(&4 UNIVERSITY OF

& LIVERPOOL | Management

Working Paper in Economics

# 202117

The Robustness of the 2SLS Mean Squared
Error to Non-Normal Disturbances

Garry DA Phillips
Gareth Liu-Evans

https://www.liverpool.ac.uk/management/people/economics/
© authors



https://www.liverpool.ac.uk/management/people/economics/
https://www.liverpool.ac.uk/management/people/economics/

The Robustness of the 25LS Mean Squared Error
to Non-Normal disturbances

Garry DA Phillips & Gareth Liu-Evans
March 15, 2021

Abstract

In a seminal paper Nagar (1959) obtained first and second moment ap-
proximations for the k-class of estimators in a general static simultaneous
equation model under the assumption that the structural disturbances
were i.i.d. and Normally distributed. In this paper we show that the
second moment approximation for 25LS continues to be valid under sym-
metric, but not necessarily normal, disturbances with an arbtrary degree
of kurtosis but not when the disturbances are asymmetric. A modified
approximation for the second moment is then obtained which includes
the case of asymmetric disturbances. A series of Monte Carlo simula-
tions shows that the second moment can indeed vary considerably across
different structural error skewness scenarios.

1 Introduction

There has recently been a resurgence of interest in the properties of intrumental
varable estimators, particularly in the context of weak/many instruments, see
Davidson and Mackinnon (2006). Given the importance of moment approxima-
tions in analysing the small sample properties of estimators, it is not surprising
that such approximations continue to play an important part, see, for example,
Donald and Newey (2001) and Hahn, Hausman and Kuersteiner (2004).
Moment approximations in simultaneous equation models have a long his-
tory. In a seminal paper, Nagar (1959) derived approximations to the first and
second moments of the consistent k-class of estimators in a general simultane-
ous equation model with exogenous regressors and, in obtaining his results, it
was assumed that the structural disturbances were independently and normally
distributed. Later Mikhail (1972) extended Nagar’s bias approximation under
the same assumptions. Nagar’s work led to a great deal of research concerned
with the small sample properties of simultaneous equation estimators; in partic-
ular, various writers examined conditions under which Nagar’s approximations
were valid, see Srinavasan (1970). The main result was given by Sargan (1974)
who showed that a necessary and sufficient condition was that the estimator



moments should exist. Much work has been done to explore the existence of es-
timator moments especially in simplified models. A paper which is of particular
relevance, given its generality, is Kinal (1980). His results show that in the gen-
eral model chosen by Nagar, the 2SLS estimator has moments up to the order
of overidentification. However, k-class estimators behave differently depending
on the value taken by k. When k£ > 1, which includes the LIM L estimator,
the estimators do not possess moments of any order while when k < 1 higher
moments exist and this does not depend on the order of overidentication.

In Phillips (2000) it was shown that the Nagar bias approximation for the
2SLS estimator is correct under much less restricted conditions than assumed
by Nagar. In particular, the result does not require the assumption of normal-
ity. In Phillips (2007) it was noted that for the bias approximation to hold a
sufficient condition is that the disturbances obey the classical Gauss-Markov as-
sumptions which includes, in particular, the class of conditionally heteroscedas-
tic disturbances such as ARCH/GARCH. However, in both papers the nor-
mality assumption was retained when the second moment approximation was
considered. Clearly the normality assumption is restrictive and it would be
most helpful if the second moment approximation could also be obtained under
weaker assumptions.

In this paper it is shown that the Nagar second moment approximation is
valid without the normality assumption but assuming that disturbances are
symmetrically distributed and are i.i.d. with a finite variance. When the dis-
turbances are asymmetric, however, the Nagar second moment approximation
needs to be extended and we give the corrected expression, mirroring the work
in Liu-Evans and Phillips (2018) for the higher-order 2SLS bias under asymme-
try. A modified approach is used when obtaining the asymptotic approximation,
and a large number of Monte Carlo experiments are used to illustrate the effect
of varying structural error asymmetry on the mean squared error of the 2SLS
estimator.

