance between consumption and divigeawth. Asset

market clearing implies; ; = 1 ands,; = 0, so the aggregate resource constraiif is ;.
Equilibrium includes sequences of quantitigs} >, prices{ 1, Zy.t, Zat, Ty1+1, Tdi+1 oo

and exogenous variabléaj,,, Ad,, 1, ar+1}:2, that satisfy 0), (10)-(14), (17), (18), and the re-

source constraint, given the state of the econdiiay},, and sequences of shocKs, ;, £+, €4t } 121 -
We posit the following solutions for the price-endowmend gnice-dividend ratios:

Zyt = Myo + My1Gs,  Zag = Nao + N1y, (19)

wherez, = 1,0 andz; = n4. We solve the model with the method of undetermined coefftsie
Appendix Bderives the SDF, a Campbell-Shiller approximation, thatsmh, and key asset prices.

3 INTUITION

This section develops intuition for why the valuation riglesification has such large effects on
the model predictions. To simplify the exposition, we coesidifferent stylized shock processes.



3.1 CONVENTIONAL MODEL First, itis useful to review the role of Epstein-Zin prefeces and
the separation of the RA and IES parameters in matchingskenee rate and equity premium. For
simplicity, we remove valuation risks{{ = 0) and assume endowment/dividend risk is perfectly
correlated ¢4, = 0; 74, = 1). The average risk-free rate and average equity premiurgieee by

Elif] = =log B+ py /¢ + (1/ — 7)1 =) —7*)0; /2, (20)
Elep] = yo3, (21)

where the first term in20) is the subjective discount factor, the second term acsdiontendow-
ment growth, and the third term accounts for precautionawngjs. Endowment growth creates
an incentive for agents to borrow in order to smooth consionptSince both assets are in fixed
supply, the risk-free rate must be elevated to deter bormgwiVhen the IESy), is high, agents are
willing to accept higher consumption growth so the interast required to dissuade borrowing is
lower. Therefore, the model requires a fairly high IES tochahe low risk-free rate in the data.
With CRRA preferences, higher RA lowers the IES and pushethepisk-free rate. With
Epstein-Zin preferences, these parameters are indepesdesm high IES can lower the risk-free
rate without lowering RA. Notice the equity premium only éegs on RA. Therefore, the model
generates a low risk-free rate and modest equity premiumsaiificiently high RA and IES param-
eter values. Of course, there is an upper bound on what tatesteasonable RA and IES values,
which is the source of the risk-free rate and equity premiugzfes. Other prominent features such
as long-run risk and stochastic volatility a la Bansal aadovi (2004) help resolve these puzzles.

3.2 VALUATION Risk MoDEL Now consider an example where we remove cash flow risk
(o, = 0; 1y = pg) and also assume the time preference shocksiate (p, = 0). Under these
assumptions, the assets are identicalssg, xy1, 70, 7y1) = (Kdo, Kd1, Mo, Na1) = (Ko, K1, Mo, 1)

Current Specification We first solve the model with the current preferences, so DS given
by (1) with w = 0. In this case, the average risk-free rate and average qureityium are given by

E[if] = —log B+ py /v + (0 — 1)rinio’ /2, (22)
Elep] = (1 = 0)xinio?. (23)

It is also straightforward to show the log-price-dividematio is given byz, = 7y + a; (i.e., the
loading on the preference shoek, is 1). Therefore, when the agent becomes more patienéand
rises, the price-dividend ratio rises one-for-one on inbjpad returns to the stationary equilibrium
in the next period. Since, is independent of the IES, there is no endogenous mechahé&rre-
vents the asymptote thfrom influencing the risk-free rate or equity premium. It&sg to see from
(16) that0 < x; < 1. Thereforef dominates the average risk-free rate and average equity pre



mium when the IES is nedr. The following result describes the comparative statidb e IES:

As ) approachesdl from abovep tends to—oco. As a result, the average
risk-free rate tends te-oo while the average equity premium tendsttoo.

This key finding illustrates why valuation risk seems likelsan attractive feature for resolving
the risk-free rate and equity premium puzzles. As the IE€4dn1 from abovef becomes in-
creasingly negative, which dominates other determindittsecrisk-free rate and equity premium.
In particular, with an IES slightly above the asymptote i causes the average risk-free rate to
become arbitrarily small, while making the average equignmum arbitrarily large. Bizarrely, an
IES marginally belowl (a popular value in the macro literature), generates thesipppredic-
tions. As the IES approaches infinity— 1 tends toy. Therefore, even when the IES is far above
1, the last term inZ2) and @3) is scaled byy and can still have a meaningful effect on asset prices.

An IES equal tol is a key value in the asset pricing literature. For examples the basis
of the “risk-sensitive” preferences in Hansen and Sarg20®§, section 14.3). Therefore, itis a
desirable property for small perturbations around an IEStofnot materially alter the predictions
of the model. A well-known example of where this propertydsak the standard Epstein-Zin asset
pricing model without valuation risk. Even though the loD¥Sas written in 2) is undefined when
the IES equalg, both the risk-free rate and the equity premiumaf)(and 1) are well-defined.

Revised Specification Next we solve the model with the revised preferences, sofHeiSgiven
by (1) with w = . In this case, the average risk-free rate and average atgkitgremium become

Eli] = —log B+ /¢ + (0 — V)win; — 06%)03/2, (24)
Elep] = (1 — 0)kym + 05)kimo,. (25)

Relative to the current specification, the preference shaading,n;, is unchanged. However,
both asset prices include a new term that captures the éiifect of valuation risk on current util-
ity, so a rise i, that makes the agent more patient raises the value of fututaity equivalent
consumption and lowers the value of present consumptioa.algmptote occurs with the current
specification because it does not account for the effectloftian risk on current consumption.

With the revised preferences, =  wheny = 1, so the terms involving cancel out and the
asymptote disappeatsValuation risk lowers the average risk-free rateA¥y2/2 and raises the
average equity return by the same amount. Therefore, thragvequity premium equal¥o?,
which is invariant to the level of RA. Whenh > 1, k; > 3, SO an increase in RA lowers the risk-
free rate and raises the equity return.;As» oo, the equity premium with the revised specification

SNoticex; is a function of the steady-state price-dividend ratip,When the IES id, z; = 3/(1 — 3), which is
equivalent to its value absent any risk. Therefore, wherHSeis 1, valuation risk has no effect on the price-dividend
ratio. This result points to a connection with income andssitition effects, which usually cancel when the IES.is
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relative to the current specification equaks/5(1—+)/(vx1). This means the disparity between the
predictions of the two models grows as RA increases. As aetpresice, the revised preferences
would require much larger RA to generate the same equity ipraras the current preferences.

Expected utility With CRRA preferences)(= 1/v), the specifications in3) and @) reduce to

Uf = E Z;io(l — B)( g:1 atc—'i-i—l)ﬁjctl—:;y (1 =7),
U = E, Zyo'io(l - 5a£+j)< -1 aﬁ‘ri—l)ﬁjctl;} (=)

There is no longer an asymptote with the current prefereoeesusé = 1 with CRRA utility. The
current and revised specifications also generate identigallse responses to a time preference
shock since); = 1. However, the two specifications still have different agsating implications.
Under the current specification, valuation risk has no eféecthe risk-free rate and there is no
equity premium. With the revised specification, the presesfovaluation risk lowers the average
risk-free rate by3?s2 /2 and the average equity premium equéds?, just like when the IES equals
unity with Epstein-Zin preferences. Therefore, the twoestpd utility specifications are not in-
terchangeable, but the quantitative differences are mifssgnt. We can also conclude that the
asymptote and stark differences in asset prices betwedwthEpstein-Zin preference specifica-
tions come through the continuation vallig,,, in the SDF, which drops out with expected utility.

C (py = 0.0015) - -~ - C (uy =0) —e—R (py; =0.0015) - - - - R (g, =0)
Risk-Free Rate (E[r¢]) . Equity Premium (E[ep]) lPrice—Dividend Loading (x1)
Curr;/;t:r;fzrences)
05l | \\Q\H 0.999
0.998

0.03— — —=
ﬁ 0.997
0.025
0.5 0.996
0 0.1 0.2 030405
1 0.995

05 1 15 2 25 3 05 1 15 2 25 3 05 1 15 2 25 3
IES () IES (1) IES (¢)

Figure 2: Equilibrium outcomes in the model without cash flisk (0, = 0; p, = pq) andi.i.d. preference shocks
(pa = 0) under the current (C) and revised (R) preference spedditatWe sett = 0.9975, v = 10, ando, = 0.005.

3.3 ILLUSTRATION Our analytical results show the way a time preference shotek®Epstein-
Zin utility determines whether the asymptot&ishows up in equilibrium outcomeBigure 2illus-
trates our results by plotting the average risk-free rateaterage equity premium, ard(i.e., the
marginal response of the price-dividend ratio on the eqeityrn). We focus on the setting s®c-
tion 3.2and plot the results under both preferences with and witeodowment/dividend growth.
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With the current preferences, the average risk-free raleasarage equity premium exhibit a
vertical asymptote when the IESlisregardless of whethet, is positive. As a result, the risk-free
rate approaches positive infinity as the IES approathesm below and negative infinity as the
IES approachesfrom above. The equity premium has the same comparativessteith the oppo-
site sign, except there is a horizontal asymptote as the pa®aches infinity. These results occur
because the current specification misses the direct effeatwation risk on current consumptién.

In contrast, with the revised preferences the averagemskrate and average equity premium
are continuous in the IES, regardless of the valug,0fWheny, = 0, the endowment stream is
constant. This means the agent is indifferent about thegraf when the preference uncertainty is
resolved, so botk; and the average equity premium are independent of the IESnWh> 0, the
agent’s incentive to smooth consumption interacts witheatiainty about how (s)he will value the
higher future endowment streamihen the IES is large, the agent has a stronger preference for
an early resolution of uncertainty, so the equity premiwesias a result of the valuation risk (see
thefigure 2inset). Therefore, the qualitative relationship betwdenlES and the equity premium
has different signs under the current and revised speatfitatHowever, the increase in the equity
premium is quantitatively small and converges to a levehificantly below the value with the
current preferences. It is this difference in the sign andgmtade of the relationship between the
IES and the equity premium that will explain many of the engpirresults in subsequent sections.

4 DATA AND ESTIMATION METHODS

We construct our data using the procedure in Bansal and Y&©@0d4), Beeler and Campbell
(2012), Bansal et al. (2016), and Schorfheide et al. (20I8g moments are based on five time
series from 1929 to 2017: real per capita consumption experd on nondurables and services,
the real equity return, real dividends, the real risk-frate rand the price-dividend ratio. Nominal
equity returns are calculated with the CRSP value-weigrgdn on stocks. We obtain data with
and without dividends to back out a time series for nominabdinds. Both series are converted to
real series using the consumer price index (CPI). The ndmisiafree rate is based on the CRSP
yield-to-maturity ord0-day Treasury bills. We first convert the nominal series teed series using
the CPI. Then we construct ax-antereal rate by regressing tlex-postreal rate on the nominal
rate and inflation over the last year. The consumption dadansial. To match this frequency, the
monthly asset pricing data are converted to annual timesesing the last month of each year.
Using the annual time series, our target mome\ﬁ%,, are estimated with a two-step General-
ized Method of Moments (GMM) estimator, whefe= 87 is the sample siz&.Given the GMM

5pohl et al. (2018) find the errors from a Campbell-Shillerragpmation of the nonlinear model can significantly
affect equilibrium outcome®ppendix Cshows the undesirable asymptote also occurs in the fulljimear model.

“Andreasen and Jgrgensen (2019) show how to decouple thesaiaing attitude from the RA and IES values.