2 Asymptotic Approximations
Suppose that a random variable z; admits an asymptotic expansion of the form

Zr = aor + a1 + Q27 + asr + ... (1)

where agr is O,(1) while ajr is O,(T79/2) for j =1,2,...,as T — oo.
Suppose also that E(agr) = 0, for all T, while E(a;7) = a;p is O(T 3,
j=1,2,..., then the expected value of zr can be approximated as

r41

E(zr) = Z@jT +o(T™ =), (2)

which is typically the way in which Nagar approximations are presented.
j+1
If E(T%aﬂ) =oj,j =1,2,..r, as T — oo, then we have an alternative
large-T approximation:



E(zr) = pon+ —pas + mog+ ot .

1 1
zzT%aj—i-o(T 7)) (3)
j=1

1
T2
moment conditions on the disturbances and for large T they are essentially
equivalent. Nagar approximations usually take the form in (2); however, in cases
where the o, j = 2,3, ..,7, take a simple form or when the a; are more easily

obtained than the a;r, the approximation in (3) may sometimes be preferred.

to r terms. Both forms of the approximation are valid to order under suitable

The restriction that E(a;r) = a;r is O(T%j) is explicitly made because it
is possible to find cases where it does not hold, in particular E(a;r ) may be
o(T~%), so that the equivalence of (2) and (3) will not follow. A situation of
this kind is discussed further later in the paper.

3 Model and Notation

We consider a simultaneous equation model containing G equations given by
BytJert = Ut, t= 1,2, ...... y (4)

in which y; is a G x 1 vector of endogenous variables, z; is a K x 1 vector of
strongly exogenous variables and u; is a G x 1 vector of independently distributed
structural disturbances with G x G positive definite covariance matrix 3. The
matrices of structural disturbances, B and I' are, respectively, G x G and G X
K. It is assumed that B is non-singular so that the reduced form equations
corresponding to (2) are:

Yt = —B_lfzt + B_lut
= HZt + V¢,
where II is a G x K matrix of reduced form coefficients and v; is a G x 1 vector

of reduced form disturbances with a G x G positive definite covariance matrix
Q. With T observations we may write the system as

YB' + ZI" = U. (5)

Here, Y is a T'x G matrix of observations on endogenous variables, Z is a T' x K
matrix of observations on the strongly exogenous variables and U is a T x G
matrix of structural disturbances all of which may be serially correlated. The
first equation of the system will be written as

y1 = Yo B+ Z1y +uq, (6)

where y; and Y5 are, respectively, a T x 1 vector and a T' x g matrix of observa-
tions on g + 1 endogenous variables, Z; is a T' x k matrix of observations on k



exogenous variables, 8 and -y are, respectively, g x 1 and k x 1 vectors of unknown
parameters and w1 is a T X 1 vector of independently distributed disturbances
with positive definite covariance matrix E(uju}) = X1; and finite moments up
to fourth order. The reduced form of the system includes Y; = ZII; + Vi in
which Y7 = (y1 : Y2), Z = (Z1 : Z3) is a T x K matrix of observations on
K exogenous variables with an associated K x (g + 1) matrix of reduced form
parameters given by II; = (7 : II3), while V; = (v : V2) is a T X (g+ 1) matrix
of reduced form disturbances. The transpose of each row of V; is independently
distributed with zero mean vector and (g+1)x(g+1) positive definite matrix
Q1 = (wi;) while the T'(g + 1) vector vecV; has a positive definite covariance
matrix of dimension T'(g + 1) x T'(g + 1) given by Cov(vecVy) = Qy¢¢ and has
finite moments up to fourth order. It is further assumed that:

(i) Equation (6) is over-identified so that K > ¢ + k, i.e. the number of
excluded variables exceeds the number required for the equation to be just
identified. In cases where second moments are analysed we shall assume that K
exceeds g + k by at least two. These over-identifying restrictions are sufficient
to ensure that the Nagar expansion is valid in the case considered by Nagar and
that the estimator moments exist: see Sargan (1974).

(ii) The T x K matrix Z is strongly exogenous and of rank K and there exists
a K x K positive definite matrix with limit matrix Yz, = limp_o T 12’ Z.
Following Anderson et al (1986, p7) it will also be assumed that T-1Z'Z =
Yigz + O(T_l).

3.1 Nagar Approximations to the first and second mo-

ments

In the Nagar approach to finding moment approximations for the 2SLS estima-
tor, the estimation error is often written as

NN -1 ~
b (Y ViV YiZ, Yo-Ta ),
A A z

where & is the 2SLS estimator of « = (8’,7")’. Nagar commences by putting

d—a=[Q '+ X'V.+ V!X +V/P.V.] " [X'uy + V! Pous]
— [T+ Q YX'V. + V!X + V/P.V.}] " Q[ X'uy + V! Poua],
where X = (ZIL, : Z,), Q = (X'X)"Y, P, = Z(2'Z)"'Z" and V. = (Vi : 0).
Putting A = X'V, 4+ V/X + V/P,V, and expanding the inverse [I + Q 'A}] ™"
in a Taylor expansion yields
G—a=[+QAY ' Q[X u1 + V/P.u]
=[I — QA + QAQA — +..]Q [X'uy + V! P,uy],



where terms can be arranged in decreasing order of stochastic magnitude. In
fact, if we write u; = V1o and V, = V1 H', where 8y = (-1,8') and H =

<8 ‘%’) isa (g+k) x (g+ 1) selection matrix, then the Nagar expansion may

be written in the form

& —a=QX'Vify+ QHVIP,V15y — QX'ViH'QX'V18y — QHV/P, V13,
— QHV{P.ViH'QHV1 3y — QHV{P,ViH'QX'V1 8y
— QX'ViH'QHV{P,Vi8o — QHV'XQHV' P, Vi B
+QX'HV/QXVIH'QX'V1 5o + QHV{P,ViH' QX V1
+ QX'ViHQHV{ P, V180 + QHV{ XQHV| P, Vi By + 0,(T~3). (7)

The Nagar bias approximation is found by summing the expectations of the
terms up to order T~! while the second moment approximation is found by
squaring the above and summing the expectations of terms up to O(72). We
shall later compare this expansion with an alternative representation presented
in Phillips (2000).

Notice that, if we require the Nagar expansion for a general element of the
vector &, say &;, i=1,..,g + k, then we may simply extract the required terms
by premultiplying the expansion for & — a by e}, where ¢; is a (g + k) x 1 unit
vector.

The Nagar approximations for the 25LS case are as follows:

(a) The bias of the 2SLS estimator for a in (6) is given by
BE(d—a)=[L—-1]Qq+o(T™").
(b) The second moment matrix of the 25LS estimator for « in (6) is given by
(B(q = a)(a - a)) = o?Q[I + A"+ o(T™?),
where L = K — g1 — k; is the order of overidentification and

A" = [-(2L = 3)tr(C1Q) + tr(C2Q) + {(—=L +2)* + 2)}C1Q + (- L +2)C2Q.

/ /
Also ¢ = # E(Vozul) = o2 {g], while C' = [(I/T)EO(VQVQ) 8 =C+Cy
/ !
01: |:J E’)T?T 8 ,CQZ 1/TEE)W W) 8 ,anszVQ—uﬂr’.

Finally, a higher order bias approximation for 25LS in the same framework
as Nagar was developed by Mikhail (1972). It is given by

E(&d—a)=(L—-1[I+tr(QC)I — (L —2)QC)Qq + o(1/T?).