8n total, there ar&9 periods in our sample, but we lose one period for growth raesone for serial correlations.
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estimates, the model is estimated with Simulated Method ofignts (SMM). For parameteri-
zation# and shocks’, we solve the model and simulatefit = 1,000 times forT" periods. The
model-implied analogues of the target moments are the madienents across the simulations,
@%T(G, £). The parameter estimates are obtained by minimizing the following loss function:

J(60,€) = [WF — UH7(6, ) [E2(L + 1/R) U7 — UH7(6,€)),

whereX? is the diagonal of the GMM estimate of the variance-covamematrix? We use Monte
Carlo methods to calculate the standard errors on the pseaestimates. For different sequences
of shocks, we re-estimate the structural maigl= 500 times and report the mean afid 95) per-
centiles.Appendix DandAppendix Eprovide more details about our data and estimation method.
The baseline model target§ moments: the means and standard deviations of consumption
growth, dividend growth, equity returns, the risk-freeetatnd the price-dividend ratio, the correla-
tion between dividend growth and consumption growth, the@arrelations of the price-dividend
ratio and risk-free rate, and the cross-correlations o$uorption growth, dividend growth, and eq-
uity returns. These targets are common in the literaturdtamdame as Albuquerque et al. (2016),
except we excludé- and10-year correlations between equity returns and cash-flowtr.oWe
omit the long-run correlations to allow a longer sample thaludes the Great Depression period.
Many elements of our estimation procedure are common in $Betgricing literature. In
particular, we use a limited information approach to maicipieical targets. We use SMM to ac-
count for short-sample bias that can occur because assitgponodels often have very persistent
processes. To improve on the current methodology, we reépeatstimation procedure for many
different shock sequences. The estimations are run inlpboal a supercomputer. The literature
typically estimates the model once based on a particularesesg of shocks and then uses the Delta
method to compute standard errors. While our approach hagh mgher computational burden,
it makes our estimates independent of the seed and genarategrecise standard errdfsThe
estimates allow us to numerically approximate the samplisgibution of our model’s parameters
and test whether our parameter estimates are significaffdyaht across models. We also obtain
a distribution ofJ values, which determine whether a model provides a significaprovementin
fit over another model, and the corresponding p-values fraeataf over-identifying restrictions.

9For the revised preferences, we impose the restrictienp(4(1 — 3)1/02/(1 — p2)) < 1 when estimating the
model parameters. This ensures the time-aggregator veaaghipositive ir99.997% of the simulated observations.

O\We estimate9 variants of our model. Since each variantis estimatgdimes, there aré4,500 total estimations.
The estimations are run in Fortran and the time per estimagioges from -24 hours depending on model complexity.

UThe test statistic is given by* = J(é, &%), where€® denotes a matrix of shocks given ssedf(é, &) converges
to ax? distribution with N,,, — N,, degrees of freedom, wherg,, is the number of empirical targets ang, is the
number of estimated parameters. The model passes the tiestlifss,/*, is less than the desired significance level
of the x? distribution, or, in other words, if the corresponding pguesis greater than the desired value. We report the
mean and5, 95) percentiles of the p-values across the seeds to determighnera model reliably passes the test.
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5 ESTIMATED BASELINE MODEL

This section takes the baseline model from section 2 and amsphe estimates from the current
and revised preference specifications. We fix the IES.GFpwhich is near the upper end of the
plausible range of values in the literatdfeThis restriction helps us compare the estimates from
the two preference specifications because the model fit, asured by the/ value, is insensitive
to the value of the IES in the revised specification, but theonstrained global minimum prefers
an implausibly high IES. For example, thievalue is only one decimal point lower with an IES
equal tol0. Therefore, we are left with estimating nine parametersatcinl 5 empirical targets.
Table 1shows the parameter estimates and moments. For each peraneteport the average
and(5,95) percentiles acrosg)0 estimations of the model. For each moment, we report the mean
and t-statistic for the null hypothesis that a model-imgphhi@oment equals its empirical counterpart.
In both specifications, the data prefers a very persisténatian risk process with, > 0.98.12
In the current specification, the risk aversion parameters 1.55. In the revised specification
v = 74.23, which is well outside what is considered acceptable in gsetpricing literaturé’
Both specifications generate a sizable equity premium @himates are about lower than the
empirical equity premium) and a near zero risk-free ratewvéier, they significantly under-predict
the standard deviation of dividend growth and over-prettlietautocorrelation of the risk-free rate.
Using the analytical expressions for the average risk+faézand equity premium (seB.(5)
and B.16) in Appendix B), it is possible to break down the fraction of each momentarpd
by cash-flow and valuation risk. With the current specification valuation risk expla®ts9%
and99.2% of the risk-free rate and the equity premium, whereas withrdvised preferences it
explains only63.1% and79.0%. Since the estimate of the cash-flow shock standard dewitio
unchanged, cash-flow risk has a bigger role in explainingethety premium due to higher RA.
The revised specification has a significantly poorer fit thendurrent specification/(= 48.0
vs. J = 29.3), although both specifications fail the over-identifyimgitrictions test. The poorer fit
is mostly due to the model significantly over-predictingvbéatility of the risk-free rate and under-
predicting the volatilities of the price-dividend ratiochaquity return. The intuition is as follows.

2Estimation results with) = 2 andty = 1.5 for each specification considered below are includeéigpendix F
13The estimate of the valuation risk shock standard deviatignis two orders of magnitude larger in the revised
specification than the current specification. Recall thatdduation risk term in the SDF is given By—wa.;. When
the valuation risk shock isi.d., the estimates of the shock standard deviation are veryasirhlowever, as the persis-
tence increases with the revised preferen8é,[a; — wdz1] shrinks, sar, rises to compensate for the extra term.
4Mehra and Prescott (1985, p. 154) state that “Any of the albited studies. . . constitute anpriori justification
for restricting the value of [RA] to be a maximum of ten, as vedrdthis study.” Weil (1989, p. 411) describes= 40
as “implausibly” high. Swanson (2012) shows thatoes not equate to risk aversion when agents have a laboimmarg
Therefore, only in production economies cahe reasonably aboué), where it is common to see values aroufd.
*The mean risk-free rate is given Wy[7;,] = a1 + az02 + aso? and the mean equity premium is given by
Elepi] = aso + aso, for some function of model parameters, i € {1,...,5}. Therefore, the contribution of
valuation risk to the risk-free rate and equity premium igegibyazo? /(a20? + aso?) andayo?/(aso? + aso?).
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Parameter Current Revised Revised Max RA
ol 1.55 74.23 10.00
(1.52, 1.58) (70.95, 77.47) (10.00, 10.00)
8 0.9977 0.9957 0.9973
(0.9976, 0.9978) (0.9956, 0.9957) (0.9972, 0.9973)
Pa 0.9968 0.9899 0.9879
(0.9965, 0.9971) (0.9896, 0.9902) (0.9876, 0.9882)
Oa 0.00031 0.03547 0.03880
(0.00030, 0.00033) (0.03491, 0.03596) (0.03832, 0.03927)
Ly 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017,0.0017)
d 0.0015 0.0021 0.0010
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)
Oy 0.0058 0.0058 0.0058
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060)
Yq 1.54 0.97 1.09
(1.43, 1.64) (0.87,1.07) (0.97,1.19)
Tdy 0.815 0.436 0.617
(0.764, 0.872) (0.400, 0.472) (0.562, 0.674)
J 29.27 47.98 55.55
(28.62, 29.98) (47.62, 48.35) (54.93, 56.11)
pval 0.000 0.000 0.000

(0.000, 0.000)

(0.000, 0.000)

(0.000, 0.000)

(a) Average and5, 95) percentiles of the parameter estimates. JHest hass degrees of freedom. The IESIs5.

Moment Data Current Revised Revised Max RA
E[Ac] 1.89 1.89 1.94 2.01
(0.00) (0.18) (0.49)
E[Ad] 1.47 1.84 2.47 1.17
(0.38) (1.04) (—0.32)
E[rq) 6.51 5.46 5.59 4.06
(—0.66) (—0.58) (—1.53)
Elry] 0.25 0.25 0.36 1.06
(0.00) (0.18) (1.32)
E[z4] 3.42 3.45 3.49 3.56
(0.18) (0.47) (1.02)
SD[Ad] 1.99 1.99 2.00 2.00
(0.00) (0.01) (0.02)
SD[Ad] 11.09 3.47 2.13 2.49
(—2.79) (—3.28) (—3.14)
SD[rd] 19.15 18.41 13.65 13.44
(—0.39) (—2.90) (—3.01)
SD[ry] 2.72 3.21 3.69 3.86
(0.96) (1.92) (2.25)
SD|z4] 0.45 0.46 0.25 0.23
(0.22) (—3.16) (—3.49)
AC([ry] 0.68 0.95 0.90 0.88
(4.12) (3.36) (3.14)
AC|24) 0.89 0.92 0.85 0.83
(0.64) (—0.85) (—1.30)
Corr[Ac, Ad) 0.54 0.47 0.41 0.50
(—0.32) (—0.59) (—0.19)
Corr[Ac, r4) 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)
Corr[Ad, rq) 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.38)

(b) Data and average model-implied moments. The t-stistie shown in parentheses.

Table 1: Baseline model. Revised Max RA imposes that theasigksion parametey, cannot exceetl0.
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In the revised specification, risk-free rate volatility edatively more sensitive to valuation risk
than equity return volatility. Since the volatility of equreturns is higher than the volatility of the
risk-free rate in the data, valuation risk alone does nawathe model to match these moments.
Dividend growth volatility, however, cannot rise to compate for the lack of the equity return
volatility because the target correlation between eq@tyms and dividend growth is near zero.
The revised preferences not only have a worse fit, but thewisksion parameter is implausibly
large. When we restriet to a maximum ofl 0—the upper end of the values used in the asset pricing
literature—the fit deteriorates further & 55.6 vs. 48.0). The primary source of the poorer fit is
the larger estimate of the risk-free ratel(s vs. 0.4%) and lower equity returnd(1% vs. 5.6%).
Overall, our results demonstrate that introducing vatmatisk to the baseline model in its
revised form does not resolve the equity premium and risk-fate puzzles. The rest of the paper
re-examines whether revised valuation risk has a significd@ in richer asset pricing models.

6 ESTIMATED LONG-RUN RISK MODEL

Long-run risk provides a well-known resolution to many ags&ing puzzles. This section intro-
duces this feature into our baseline model and re-examirgesiarginal contribution of valuation
risk with the revised preferences. To introduce long-rsk,nive modify ((7) and (L8) as follows:

Afpi1 = fiy + B¢ + 0y 41, Eyer1 ~ N(0, 1), (26)
Adyyy = g + daiiy + TayOyEytt1 + VaOyEarst, €dr+1 ~ N(0, 1), (27)
:i't-‘,-l = p:ci't + wxgygx,t—i—la Ext+1 ™ N(Oa 1)7 (28)

where the specification of the persistent componentfollows Bansal and Yaron (2004). We
apply the same estimation procedure as the baseline modelptethere are three additional pa-
rametersgp,, p., andqy,. We also match up to five additional moments: the autocdrogls of
consumption growth, dividend growth, and the equity reamd two predictability moments—the
correlations of consumption growth and the equity premitith the lagged price-dividend ratts.
Once again, we find the model prefers an extremely high IE8 th@ugh it does not signifi-
cantly lower the/ value. As a result, we continue to set the IEQ tband estimate the remaining
parameters. The parameter estimates are reportafllm2and the moments are showntable 3
The tables show the results for four variants of the same medéh and without targeting the
standard deviation and autocorrelation of the risk-frée aad with and without valuation risk.
We begin with the long-run risk model without valuation rigkd without the risk-free rate
moments (column 1). This is a typical model estimated in tieedture. The model fails to pass
the over-identifying restrictions test at th# level, signalling that the standard long-run risk model

18| ong-run risk adds one additional state variabilg,so we use Mathematica to solve for unknown coefficients.
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Omits SD[ry] & AC[r] All Moments
Parameter No VR Revised No VR Revised
ol 2.58 2.63 2.70 2.54
(2.31,2.84) (2.35,2.93) (2.41,2.96) (2.25,2.83)
8 0.9990 0.9980 0.9990 0.9989
(0.9989, 0.9991) (0.9979, 0.9982) (0.9988,0.9991) (0.9987, 0.9990)
Pa — 0.9802 - 0.9548
(0.9800, 0.9835) (0.9531, 0.9565)
o — 0.0476 - 0.0167
(0.0452, 0.0498) (0.0161, 0.0173)
Ly 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0015,0.0017) (0.0014, 0.0017)
d 0.0013 0.0013 0.0014 0.0013
(0.0009, 0.0016) (0.0009, 0.0016) (0.0012,0.0017) (0.0009, 0.0016)
oy 0.0041 0.0041 0.0049 0.0041
(0.0040, 0.0042) (0.0039, 0.0043) (0.0048, 0.0050) (0.0040, 0.0042)
Vg 3.25 2.78 3.05 3.17
(3.02, 3.47) (2.53,3.02) (2.83,3.25) (2.92,3.41)
Tdy 0.588 0.813 0.122 0.666
(0.322,0.868) (0.547,1.120) (—0.200, 0.418) (0.416,0.916)
bq 2.30 1.55 2.15 2.19
(2.07,2.51) (1.44,1.68) (1.94,2.34) (1.97,2.43)
Pz 0.9988 0.9994 0.9977 0.9990
(0.9983, 0.9992) (0.9992, 0.9995) (0.9969, 0.9985) (0.9985, 0.9994)
Yy 0.0260 0.0261 0.0314 0.0255
(0.0247,0.0274) (0.0248, 0.0274) (0.0292, 0.0335) (0.0242, 0.0269)
J 20.55 14.29 56.48 19.59
(19.80, 21.30) (13.86,14.72) (55.64, 57.39) (18.96, 20.27)
pval 0.009 0.027 0.000 0.012
(0.006,0.011) (0.023,0.031) (0.000, 0.000) (0.009, 0.015)
df 8 6 10 8

Table 2: Long-run risk model. Average affil 95) percentiles of the parameter estimates. The IESSis

is insufficient to adequately describe the behavior of gsseeés and cash flows. The parameter
estimates are similar to the estimates in the literaturgahticular, the data requires a small but
very persistent shock that generates risk in long-run daghgrowth (p, = .9988; v, = 0.0260).
The literature typically excludes the standard deviatioth autocorrelation of the risk-free rate
when estimating the long-run risk model because the mod=d dot generate sufficient volatility
(a standard deviation @f51 vs. 2.72 in the data) and over-predicts the autocorrelatidag vs.
0.68 in the data). Even when these two moments are targeted, asrshaolumn 3, long-run
cash-flow risk is unable to significantly improve on these ranta (the standard deviation rises to
0.68 and the autocorrelation falls th95). The standard long-run risk model also fairs poorly on
three additional moments: (1) the standard deviation dfidivd growth (too low), (2) the corre-
lation between dividend growth and the return on equity fiagh), and (3) the predictability of
consumption growth (too high). All of them are significardijferent from their empirical targets.
Adding valuation risk (columns 2 and 4) significantly impesvthe fit of the model. With the
restricted set of moments, thevalue declines fron20.6 to 14.3. More importantly, the p-value
from the over-identifying restrictions test rises fran®1 to 0.03, even though the valuation risk

15



OmitsSD[rs] & AC|ry] All Moments

Moment Data No VR Revised No VR Revised
E[A(] 1.89 1.89 1.89 1.89 1.89
(0.00) (0.03) (—0.01) (0.00)
E[Ad] 1.47 1.53 1.54 1.71 1.50
(0.06) (0.07) (0.25) (0.03)
E[rg) 6.51 6.33 6.44 5.82 6.43
(—0.11) (—0.05) (—0.43) (—0.05)
Elry] 0.25 0.26 0.26 0.26 0.25
(0.01) (0.01) (0.01) (0.00)
E[z4] 3.42 3.42 3.40 3.41 3.42
(0.00) (=0.18) (~0.07) (0.00)
SDI[A¢] 1.99 1.92 1.96 2.40 1.91
(—0.14) (—0.07) (0.84) (~0.16)
SDI]Ad) 11.09 5.59 4.64 6.38 5.42
(—2.01) (—2.36) (~1.72) (—2.07)
SDIrq] 19.15 18.15 19.75 18.92 18.21
(—0.53) (0.32) (=0.12) (—0.50)
SDIry¢] 2.72 0.51 5.48 0.68 2.82
(—4.36) (5.43) (—4.03) (0.19)
SDlz4] 0.45 0.53 0.46 0.51 0.52
(1.29) (0.10) (0.98) (1.14)
AC[AC] 0.53 0.43 0.46 0.48 0.43
(=1.07) (—0.74) (~0.59) (~1.07)
AC[Ad] 0.19 0.27 0.20 0.31 0.26
(0.76) (0.12) (1.16) (0.65)
AC[rg) -0.01 0.00 -0.05 0.00 -0.01
(0.17) (—0.44) (0.08) (0.02)
ACry] 0.68 0.96 0.84 0.95 0.69
(4.33) (2.47) (4.21) (0.14)
AC[z4) 0.89 0.94 0.90 0.93 0.94
(1.05) (0.29) (0.83) (1.00)
Corr[Ac, Ad) 0.54 0.48 0.51 0.44 0.49
(—0.28) (—0.14) (—0.46) (—0.23)
Corr[Ac, r4) 0.05 0.07 0.06 0.08 0.07
(0.32) (0.18) (0.50) (0.29)
Corr[Ad, rq) 0.07 0.24 0.19 0.28 0.23
(2.07) (1.44) (2.53) (1.96)
Corrlep, z4,-1] —0.16 —0.17 —0.13 —0.14 —0.17
(—0.04) (0.38) (0.25) (—0.01)
Corr[Ac, z4,-1] 0.19 0.66 0.59 0.69 0.65
(2.67) (2.30) (2.85) (2.64)

Table 3: Long-run risk model. Data and average model-indpti@ments. The t-statistic is in parentheses.

model contains two more parameters than the standard mbdeg(ees of freedom instead &)t

Unlike cash-flow risk, valuation risk directly affects theme-series properties of the risk-free
rate, which makes it important to target these moments irstienation. In column 2, the model
includes valuation risk but targets neither the standavehtien nor the autocorrelation of the risk-
free rate. As a result, the estimated model significantly-pvedicts both moments (the standard
deviation is5.48 vs. 2.72 in the data and the autocorrelation)is4 vs. 0.68 in the data). How-
ever, once these moments are targeted in the estimatiamgiool), the standard deviation of the
risk-free rate i2.82 and the autocorrelation of the risk-free rat@.i89, consistent with the data.

In both columns 2 and 4, the model closely matches the melifres rate and equity return.
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However, the contribution of valuation risk is quite ditéet across the different sets of moments.
Recall that in the baseline model, valuation risk explaisgable majority of the risk-free rate and
equity premium. In column 2, valuation risk has a smallerdtilitmeaningful contribution (48.2%
of the risk-free rate and 38.9% of the equity premium). Iruocmh 4, however, it explains very
little of these moments (8.8% and 5.1%) because the modelresgsmaller and less persistent
valuation risk shocks in order to match the dynamics of thle-fiee rate. These results show that
valuation risk does not unilaterally resolve the risk-frate and equity premium puzzles, but the
overall fit of the model indicates that it has a meaningfutriol matching asset pricing moments.
Despite the improvements in fit, the long-run risk model witliuation risk still performs
poorly on the three moments listed above. Furthermoregatigpecifications fail to pass the over-
identifying restrictions test at th&/ level. The next section tries to address these shortcomings

7 ESTIMATED EXTENDED LONG-RUN RISK MODEL

We consider two extensions to the long-run risk model. Fwst allow valuation risk shocks to
directly affect cash-flow growth, in addition to their effen asset prices through the SDF (hence-
forth, the “Demand” shock model). This feature is similaatdiscount factor shock in a production
economy model. For example, in the workhorse New Keynesi@hetpan increase in the discount
factor looks like a negative demand shock that lowers istaeges, inflation, and consumption.
Therefore, it provides another potential mechanism fanatbn risk to help fit the data, especially
the correlation moments. Following Albuquerque et al. @0tve modify 6) and @7) as follows:

A1 = ply + Tt + 0yEy i1 + TyaOaCatri, (29)

AOZHl = g + Pt + TdaOaa,t+1, (30)

wherer,, andr,, control the covariances between valuation risk shocks ashl-low growth.
Second, we add stochastic volatility to cash-flow risk feilog Bansal and Yaron (2004)
(henceforth, the “SV” model). SV introduces time-varyingcertainty. Bansal et al. (2016) show
SV leads to a significant improvement in fit. An important digesis therefore whether the pres-
ence of SV will affect the role of valuation risk. To introdu8V, we modify 26)-(28) as follows:

Afp1 = phy + Ty + 0y 4€y 141, (31)

Adt+1 = fd + Qals + TayOy i€y 141 + a0y Eait1, (32)
Tip1 = Palt + VaOytEa it (33)

U§7t+1 - UZ + pgy(U;t - 05) T VyCoy 41, (34)

wherep,, is the persistence of the SV process apds the standard deviation of the SV shock.
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Omits SD[rs] & AC[ry] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
ol 2.47 4.44 7.27 2.58 3.22 6.51
(2.29, 2.65) (4.08, 4.86) (4.02,11.81) (2.41, 2.74) (2.99, 3.42) (5.14, 8.05)
I} 0.9989 0.9989 0.9981 0.9982 0.9991 0.9980
(0.9987, 0.9990) (0.9989, 0.9990) (0.9974, 0.9987) (0.9981, 0.9983) (0.9990, 0.9991) (0.9977,0.9983)
Pa — 0.9873 0.9894 — 0.9594 0.9930
(0.9863, 0.9899) (0.9845, 0.9923) (0.9576, 0.9614) (0.9921, 0.9936)
Oa — 0.0375 0.0339 — 0.0185 0.0288
(0.0351, 0.0398) (0.0306, 0.0367) (0.0179, 0.0193) (0.0275, 0.0296)
fhy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0016) (0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016)
Lhd 0.0015 0.0015 0.0015 0.0013 0.0015 0.0015
(0.0014,0.0017) (0.0013, 0.0017) (0.0013, 0.0017) (0.0010, 0.0016) (0.0012, 0.0016) (0.0014, 0.0017)
oy 0.0026 0.0039 0.0014 0.0008 0.0041 0.0006
(0.0009, 0.0041) (0.0037, 0.0041) (0.0002, 0.0029) (0.0004, 0.0014) (0.0039, 0.0042) (0.0001, 0.0013)
oy 3.41 - - 2.99 - -
(3.09, 3.79) (2.79, 3.19)
Tdy 0.658 — — 0.771 — —
(0.280, 1.066) (0.503, 1.049)
bq 2.19 3.36 3.17 1.90 2.69 2.84
(1.97, 2.42) (3.14, 3.61) (2.66, 3.52) (1.81,2.00) (2.54, 2.85) (2.65, 2.99)
P 0.9973 0.9947 0.9949 0.9992 0.9975 0.9958
(0.9966, 0.9980) (0.9937, 0.9954) (0.9938, 0.9962) (0.9989, 0.9994) (0.9971, 0.9980) (0.9952, 0.9965)
(. 0.0308 0.0393 0.0382 0.0255 0.0306 0.0358
(0.0280, 0.0337) (0.0358, 0.0416) (0.0346, 0.0418) (0.0241, 0.0269) (0.0285, 0.0313) (0.0334, 0.0385)
Tya — —0.041 —0.044 — —0.055 —0.049
(—0.050, —0.031) (—0.059, —0.030) (—0.074, —0.038) (—0.064, —0.033)
Tda — —0.738 —0.817 — —1.036 —0.877
(~0.767, —0.713) (—0.874, —0.771) (—1.068, —1.003) (—0.905, —0.852)
P, 0.9971 — 0.7011 0.9630 — 0.7708
(0.9952, 0.9985) (0.1619, 0.9739) (0.9589, 0.9668) (0.5997, 0.8794)
Uy 3.0e—6 - 2.2e—5 1.2e-5 - 2.7e—5
(1.4e—6, 4.66—6) (7.1e—6, 3.6e—5) (1.1e—5, 1.4e—5) (2.0e—5, 3.56—b5)
J 15.48 9.47 8.71 18.09 13.52 9.25
(14.88, 16.05) (9.11, 9.85) (7.82,9.27) (17.38,18.81) (12.98, 14.04) (8.85,9.66)
pval 0.017 0.149 0.070 0.021 0.096 0.161
(0.014, 0.021) (0.131,0.168) (0.055, 0.098) (0.016, 0.026) (0.081,0.113) (0.140, 0.182)
df 6 6 4 8 8 6

Table 4: Extended long-run risk models. Average 8nd5) percentiles of the parameter estimates. The IES5is

Tables 4and5 present the estimates from three versions of the extenaegdrlon risk model:
(1) the SV model without valuation risk (columns 1 and 4),t{® demand shock model (columns
2 and 5), and (3) the combination of the demand shock and S\élmécblumns 3 and 6). In each
case, we report the results including and excluding thedst@hdeviation and autocorrelation of
the risk-free rate as targeted moments, but we focus on timeates from the full set of moments.

A key finding is that all three extensions improve on the psgalfrom the simpler long-run
risk models in the previous section. Adding SV to the modehuwiit valuation risk increases the
p-value from near zerddgble 2 column 3) t00.02 (table 4 column 4). The estimated SV process
is very persistentq,, = 0.9630) and the shock is statistically significant, consistenthwittie

T7Wwith the inclusion ofry, andmq,, T4y @andy, are redundant so we exclude them from the Demand specifisatio
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Omits SD[rs] & AC[ry] All Moments
Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[A(] 1.89 1.88 1.89 1.89 1.90 1.87 1.89
(—0.04) (0.00) (0.01) (0.05) (—0.08) (0.02)
E[Ad] 1.47 1.84 1.78 1.79 1.58 1.74 1.83
(0.38) (0.32) (0.33) (0.11) (0.28) (0.38)
E[rd] 6.51 6.11 5.61 5.67 6.68 5.81 5.78
(—0.25) (—0.56) (—0.53) (0.10) (—0.44) (—0.46)
E[ry] 0.25 0.23 0.26 0.26 0.13 0.36 0.19
(—0.04) (0.01) (0.00) (=0.21) (0.17) (=0.11)
E|zd] 3.42 3.41 3.39 3.39 3.41 3.40 3.39
(~0.12) (=0.22) (—0.24) (=0.07) (~0.16) (=0.21)
SDI[A¢] 1.99 1.91 1.98 1.99 2.01 1.98 2.09
(—0.16) (=0.03) (0.00) (0.03) (—0.04) (0.21)
SDI]Ad) 11.09 5.65 10.62 10.54 5.28 7.60 9.68
(~1.99) (=0.17) (—0.20) (=2.12) (—1.28) (—0.51)
SDIrq] 19.15 19.54 18.93 19.07 18.71 18.31 18.69
(0.21) (=0.11) (—0.04) (=0.23) (—0.44) (—0.24)
SD[rf] 2.72 1.00 3.37 3.25 2.54 2.97 2.69
(—3.39) (1.28) (1.05) (=0.36) (0.49) (~0.07)
SDlz4] 0.45 0.47 0.47 0.46 0.51 0.50 0.48
(0.36) (0.32) (0.21) (0.91) (0.81) (0.46)
ACIA(] 0.53 0.46 0.43 0.44 0.44 0.43 0.45
(~0.78) (—1.04) (—0.99) (=0.97) (=1.07) (~0.92)
ACIAd) 0.19 0.26 0.17 0.16 0.24 0.21 0.17
(0.64) (=0.22) (—0.35) (0.45) (0.20) (—0.24)
AC[rd] —0.01 —0.01 0.02 —0.02 —0.03 0.02 —0.03
(0.04) (0.32) (=0.07) (=0.26) (0.32) (—0.20)
AC[rf] 0.68 0.93 0.88 0.82 0.69 0.71 0.70
(3.93) (3.13) (2.13) (0.08) (0.49) (0.25)
AC[zd] 0.89 0.92 0.90 0.90 0.93 0.93 0.91
(0.53) (0.24) (0.15) (0.87) (0.81) (0.41)
Corr[Ac, Ad] 0.54 0.49 0.54 0.53 0.51 0.49 0.51
(—0.21) (0.02) (—0.05) (=0.13) (—0.24) (=0.11)
Corr[Ac, rd] 0.05 0.07 0.11 0.10 0.06 0.09 0.10
(0.30) (0.88) (0.81) (0.18) (0.59) (0.79)
Corr[Ad, rd] 0.07 0.22 0.03 0.04 0.21 0.13 0.06
(1.88) (—0.42) (—0.37) 1.72) (0.79) (—0.06)
Corr[ep, zd7_1] —0.16 —0.27 —0.10 —0.12 —0.23 —-0.14 —0.12
(~1.05) (0.72) (0.45) (=0.65) (0.26) (0.42)
Corr[Ac, zd7_1] 0.19 0.57 0.62 0.61 0.65 0.66 0.62
(2.19) (2.45) (2.39) (2.63) (2.66) (2.47)

Table 5: Extended long-run risk model. Data and average kingied moments. The t-statistic is in parentheses.

literature. The improved fit largely occurs because SV helpth the risk-free rate dynamics (the
standard deviation .54 vs. 2.72 in the data and the autocorrelatioig9 vs. 0.68 in the data)®
The Demand model increases the p-value fi@fi2 (table 2 column 4) t00.096 (table 4
column 5). Thus, the Demand model easily passes the owvetifilag restrictions test at th&%
level. Consistent with the predictions of a production exog model,r,, andr,, are negative in
the estimation. More specifically, a positive valuatiok sfiock, which makes households more

8The No VRSV model is the same model BKY estimate. In that paper, theanpasses the over-identifying
restrictions test at th8% level, while in our case it does not. The key difference is BidY do not target the
correlations between cash-flows and the equity return. Wireeexclude these moments, our p-value jump& t6.
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patient, reduces consumption and dividend growth. In activerse race between the SV model
and the Demand model, which have the same number of paraniteDemand model wins. The
superior fit of the Demand model comes from the fact that itdbehatches the high volatility of
dividend growth and the low correlation between dividenohgh and equity returns. The model
is better able to match these moments because the volafilityidend growth increases witty,
while partially offsetting the positive relationship beten valuation risk and the return on equity.
The Demand-SV model (column 6) raises the p-valuetda61, passing the over-identifying
restrictions test at th&0% level. This result reveals that the two extensions to thg-dam risk
model are complements, rather than substitutes, which isbvdousa priori because both features
help match risk-free rate dynamics. It also occurs evenghaloe two additional parameters in the
model reduce the degrees of freedom and the critical valuéémver-identifying restrictions test.
The model continues to fail on one key moment: the predilitalmf consumption growth
given the price dividend ratio (i.eorr[Ac, z4—1]) remains too high((.62 vs. 0.19 in the data).
The overall improvement in fit occurs because the Dem&W model does a much better job
matching dividend growth dynamics. Specifically, it betteatches the standard deviation of div-
idend growth 9.68 vs. 11.09 in the data) and the weak correlation between dividend drand
equity returns@.06 vs. 0.07 in the data). In this model, valuation risk has a bigger rb&ntin the
Demand modeld, = 0.993 vs. p, = 0.959; o, = 0.0288 vs. o, = 0.0185), while the SV process
is not as persistenpf, = 0.771 vs. p,, = 0.963) as in the No VR-SV model. Alsog, is signif-
icantly smaller, so the contribution of consumption growdtatility from pure endowment risk is
smaller when compared to the Demand model. The Demand masd@tduble matching dividend
growth dynamics while simultaneously matching risk-fragerdynamics. An expanded role of
valuation risk is crucial for matching dividend growth dymias. Without SV, this is not possible
because it would cause the model to miss on the risk-freelyat@mics. Introducing SV, however,
permits a lower,,, which helps offset the effect of valuation risk on the rfske rate dynamics.

8 CONCLUSION

The way valuation risk enters Epstein-Zin recursive wtifias important implications. Under the
current specification in the literature, an undesirablergggte in the parameter space permeates
equilibrium outcomes. The asymptote occurs as the IES appes unity, but it profoundly affects
asset prices even when the IES is well above one. As a consagjuiae asymptote perversely
allows valuation risk alone to explain the historically lowk-free rate and high equity premium.
Once we revise the preferences to remove the undesirabytgéste, valuation risk has a much
smaller role in resolving the equity premium and risk-freempuzzles. However, we find valuation
risk still plays an important role in matching the standagslidtion and autocorrelation of the risk-
free rate. Furthermore, allowing valuation risk to dirgaffect cash-flow growth, similar to a
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production economy model, adds a source of volatility tigatiicantly improves the empirical fit
and helps match the standard deviation of dividend growthitsrcorrelation with equity returns.
Despite the importance of valuation risk, our paper anditeeature is silent on its structural
foundations. As a consequence, there are several opemnaiesgestions. For example, what does
it mean for a representative agent to have a time-varying-pneference? Is there an economy with
multiple (heterogenous) agents that supports these prefes? Is there a decision-theoretic expla-
nation and is it possible to back out the dynamics of a tinngiag time-preference directly from
experiments or other data? We believe these questions poetent avenues for future research.
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A |ISOMORPHICREPRESENTATIONS OF THECURRENT SPECIFICATION

In the current literature, the preference shock typicaitg burrent utility. If, for simplicity, we
abstract from Epstein-Zin preferences, then the valuetimmand Euler equation are given by

Vi = aqu(cy) + BE[Viq], (A.1)
BE (a1 /an)u' (cir) /v (c)ry ] = 1. (A.2)

The shock followsAd, 1 = pAd; + 0,64, SO the change in; is known at timet. Alternatively, if
the preference shock hits future consumption, the valuetimmand Euler equation are given by

Vi = ulcr) + aBE[Viqa), (A.3)
arBEu (cr1) /0 (ce)ryesa] = 1. (A.4)

If the shock followsa; = pa,_1 + o.¢¢, the two specifications are isomorphic because setting
a; = a1 /oy in (A.4) yields (A.2). We use the second specification because it is easier toazemp
the current and revised preferences when the shock alwayssip in the Euler equation in levels.
B ANALYTICAL DERIVATIONS
Stochastic Discount Factor The value function for specificatione {C, R} is given by
Vi = max(u] yef ™ 4 wh (Bl (Vi) )Y 0
— (et + pyasie + parsae — (Pys + Ye)S1,0-1 — (Pax + di)S2,-1),

wherew({, = 1—, wf, = 1—a/*f, w§, = af B, andwy’, = a;*3. The optimality conditions imply

w (V) M = N, (B.1)
w (VOVO(EL(VE) DY E, [(Vil)‘ (Vi1 /051.6)] = Az (B.2)
wy (VI (B (VE) DY EL(VE ) 7 0V /Dsa,4)] = Aepas (B.3)
wheredVy /9s, ;1 = MN(py. + y:) anddVy /dsy, 1 = M(pas + d;) by the envelope theorem.
Updating the envelope conditions and combiniBdLj-(B.3) generatesd) and Q) in the main text.
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Following Epstein and Zin (1991), we posit the following imum state variable solution:

V9 =&1u810-1 + ouso—1 and ;= 348141 + EasS20-1- (B.4)

where( is a vector of unknown coefficients. The envelope conditmmabined with B.1) imply

€1 = wl (VY. (py s+ we), (B.5)
§or = w1 (V¢ )1/w e (payx + di). (B.6)

Multiplying the respective conditions by ;_;, ands,;_; and then adding yields
Vi =] (V)Y (D + w11 + (P + di)szin), (B.7)
which after plugging in the budget constrairi),(and imposing equilibrium can be written as
(V])(1 n/ w £Ct 1/w(ct + DyiSit + DarSat) = wl (Ct 1/w(ct + Dy.t)- (B.8)
Therefore, the optimal value function is given by
wh o e = w (B (V) ). (B-9)
Solving B.8) for V/ and @.9) for Et[(VtH)l‘V] and then plugging intad) and @) implies
miy = (27)" (copr fe) Vi, (B.10)

wherer] = wj,wl,,, /w],. Taking logs of B.10) yields (1), given the following definitions:

5+@,
— 3+ 6l + log(1 — fexpl(aliy)) - 1og<1 ~ Bexp(af)) ~ B+ (aff — Bakl,)/(1 - )

anda;, = a¢ = af/(1 — ) so the preference shocks in the current and revised modethractly
comparable. Itimmediately follows that = 3+a,—w/d,, asin @), wherew® = 0 andw? = 4.

Campbell-Shiller Approximation The return on the endowment is approximated by
Py i1 = 10g(Yrr1(Pye+1/Yer1) + Yer1) — log(ye(py.e/yt))
= log(exp(Zy41) +1) — 2y + AYppa

~ log(exp(2y) + 1) + exp(2)) (Zy,141 — 2y)/ (1 + exp(2y)) = 2y + Al

= Kyo + Ky1Zy41 — 2yt + A1

The derivation for the equity return, ., is analogous to the return on the endowment.
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Model Solution We use a guess and verify method. For the endowment claimbtaéno

0 = log(Et[exp(re+1 + Fy+1)])
= log(Et[exp(HB + Q(dt — wjdt+1) + 9(1 — 1/¢)A@t+1 + H(Hy() + Hyléy,t-i-l — éy,t))])

| 0B+ 0(a — wiarr1) + 0(1 — 1/9) (ny + oyeys1)
=log | E; |exp . .
+0ky0 + Ory1(nyo + My1Ges1) — O(ny0 + My16e)
93 +0(1 — 1/9)py + O(kyo + nyo(ky1 — 1))
=log | E; |exp +0(1 — wpg + Ny1 (Ky1pa — 1))y
+0(1 — 1/9)oyeyr1 + O(ky1ny1 — w/)0aeq 1
= 95 +0(1 = 1/9)y + 0(ky0 + nyo (K1 — 1)) + %(1 - 1/7/’)2‘75
+ G (a1 — )08 + 0(1 = W po + 11 (sy1p0 — 1)),

where the last equality follows from the log-normalityesfp (s, ;+1) andexp(e,,i+1)-
After equating coefficients, we obtain the following exctrsrestrictions:

B+ (1= 1/¢)py + (Kyo + myo(kyr — 1)) + g((l - 1/¢)2U§ + (Ky1my1 — w’)?0;) =0, (B.11)
1 - wjpa + 77y1(/‘fy1,0a - 1) =0. (Blz)

For the dividend claim, we obtain

0 = log(E: [exp(mt-i-l + Fat+1)])

_ 95 +0(ar — W) + (01 = 1/9) — DAGegr + Adyya
og Et exp A R k
— 1) (kyo + Kyt Zya1 — Zyt) + (Kao + Kar Zae+1 — 2d.t)
65+ (0(1 — 1/%) — Dty + ua
0—1 -1 -1
“log | B, |exp +(0 — 1) (kyo + myo(ky1 — 1)) + (Kao + Nao(ka1 — 1))

+(9(1 - ija) + (9 - 1)77311 (“ylpa - 1) + 77d1(’fdlpa - 1))&1%
(Tay — V)oyeytr1 + (0 — Dryimyr + kainar — 0w?)oacat+1 + Yaoyed i

+ (9 1-— 1/1/1 — 1)Ny + Ug + (9 — 1)(/£y0 + 77y0("<5y1 — 1)) + (Fado + ndo("idl — 1))
+ (0(1 - wjpa) + (0 — Dny1(ky1pa — 1) + Na1(Kdi1pa — 1))ay
+ %((Wdy v)? 0’ + ((0 — Dkyaing1 + ka1 — 0w’ )02 + ¢§0§)-

Once again, equating coefficients implies the followinglesion restrictions:

0 + (01 —1/v) — Dy + pa + (6 — 1)(Kyo + nyo(ky1 — 1)) + (Kao + Nao (ka1 — 1))
‘l'%((ﬂ'dy - 7)205 + ((0 = Dkyany + Kanar — 9wj)203 + ?/)305) =0, (B.13)
0(1 — wpa) + (0 = D)nyr(ky10a — 1) + Nar (Karpa — 1) = 0. (B.14)

EquationsB.11)-(B.14), along with (L5) and (6), form a system o equations and unknowns.
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Asset Prices Given the coefficients, we can solve for the risk free ratee Ebler equation implies

Fre = —log(Eilexp(m41)]) = —Efrvgq] — %Vart[mtﬂ],
since the risk-free rate is known at tineThe pricing kernel is given by
e = 08 + 0(a, — Wagr) — (0/0) A + (0 — 1)7ye41
= 93 +0(a — W ygr) — YAG1 + (0 — 1)(Kyo + Ky Zye01 — Zy,t)
= 96 — Yy + (9 - 1)(“@/0 + 77@/0("%1 - 1)) + (9(1 - wj) + (9 - l)nyl(ﬁylpa - 1))&t
+ (0 — Dryamy — O’ )Uaga t+1 — VOyEyt+1
= 0 — iy + (6 = 1)(ky0 + myo(ryn — 1)) + (1 =07 pa)s

+((0 1)f€y17}y1 — 0w’ )Uaga t+1) — YOyEy,t+1,
where the last line follows from imposing(12). Therefore, the risk-free rate is given by

Pre =ty — 08 — (0 — 1) (1550 + my0(riy1 — 1)) — (1 — w’py)éty

) —
=570y = 5((0 = Dkyang — 0w’)’oy.

Note that';, = log(E;[exp(7+)]). After plugging in 8.11), we obtain

Fre=y/ = B = (1= wpa)as + 5((0 = Drgungy = 0))og + 5((1/$ = 1)1 = 7) = 1%)ey.
Therefore, the unconditional expected risk-free ratevemgby

B[] = B + i,/ + 20 — D2y, — 6o + (1) = 7)(1 =) —7*)o%  (B.15)

We can also derive an expression for the equity premitifiep,. 1|, which given by

log(Erlexp(Fair1 — 714)]) = Eilfars1] — Fre + 3 Var[fapin] = — Covyig, Pa ],

where the last equality stems from the Euler equatE;hﬁHlefd,tH]Jr% Var M1 +7g441] = 0.
We already solved for the SDF, so the last step is to solvenetuity return, which given by

a1 = Kdo + ka1 Zder1 — Za + Adp
= Ko + Ka1 (Ndo + Nardes1) — (Mao + Narae) + Adp

= ftg + Ko + Nao (ka1 — 1) + Na1 (Ka1pa — 1)as + Ka1Md10a€at41 + TayOyEyt+1 + Va0yed t+1-

Therefore, the unconditional equity premium can be wrigéen

Elep| = vwdyai + (0w + (1 — ) ky1my1) K1 N o2 (B.16)
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B.1 SPECIAL CASE L (0, = ¥g = 0 & w4, = 1) Inthis case, there is no valuation risk & 0)
and cash flow risk is perfectly correlatefg, .1 = j, + oyey141; Adyr = pa + oy€y.141). Under
these assumptions, it is easy to see tBat%) and B.16) reduce to 20) and 1) in the main text.

B.2 SPECIAL CASE 2 (0, = 0, p, = 0, & p, = pg) In this case, there is no cash flow
risk (A1 = Adyyq = it,) and the time preference shocks ar@l. (G411 = 04€441). UN-
der these two assumptions, the return on the endowment arkend claims are identical, so
{Ky0s Byt Myo, M1 } = {Kao, Ka1, Mao, a1 } = {kKo, K1, M0, m }. Therefore, B.15) and B.16) reduce
to (22) and @3) for the current specification an@4) and @5) for the revised specification.

The exclusion restrictionB(12), impliesn; = 1 so B.11) simplifies to

0=/3+ (1 —1/¢)py + Ko +1m0(k1 — 1) + g(lil —wl)?o?. (B.17)

First, recall tha) < x; < 1. Therefore, the asymptote éthwill permeate the solution with the
current preferencesol = 0). However, with the revised preferences?(= ), we guess and
verify thatx; = 8 wheny = 1. In this case,B.17) reduces t@ + rq +no(f—1) = 0. Combining
with (15), this restriction implies thaf, = log 5—log(1—/5) andkg = —(1—75) log(1—3)—f log S.
Plugging the expressions fg§, ~o, andx; back into (L5) and B.17) verifies our guess fat; .

C NONLINEAR MODEL ASYMPTOTE

Assumingu,.1 = yiv1/y: = dis1/dy, the (nonlinear) Euler equation is given by
1/6

= (B = o Y + ) c.

Tt+1

Zt

wherex® = 0 andy® = 1. Notice the asymptote disappear$Sb(z;,;) — 0 asyy — 1. The

main text focuses on results from a Campbell and Shiller §1@@proximation of the model. In

this appendix, we demonstrate three noteworthy resultgyube model’s exact, nonlinear, form.
One, consider the case without valuation riskgse- 1 for all t. The Euler equation reduces to

2= B(E (i (14 2042) ). (C.2)

Wheny = 1, we guess and verify that = /(1 — (), so the price-dividend ratio is constant. This

is the well know result that when the IESlisthe income and substitution effects of a change in

endowment growth offset. Therefore, the price-divideritbrdoes not respond to cash flow risk.
Two, consider the case whepis stochastic under the revised preferenggs+£ 1) and either

1 = 1 (CRRA preferences) au; = 1 for all ¢ (no cash-flow growth). In both cases, we guess

and verify that:, = ,3/(1 — a,3). The price dividend ratio is time-varying but independei.o
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Therefore, an asymptote does not affect equilibrium outrithe agent is certainty-equivalent.
Three, consider what happens under the current preferéyices 0), which do not account for

the offsetting movements in—a, 3. To obtain a closed-form solution for any IES, we assyme

w and the preference shock evolves accordinpgol + a,11) = oe,11, Wheree,; is standard

normal. Under these assumptions, we guess and verify thatribe-dividend ratio is given by

2 = am = a, B exp(80?/2). (C.3)

In this casef) appears in the price-dividend ratio, so the asymptote t&feguilibrium outcomes.
These results prove that the asymptote is not due to a Cakpiiéer approximation of the model.

D DATA SOURCES

We drew from the following data sources to estimate our nmsdel

1. [RCONS] Per Capita Real PCE (excluding durables) Annual, chained 2012 dollars.
Source: Bureau of Economic Analysis, National Income amdi@ct Accounts, Table 7.1.

2. [RET D] Value-Weighted Return (including dividends). Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIREVD).

3. [RET X] Value-Weighted Return (excluding dividends) Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP IIRETX).

4. [CPI] Consumer Price Index for All Urban Consumers. Monthly, not seasonally ad-
justed, index 1982-1984=100. Source: Bureau of Labor$iedi(FRED ID: CPIAUCNS).

5. [RF R] Risk-free Rate: Monthly, annualized yield calculated from nominal priGource:
Wharton Research Data Services, CRSP Treasuries, Risiséees (CRSP ID: TMYTM).

We applied the following transformations to the above dataces:

1. Annual Per Capita Real Consumption Growth (annual frequeng):

2. Annual Real Dividend Growth (monthly frequency):

P1928M1 == 100, Pt = Pt—l(l + RETXt), Dt == (RETDt - RETXt)Pt_l,
dt = Z::t—llDi/CPItv AdAt = 100 IOg(dt/dt_lg)

3. Annual Real Equity Return (monthly frequency):
™ =log(CPI,/CPI,_,), #4;=1003_, | (log(1+ RETD;)— ")
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4. Annual Real Risk-free Rate (monthly frequency)

Tfrt = RFRt — 10g(CP]t+3/CPIt), ’ﬂ'g = lOg(CPIt/CP]t_lz)/4,
Pra = 400(Bo + SLRE R, + Bor),

Wherij are the OLS estimates in a regression oféRgostreal rate; fr, on the nominal
rate, RF'R, and lagged inflationy?. The fitted values are estimates of theantereal rate.

5. Price-Dividend Ratio (monthly frequency):
Zas =log(P/Y i, 1, Ds)
We use December of each year to convert each of the monthéydéries to an annual frequency.

E ESTIMATION METHOD

The estimation procedure has two stages. The first stageage moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with avgand West (1987) weighting
matrix with 10 lags. The second stage is a Simulated Method of Moments (SpMdbedure that
searches for a parameter vector that minimizes the distagtveeen the GMM estimates in the
data and short-sample predictions of the model, weightetidgiagonal of the GMM estimate of
the variance-covariance matrix. The second stage is regpéat many different draws of shocks
to obtain a sampling distribution for each parameter. Thieiong steps outline the algorithm:

1. Use GMM to estimate the momenis, and the diagonal of the covariance mat#iy,.

2. Use SMM to estimate the structural asset pricing modelea random seed, draw a
T-period sequence of shocks for each shock in the model. Béhetshock matri€;. (e.g.,
in the baseline model;. = [} , 5, €5 /). Fors € {1,..., N}, run the following steps:

(a) Specify a guess,, for the N, estimated parameters and the parameter variance-
covariance matrixp, which is initialized as a diagonal matrix.
(b) Use simulated annealing to minimize the loss function.
i. Fori e {0,..., N,}, repeat the following steps:

A. Draw a candidate vector of parametes™?, where

0y fori =0,

N(‘gi—l; Cozp) fori > 0.

éicand -~
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We setc to target an acceptance rate30f%. For the revised preferences, we

restrict6e"¢ so thatS exp(4(1 — 8)+/02/(1 — p2)) < 1. This ensures the

utility function weights are positive i69.997% of the simulated observations.
B. Solve the Campbell-Shiller approximation of the modebgniéf“"d.

C. Given&i(r), simulate the monthly modek times forT" periods. We draw
initial states,ig, from N(0,02/(1 — p?)). For each repetition, calculate the
momentsIM (Geend g5 (r)), the same way they are calculated in the data.

D. Calculate the median moments across khsimulations, W}/ p(0md g5 =
median{ W (§eend g5 (r))}E_, and evaluate the loss function:

Jpemt = g — W05, E2) [E2 (1 + 1/R)] T IR — Uil (67, €3)].
E. Accept or reject the candidate draw according to

(fgemd, gty if i = 0,
(6, J5) = (feand goeendy if min(1, exp(J2, — 5" /ey) > @
(B;—1, J5,) otherwise
wherec; is the temperature andis a draw from a uniform distribution. The
lower the temperature, the more likely it is that the candiadtaw is rejected.

ii. Find the parameter dradf, that corresponds tmin{.J} ", and updaté&s,.

A. Discard the first\V,;/2 draws. Stack the remaining draws inNg/2 x N,
matrix, ©¢, and defined® = ©° — 1y, 2.1 Y 1oy, 2 05/ (Na/2).
B. Calculatex$™ = (©°)0°/(Ny/2).

(c) Repeat the previous stéfx,,, times, initializing at drawd, = H;m and covariance

matrix Xp = X3*. Gradually decrease the temperature. Of all the draws, fiad t
lowestN; J values, denoted.J: }j ., and the corresponding draw@:;/ .}V’

guess yuessJS j=1"
(d) Forj € {1,..., N;}, minimize the same loss function with MATLABfsri nsear ch
starting aﬂguess The resulting minimum i8*7, with a loss function value of */ . Re-

peat, each time updating the guess, ufm —J%/ < 0.001. The parameter estimates

min

reported in the tables in the main paper, dendtedorrespond tonin{.J*/ }] 1

min

3. The set of SMM parameter estlma{@g} ', approximate the joint sampling distribution of
the parameters. We report its meérs ., 6/N,, and(5, 95) percentiles.

For all model specifications, the results in the main paperased onV, = 500, R = 1,000,
Ny = 20,000, Nsarar = 5, andN; = 50. N,, ¢y, and the temperatures,, are model-specific.
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F ESTIMATION ROBUSTNESS

Baseline Model:y = 2.0

Parameter Current Revised Revised Max RA
~y 1.46 75.79 10.00
(1.44,1.48) (72.61, 79.16) (10.00, 10.00)
B8 0.9978 0.9957 0.9974
(0.9977, 0.9980) (0.9956, 0.9958) (0.9974, 0.9975)
Pa 0.9968 0.9899 0.9877
(0.9965,0.9971) (0.9896, 0.9902) (0.9874, 0.9880)
Oa 0.00031 0.03554 0.03907
(0.00030, 0.00033) (0.03504, 0.03605) (0.03864,0.03955)
Ly 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017,0.0017)
1hd 0.0015 0.0020 0.0010
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)
oy 0.0058 0.0058 0.0058
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060)
g 1.54 0.97 1.07
(1.43,1.63) (0.88,1.07) (0.96,1.18)
Ty 0.816 0.438 0.606
(0.765, 0.870) (0.405, 0.475) (0.550, 0.668)
J 29.27 48.09 56.08
(28.62, 29.98) (47.73,48.47) (55.47, 56.67)
pval 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

(a) Average andb, 95) percentiles of the parameter estimates. JHest hass degrees of freedom. The IES39.

Moment Data Current Revised Revised Max RA
E[A(] 1.89 1.89 1.94 2.00
(0.00) (0.19) (0.45)
E[Ad] 1.47 1.84 2.45 1.15
(0.38) (1.02) (=0.34)
E[r4] 6.51 5.46 5.57 4.03
(—0.66) (—0.59) (—1.55)
Elr¢] 0.25 0.25 0.37 1.07
(0.00) (0.19) (1.34)
E[z4] 3.42 3.45 3.49 3.56
(0.18) (0.48) (1.02)
SD[Ac] 1.99 1.99 1.99 2.01
(0.00) (—0.01) (0.04)
SD[Ad] 11.09 3.47 2.12 247
(—2.79) (—3.28) (—3.15)
SDirq] 19.15 18.41 13.64 13.39
(—0.39) (—2.91) (—3.04)
SDIry¢] 2.72 3.21 3.70 3.87
(0.96) (1.92) (2.27)
SD|z4] 0.45 0.46 0.25 0.23
(0.22) (=3.17) (—3.52)
ACry] 0.68 0.95 0.90 0.88
(4.12) (3.35) (3.12)
ACz4] 0.89 0.92 0.85 0.83
(0.64) (—0.86) (—1.33)
Corr[Ac, Ad] 0.54 0.47 0.41 0.50
(—0.31) (—0.59) (=0.19)
Corr[Ac,rq] 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)
Corr[Ad, rq] 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.37)

(b) Data and average model-implied moments.

Table F.1: Baseline model.

32



Baseline Model:y = 1.5

Parameter Current Revised Revised Max RA
~y 1.31 78.83 10.00
(1.29,1.32) (75.37, 82.75) (10.00, 10.00)
B8 0.9981 0.9958 0.9977
(0.9980, 0.9982) (0.9957, 0.9958) (0.9976, 0.9977)
Pa 0.9968 0.9898 0.9875
(0.9965,0.9971) (0.9895,0.9901) (0.9871,0.9878)
Oa 0.00031 0.03566 0.03946
(0.00030, 0.00033) (0.03515,0.03618) (0.03898, 0.04000)
[y 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0016,0.0017)
1hd 0.0015 0.0020 0.0009
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)
oy 0.0058 0.0057 0.0059
(0.0057, 0.0058) (0.0056, 0.0058) (0.0057, 0.0060)
g 1.54 0.98 1.05
(1.44,1.63) (0.88,1.09) (0.95,1.16)
Ty 0.816 0.443 0.600
(0.763,0.873) (0.409, 0.477) (0.548,0.662)
J 29.27 48.26 57.00
(28.62, 29.98) (47.90, 48.64) (56.39, 57.59)
pval 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

(a) Average and5, 95) percentiles of the parameter estimates. JHest hass degrees of freedom. The IESIs5.

Moment Data Current Revised Revised Max RA
E[A(] 1.89 1.89 1.94 1.99
(0.00) (0.21) (0.40)
E[Ad] 1.47 1.84 2.44 1.12
(0.38) (1.01) (—0.37)
E[rq] 6.51 5.46 5.55 4.00
(—0.66) (—0.60) (—1.57)
Elry¢] 0.25 0.25 0.38 1.09
(0.00) (0.20) (1.38)
E[z4] 3.42 3.45 3.49 3.56
(0.18) (0.49) (1.03)
SD[Ac] 1.99 1.99 1.97 2.02
(0.00) (—0.05) (0.06)
SDI]Ad] 11.09 3.47 2.12 2.44
(—2.79) (—3.28) (—3.16)
SDirq] 19.15 18.41 13.61 13.28
(—0.39) (—2.92) (—3.09)
SDiry] 2.72 3.21 3.70 3.88
(0.96) (1.93) (2.29)
SD[z4] 0.45 0.46 0.25 0.23
(0.22) (—=3.19) (—3.58)
ACry] 0.68 0.95 0.90 0.88
(4.12) (3.34) (3.09)
ACz4] 0.89 0.92 0.85 0.82
(0.64) (—0.87) (—1.39)
Corr[Ac, Ad] 0.54 0.47 0.41 0.50
(—0.31) (—0.59) (—0.18)
Corr[Ac,rq] 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)
Corr[Ad, ry] 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.37)

(b) Data and average model-implied moments.

Table F.2: Baseline model.
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Long-Run Risk Model: ) = 2.0

OmitsSD[rs] & AC[ry] All Moments
Parameter No VR Revised No VR Revised
ol 2.40 2.58 2.49 2.43
(2.18,2.62) (2.33,2.87) (2.20, 2.75) (2.19, 2.68)
Jé; 0.9992 0.9983 0.9992 0.9991
(0.9991, 0.9993) (0.9982,0.9984) (0.9990, 0.9993) (0.9990, 0.9992)
Pa — 0.9811 - 0.9537
(0.9793, 0.9829) (0.9519, 0.9555)
Oq — 0.0483 - 0.0165
(0.0460, 0.0507) (0.0159,0.0171)
Ly 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017)
1 0.0012 0.0013 0.0014 0.0012
(0.0009, 0.0015) (0.0009, 0.0016) (0.0011, 0.0017) (0.0009, 0.0015)
oy 0.0041 0.0040 0.0050 0.0041
(0.0040, 0.0043) (0.0038,0.0043) (0.0049, 0.0051) (0.0039, 0.0042)
Yy 3.26 2.89 3.01 3.25
(3.05, 3.47) (2.66,3.13) (2.81,3.18) (3.01, 3.49)
Tdy 0.593 0.782 0.132 0.640
(0.354, 0.834) (0.487,1.114) (—0.184,0.419) (0.392, 0.885)
b4 2.31 1.65 2.11 2.27
(2.13,2.51) (1.53,1.78) (1.88,2.30) (2.06, 2.50)
Pz 0.9990 0.9994 0.9981 0.9990
(0.9986, 0.9993) (0.9993, 0.9995) (0.9974,0.9988) (0.9986,0.9994)
Py 0.0255 0.0260 0.0306 0.0252
(0.0242, 0.0269) (0.0247,0.0273) (0.0287,0.0328) (0.0240, 0.0266)
J 20.91 14.36 54.54 19.91
(20.16, 21.71) (13.93, 14.78) (53.67, 55.47) (19.25, 20.63)
pval 0.007 0.026 0.000 0.011
(0.005, 0.010) (0.022, 0.030) (0.000, 0.000) (0.008, 0.014)
df 8 6 10 8
Table F.3: Long-run risk model. Average afid 95) percentiles of the parameter estimates. The IESJis
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OmitsSD[rf] & AC[ry] All Moments
Moment Data No VR Revised No VR Revised
E[Ad] 1.89 1.88 1.89 1.88 1.89
(—0.03) (0.02) (—0.02) (0.00)
E[Ad] 1.47 1.48 1.55 1.68 1.48
(0.01) (0.08) (0.21) (0.01)
Elrg] 6.51 6.47 6.46 5.93 6.49
(—0.02) (—0.04) (—0.37) (—0.01)
Elry] 0.25 0.30 0.26 0.28 0.26
(0.07) (0.01) (0.05) (0.01)
E[z4] 3.42 3.43 3.40 3.42 3.43
(0.03) (—=0.17) (—0.05) (0.02)
SDI[A¢] 1.99 1.92 1.94 2.45 1.89
(—0.14) (—0.10) (0.95) (—0.21)
SDI]Ad) 11.09 5.62 4.79 6.40 5.50
(—2.00) (—2.30) (=1.71) (—2.04)
SDIlrq] 19.15 18.03 19.79 18.74 18.16
(—0.59) (0.34) (—0.21) (—0.52)
SDIry] 2.72 0.64 5.56 0.87 2.83
(—4.11) (5.60) (—3.66) (0.21)
SD|z4] 0.45 0.53 0.46 0.52 0.52
(1.34) (0.08) (1.12) (1.17)
AC[AC] 0.53 0.43 0.46 0.48 0.43
(=1.07) (—0.75) (—0.55) (—1.09)
AC[Ad] 0.19 0.27 0.21 0.31 0.26
0.77) (0.20) (1.16) (0.69)
AC|ry] —0.01 0.01 —0.05 0.00 —0.01
(0.21) (—0.45) (0.12) (0.04)
ACry] 0.68 0.96 0.84 0.96 0.69
(4.34) (2.44) (4.25) (0.14)
AC[z4] 0.89 0.94 0.90 0.93 0.94
(1.09) (0.27) (0.91) (1.02)
Corr[Ac, Ad) 0.54 0.48 0.50 0.44 0.48
(—0.27) (—0.18) (—0.45) (—0.26)
Corr[Ac,rq) 0.05 0.07 0.06 0.08 0.07
(0.30) (0.21) (0.47) (0.29)
Corr[Ad, rq) 0.07 0.24 0.19 0.28 0.24
(2.09) (1.51) (2.54) (2.01)
Corrlep, zq,—1] —0.16 -0.17 -0.13 -0.15 -0.17
(—0.10) (0.37) (0.16) (—0.04)
Corr[Ac, zq 1] 0.19 0.66 0.60 0.69 0.65
(2.67) (2.31) (2.87) (2.64)

Table F.4: Long-run risk model. Data and average modeligdphoments.
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Long-Run Risk Model: v = 1.5

OmitsSD[rs] & AC[ry] All Moments
Parameter No VR Revised No VR Revised
ol 2.05 2.44 2.08 2.13
(1.92,2.18) (2.22,2.68) (1.86,2.31) (1.97,2.34)
Jé; 0.9995 0.9988 0.9995 0.9995
(0.9994, 0.9995) (0.9987,0.9990) (0.9994, 0.9995) (0.9994, 0.9995)
Pa — 0.9801 — 0.9514
(0.9781, 0.9820) (0.9490, 0.9538)
Oq — 0.0497 - 0.0160
(0.0472,0.0521) (0.0153,0.0168)
Ly 0.0015 0.0016 0.0015 0.0015
(0.0014,0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017)
1 0.0011 0.0013 0.0013 0.0012
(0.0008, 0.0015) (0.0009, 0.0017) (0.0010, 0.0017) (0.0008, 0.0015)
oy 0.0042 0.0040 0.0051 0.0041
(0.0040, 0.0044) (0.0037,0.0043) (0.0050, 0.0052) (0.0039, 0.0043)
g 3.22 3.10 2.94 3.29
(3.01, 3.44) (2.83,3.38) (2.78,3.11) (3.06, 3.53)
Tdy 0.552 0.740 0.191 0.611
(0.311,0.798) (0.414,1.066) (—0.091, 0.456) (0.372,0.895)
b4 2.29 1.84 2.02 2.33
(2.12, 2.44) (1.71,1.98) (1.85,2.21) (2.15,2.51)
Pz 0.9993 0.9995 0.9988 0.9993
(0.9991, 0.9995) (0.9993, 0.9995) (0.9983,0.9993) (0.9990, 0.9994)
Py 0.0250 0.0258 0.0290 0.0248
(0.0238,0.0263) (0.0246, 0.0270) (0.0275,0.0307) (0.0236, 0.0259)
J 21.89 14.61 52.00 20.68
(21.04, 22.74) (14.15,15.08) (51.02, 53.11) (19.95, 21.47)
pval 0.005 0.024 0.000 0.008
(0.004, 0.007) (0.020, 0.028) (0.000, 0.000) (0.006, 0.011)
df 8 6 10 8
Table F.5: Long-run risk model. Average afid 95) percentiles of the parameter estimates. The IES5is
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OmitsSD[rf] & AC[ry] All Moments
Moment Data No VR Revised No VR Revised
E[Ad] 1.89 1.85 1.89 1.86 1.86
(=0.16) (0.03) (=0.09) (=0.11)
E[Ad] 1.47 1.38 1.55 1.58 1.42
(=0.10) (0.07) (0.11) (—0.05)
Elrg] 6.51 6.85 6.47 6.34 6.77
(0.21) (—0.03) (=0.11) (0.16)
Elry] 0.25 0.53 0.27 0.40 0.43
(0.45) (0.02) (0.24) (0.29)
E[z4] 3.42 3.44 3.40 3.43 3.43
(0.09) (—0.16) (0.02) (0.08)
SDI[A¢] 1.99 1.98 1.90 2.51 1.90
(—0.03) (—0.18) (1.06) (—0.19)
SDI]Ad) 11.09 5.70 5.04 6.36 5.60
(—1.97) (—2.21) (=1.73) (—2.01)
SD[r4] 19.15 17.81 19.88 18.32 17.98
(=0.71) (0.39) (—0.44) (—0.61)
SD[ry] 2.72 0.88 5.75 1.18 2.86
(—3.63) (5.97) (—3.03) (0.27)
SD|z4] 0.45 0.54 0.46 0.54 0.53
(1.41) (0.08) (1.36) (1.23)
AC[Ad] 0.53 0.44 0.46 0.49 0.43
(—1.03) (—0.78) (—0.49) (—1.08)
AC[Ad] 0.19 0.28 0.23 0.31 0.27
(0.81) (0.33) (1.14) (0.75)
AC|ry] —0.01 0.02 —-0.05 0.01 0.00
(0.32) (—0.47) (0.23) (0.12)
ACry] 0.68 0.96 0.83 0.96 0.69
(4.37) (2.36) (4.33) (0.17)
AC|24) 0.89 0.94 0.90 0.94 0.94
(1.15) (0.26) (1.05) (1.07)
Corr[Ac, Ad) 0.54 0.48 0.49 0.45 0.48
(—0.29) (—0.22) (—0.40) (—0.27)
Corr[Ac, 4] 0.05 0.07 0.06 0.08 0.07
(0.26) (0.26) (0.40) (0.27)
Corr[Ad, rq)] 0.07 0.25 0.20 0.28 0.24
(2.14) (1.64) (2.51) (2.07)
Corrlep, zq,—1] —0.16 —0.18 -0.13 -0.17 -0.18
(—0.21) (0.37) (—0.05) (—0.12)
Corr[Ac, zq, 1] 0.19 0.66 0.60 0.70 0.66
(2.68) (2.32) (2.89) (2.65)

Table F.6: Long-run risk model. Data and average modeligdphoments.
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Extended Long-Run Risk Model: ¢y = 2.0

OmitsSD[rf] & AC[ry] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
ol 2.31 4.35 6.92 2.43 3.02 5.85
(2.15, 2.48) (3.66, 4.85) (3.58,11.51) (2.29, 2.56) (2.79, 3.27) (4.67,6.93)
I} 0.9990 0.9992 0.9984 0.9985 0.9992 0.9984
(0.9989, 0.9992) (0.9990, 0.9992) (0.9978, 0.9989) (0.9984, 0.9986) (0.9992, 0.9993) (0.9982, 0.9986)
Pa — 0.9813 0.9877 — 0.9586 0.9925
(0.8971,0.9892) (0.9825,0.9918) (0.9565, 0.9606) (0.9908, 0.9934)
Oa — 0.0393 0.0351 — 0.0184 0.0285
(0.0365,0.0479) (0.0314, 0.0383) (0.0176,0.0191) (0.0268, 0.0297)
Iy 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016
(0.0015, 0.0016) (0.0015,0.0016) (0.0015, 0.0016) (0.0014, 0.0018) (0.0015, 0.0016) (0.0015, 0.0016)
d 0.0015 0.0015 0.0015 0.0013 0.0014 0.0015
(0.0014, 0.0017) (0.0013,0.0017) (0.0013, 0.0017) (0.0009, 0.0016) (0.0012, 0.0016) (0.0013,0.0017)
Oy 0.0021 0.0039 0.0014 0.0007 0.0041 0.0006
(0.0007, 0.0037) (0.0037, 0.0041) (0.0002, 0.0031) (0.0003, 0.0014) (0.0040, 0.0043) (0.0001, 0.0014)
g 3.39 — — 3.00 — —
(3.06,3.73) (2.81,3.21)
Tay 0.654 - - 0.754 - -
(0.299, 0.990) (0.482,1.038)
b4 2.20 3.41 3.20 1.93 2.68 2.76
(1.98, 2.42) (2.98,3.71) (2.59, 3.62) (1.84,2.03) (2.51, 2.87) (2.60, 2.89)
Pz 0.9978 0.9949 0.9951 0.9993 0.9978 0.9965
(0.9971, 0.9984) (0.9938, 0.9963) (0.9938, 0.9965) (0.9991, 0.9995) (0.9973, 0.9983) (0.9958, 0.9971)
Py 0.0292 0.0378 0.0375 0.0253 0.0290 0.0342
(0.0268, 0.0319) (0.0341,0.0411) (0.0336, 0.0422) (0.0241, 0.0266) (0.0276, 0.0305) (0.0319, 0.0367)
Tya — —0.039 —0.042 — —0.053 —0.051
(=0.049, —0.030)  (—0.057, —0.027) (=0.072, —0.035)  (—0.067, —0.034)
Tda — —0.712 —0.792 — —1.044 —0.866
(=0.750, —0.552)  (—0.848, —0.745) (=1.078,—1.008)  (—0.897, —0.836)
Po, 0.9964 — 0.7231 0.9608 — 0.7758
' (0.9938, 0.9982) (0.1739, 0.9787) (0.9559, 0.9651) (0.6417, 0.8724)
Vy 3.6e—6 — 2.1e—5 1.3e—5 — 2.7e—5
(2.1e—6, 5.1e—6) (7.0e—6,3.6e—5)  (1.2e—5, 1.5e—5) (2.1e—5, 3.5¢—5)
J 15.76 9.59 8.79 18.44 13.99 9.77
(15.11, 16.44) (9.20, 9.99) (7.98,9.39) (17.74,19.18) (13.40, 14.54) (9.32,10.22)
pval 0.015 0.143 0.068 0.018 0.082 0.135
(0.012,0.019) (0.125,0.163) (0.052, 0.092) (0.014,0.023) (0.069, 0.099) (0.116,0.157)
df 6 6 4 8 8 6

Table F.7: Extended long-run risk models. Average @n@5) percentiles of the parameter estimates. The IES0is
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OmitsSD[rf] & AC[ry] All Moments
Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[A(] 1.89 1.88 1.89 1.89 1.91 1.85 1.89
(—0.04) (0.00) (0.01) (0.08) (—0.15) (0.03)
E[Ad] 1.47 1.81 1.78 1.79 1.53 1.73 1.84
(0.35) (0.32) (0.33) (0.06) (0.27) (0.38)
Elrg] 6.51 6.14 5.62 5.67 6.77 5.90 5.83
(—0.24) (—0.56) (—0.52) (0.16) (—0.38) (—0.43)
E[rf] 0.25 0.24 0.28 0.26 0.09 0.45 0.15
(—0.03) (0.04) (0.00) (=0.27) (0.33) (—0.18)
E[z4] 3.42 3.41 3.39 3.39 3.42 3.40 3.39
(=0.11) (=0.23) (=0.24) (=0.03) (=0.16) (=0.20)
SDI[A(] 1.99 1.91 1.98 1.99 2.03 1.98 2.12
(=0.17) (—0.03) (0.00) (0.09) (=0.03) (0.26)
SDI]Ad) 11.09 5.64 10.71 10.58 5.38 7.58 9.47
(—1.99) (=0.14) (=0.19) (=2.09) (—1.28) (=0.59)
SD[rq] 19.15 19.51 18.94 19.04 18.67 18.14 18.53
(0.19) (=0.11) (—0.06) (=0.25) (=0.53) (=0.33)
SD[ry] 2.72 1.07 3.98 3.42 2.47 2.99 2.66
(—3.25) (2.49) (1.39) (=0.50) (0.53) (=0.12)
SD|z4] 0.45 0.48 0.47 0.46 0.51 0.51 0.49
(0.40) (0.32) (0.22) (0.93) (0.91) (0.56)
ACIA(] 0.53 0.45 0.43 0.44 0.44 0.43 0.45
(—0.83) (—1.06) (=1.01) (=0.95) (—1.06) (=0.92)
ACIAd) 0.19 0.26 0.17 0.16 0.24 0.21 0.17
(0.65) (—0.20) (—0.33) (0.49) (0.20) (=0.21)
ACrg] —0.01 —0.01 0.02 —0.01 —0.03 0.02 —0.03
(0.02) (0.35) (—0.06) (—0.25) (0.36) (=0.20)
AC[rf] 0.68 0.93 0.85 0.83 0.69 0.71 0.70
(3.89) (2.68) (2.29) (0.07) (0.50) (0.35)
AC[zd] 0.89 0.92 0.90 0.90 0.93 0.93 0.91
(0.57) (0.26) (0.17) (0.89) (0.88) (0.51)
Corr[Ac, Ad] 0.54 0.49 0.54 0.53 0.51 0.48 0.52
(=0.22) (0.02) (—0.06) (=0.13) (=0.27) (=0.10)
Corr[Ac, rd] 0.05 0.07 0.11 0.10 0.06 0.09 0.10
(0.29) (0.88) (0.81) (0.20) (0.55) (0.76)
Corr[Ad, rd] 0.07 0.22 0.03 0.04 0.22 0.14 0.07
(1.87) (—0.43) (=0.37) (1.77) (0.80) (0.04)
Corr[ep, zd7_1] —0.16 —0.27 —0.10 —0.13 —0.23 —0.15 —0.13
(—1.06) (0.70) (0.41) (=0.67) (0.18) (0.33)
Corr[Ac, zd7_1] 0.19 0.58 0.62 0.61 0.65 0.66 0.63
(2.23) (2.46) (2.40) (2.64) (2.66) (2.52)

Table F.8: Extended long-run risk model. Data and averagiefimplied moments.
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Extended Long-Run Risk Model: ) = 1.5

OmitsSD[rf] & AC[ry] All Moments
Ptr No VR+SV Demand DemandSV No VR+SV Demand DemandSV
5 1.98 3.71 7.10 2.17 2.61 4.57
(1.80, 2.16) (3.09, 4.66) (3.67,11.70) (2.06, 2.28) (2.32, 2.96) (3.67, 5.54)
I} 0.9994 0.9993 0.9989 0.9990 0.9995 0.9991
(0.9992, 0.9995) (0.9990, 0.9995) (0.9983, 0.9994) (0.9990, 0.9991) (0.9995, 0.9995) (0.9989, 0.9992)
Pa — 0.9159 0.9792 — 0.9564 0.9898
(0.8586, 0.9874) (0.9217, 0.9904) (0.9536, 0.9592) (0.9860, 0.9929)
Oa — 0.0485 0.0378 — 0.0178 0.0260
(0.0394, 0.0566) (0.0338, 0.0439) (0.0168, 0.0188) (0.0231, 0.0287)
Iy 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016
(0.0015,0.0017) (0.0015,0.0016) (0.0015, 0.0016) (0.0014, 0.0018) (0.0014, 0.0016) (0.0015,0.0017)
d 0.0015 0.0015 0.0015 0.0012 0.0014 0.0015
(0.0012, 0.0016) (0.0013,0.0017) (0.0013, 0.0017) (0.0009, 0.0016) (0.0011, 0.0016) (0.0013,0.0017)
Oy 0.0012 0.0039 0.0012 0.0007 0.0041 0.0006
(0.0004, 0.0027) (0.0037, 0.0041) (0.0001, 0.0027) (0.0003, 0.0013) (0.0039, 0.0043) (0.0000, 0.0013)
Va 3.32 - - 3.07 - -
(3.02, 3.66) (2.88,3.27)
Tay 0.728 - - 0.692 - -
(0.371,1.079) (0.400, 0.970)
b4 2.14 3.17 3.31 2.02 2.65 2.62
(1.93, 2.35) (2.71, 3.82) (2.71, 3.75) (1.91,2.13) (2.42, 2.92) (2.44, 2.79)
Pz 0.9987 0.9962 0.9954 0.9994 0.9984 0.9978
(0.9981, 0.9992) (0.9943, 0.9976) (0.9940, 0.9971) (0.9993, 0.9995) (0.9978, 0.9989) (0.9972, 0.9983)
Py 0.0268 0.0345 0.0364 0.0253 0.0276 0.0305
(0.0248, 0.0288) (0.0310, 0.0392) (0.0318, 0.0406) (0.0242, 0.0265) (0.0262, 0.0291) (0.0283, 0.0326)
Tya — —0.033 —0.039 — —0.055 —0.053
(=0.042, —0.026)  (—0.052, —0.025) (=0.078, —0.035)  (=0.071, —0.033)
Tda — —0.578 —0.742 — —1.065 —0.891
(—0.718, —0.481)  (—0.800, —0.620) (=1.111,-1.024)  (—0.954, —0.833)
Po, 0.9949 — 0.6669 0.9545 — 0.7629
' (0.9900, 0.9973) (0.1155, 0.9654) (0.9489, 0.9601) (0.6252, 0.8652)
vy 4.5e—6 — 2.4e—5 1.4e—5 — 2.8e—5H
(3.2¢—6, 6.1e—6) (8.8¢—6,3.8¢—5)  (1.3¢—5, 1.6e—5) (2.2¢—5, 3.6e—5)
J 16.16 9.85 9.03 19.38 15.22 11.18
(15.52, 16.78) (9.54,10.12) (8.34, 9.55) (18.62, 20.24) (14.53, 15.84) (10.65,11.77)
pval 0.013 0.131 0.061 0.013 0.055 0.084
(0.010, 0.017) (0.120,0.146) (0.049, 0.080) (0.009,0.017) (0.045, 0.069) (0.067,0.100)
df 6 6 4 8 8 6

Table F.9: Extended long-run risk models. Average gn@5) percentiles of the parameter estimates. The IBES5is
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OmitsSD[rf] & AC[ry] All Moments
Moment Data NoVR-SV Demand DemandSV NoVR+SV Demand DemandSV
E[A(] 1.89 1.88 1.88 1.89 1.93 1.83 1.90
(—0.04) (—0.01) (0.01) (0.15) (—0.24) (0.06)
E[Ad] 1.47 1.73 1.77 1.79 1.46 1.68 1.78
(0.27) (0.31) (0.33) (—0.02) (0.22) (0.32)
Elrg] 6.51 6.33 5.65 5.67 6.83 6.15 6.00
(—0.11) (—0.54) (—0.52) (0.20) (—0.23) (—0.32)
E[rf] 0.25 0.25 0.30 0.25 0.01 0.66 0.09
(—0.01) (0.08) (0.00) (—0.40) (0.67) (=0.27)
E[z4] 3.42 3.41 3.39 3.39 3.43 3.40 3.40
(—0.08) (—0.26) (=0.24) (0.03) (=0.13) (=0.19)
SDI[A¢] 1.99 1.90 1.99 1.99 2.07 1.97 2.11
(—0.20) (=0.01) (=0.01) (0.16) (=0.04) (0.24)
SDI]Ad) 11.09 5.51 10.47 10.67 5.60 7.49 8.89
(—2.04) (=0.22) (=0.15) (=2.01) (—1.32) (=0.80)
SD[rq] 19.15 19.34 19.24 19.03 18.70 17.81 18.13
(0.10) (0.05) (—0.06) (=0.24) (=0.71) (=0.54)
SD[ry] 2.72 1.20 9.61 4.24 2.31 3.01 2.66
(—2.99) (13.58) (2.99) (=0.81) (0.57) (=0.12)
SD|zg) 0.45 0.48 0.46 0.46 0.51 0.52 0.50
(0.50) (0.18) (0.23) (0.97) (1.08) (0.84)
ACTA(] 0.53 0.45 0.43 0.43 0.45 0.43 0.44
(—0.88) (=1.07) (=1.04) (=0.91) (—1.06) (=0.95)
ACIAd) 0.19 0.25 0.16 0.16 0.26 0.21 0.17
(0.57) (=0.34) (=0.27) (0.61) (0.20) (=0.19)
ACrg] —0.01 —0.01 0.01 —0.01 —0.03 0.03 —0.02
(0.02) (0.21) (0.03) (=0.27) (0.43) (=0.15)
AC[rf] 0.68 0.93 0.56 0.81 0.69 0.71 0.71
(3.87) (—1.86) (2.04) (0.07) (0.51) (0.48)
AC[zd] 0.89 0.92 0.91 0.90 0.93 0.94 0.93
(0.66) (0.42) (0.21) (0.90) (1.00) (0.75)
Corr[Ac, Ad] 0.54 0.50 0.54 0.53 0.50 0.48 0.50
(=0.18) (=0.01) (=0.04) (=0.16) (=0.28) (=0.16)
CorT[Ac, rd] 0.05 0.06 0.10 0.11 0.06 0.08 0.09
(0.25) (0.70) (0.82) (0.23) (0.47) (0.59)
Corr[Ad, rd] 0.07 0.22 0.04 0.04 0.22 0.14 0.09
(1.81) (=0.37) (—0.38) (1.89) (0.83) (0.24)
Corr[ep, zd7_1] —0.16 —0.27 —0.11 —0.12 —0.23 —0.16 —0.16
(=1.09) (0.57) (0.42) (=0.67) (0.02) (0.09)
Corr[Ac, zd7_1] 0.19 0.59 0.64 0.62 0.66 0.66 0.65
(2.30) (2.56) (2.43) (2.66) (2.66) (2.59)

Table F.10: Long-run risk model. Data and average modeligdpnoments.
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