The assumptions made by Mikhail in obtaining this result were the same as
those used by Nagar so that normality was assumed for the disturbances. We
shall examine this approximation later in the paper. It is of interest that the



bias approximation is zero when L = 1, i.e. when the parameters of the equation
are overidentified of order unity. The approximation may work well especially
when L is not large, see Hadri and Phillips (1999) and Iglesias and Phillips
(2008) for evidence of this.

4 Alternative Approximations to the First and
Second Moments

We consider the estimation of the equation given in (4) by the method of 25LS.
It is well known that the estimator can be written in the form

A~ A A A —1 A
o (B _ (227, m2'2 1,2’ Z#, ®
3 7270, 27 Z! 27

where TI, = (Z'Z)71Z'Yy and 71 = (Z'Z)~1Z'y;. This representation of 25LS
was considered in Harvey and Phillips (1980) and in Phillips (2000, 2007). It
is apparent that, conditional on the exogenous variables, the 25LS estimators
are functions of the matrix IT; = (#; : IIy); hence we may write & = f(vecll,).
As shown in Phillips (2000), the unknown parameter vector can be written as
o = f(veclly), so that the estimation error is f(veclly) — f(vecll;). A Tay-
lor expansion about the point vecll; may then be employed directly to find a
counterpart of the Nagar expansion. In fact, Phillips considered the general
element of the estimation error é; — o = €}(& — a)=f;(vecll;) — fi(veclly),
1=1,2, ... ,g + k, where €} is a 1x(g + k) unit vector, and the bias approxi-
mation for the general case was found using the expansion:

filvecdly) = f;(veelly) + (vee(Il; — Hl)’fi(l)

-l-%(vec(f[l — 1)) £ (vec(Il, —10}))

1 . .
42K w9t a L — ) (vee(T — 1)) £ (vee(TT; — T0))

3! s=1 i,rs
_3
+0,(T72),
where fi(l) is a K(g+1) vector of first-order partial derivatives, (%a% : fi(2) isa
1
(K(g4+1))x (K (g+1)) matrix of second-order partial derivatives,%,

and £ is a (K(g+1)) x (K(g+ 1)) matrix of third-order partial derivatives

i,rs

3 _ af? . . ..
defined as f; ' = ==“—, r =1,..,.K, s = 1,...,g + 1. All derivatives are

i,rs s
evaluated at vecIl;. The bias approximation to order 7! is then obtained by
taking expectations of the first two terms of the stochastic expansion to yield:

B(a — o) = gyt [(F2 (T 0 (2/2) 20041  2(2'2)™)] + o(T ™)



When the partial derivatives fi(z) are introduced and Q7°° is interpreted in
terms of the structural parameters, the bias approximation is readily found.
It is of interest to examine this bias approximation further. Note that the
approximation changes as the matrix 27°¢ changes. When Q{°¢ = Oy ® Ir,
which is the case where the rows of the matrix V; are serially uncorrelated and
homoscedastic, the approximation reduces to that given by Nagar. However, to
obtain his approximation Nagar assumed that the disturbances were normally
distributed while here we need only assume that the row vectors of V; obey the
Gauss Markov assumptions.

It is not immediately obvious that the above expansion is equivalent to
that used by Nagar. Examining the Nagar expansion in (7), however, we
note that the first term, which is OP(T*%), may be written as e;QX'V16y =
tr{BoeiQX'Vi} = tr{BoeiQX’' Z(Z' 2) Z'V1 } = {vec(Z' Z) 2 Z'V1) Yvec(Boe, QX' Z)
= (vec(Il; — 1) (Bo ® Z'XQe;) = (vec(Il; — Hl)’fi(l), where fi(l) = (fo®
Z'XQe;) is derived in Phillips (2000). This is just the first term in the above
expansion. By the same approach it may be shown that the O,(T~!) part of
the Nagar expansion, which is given by the second, third and fourth terms, is
equal to the second term in the above expansion, while the remaining terms of
the Nagar expansion will form the Op(T_Ts) part, which is equal to the third
term above. Expressions for fi(z) and fl(?;)s are given in Phillips (2000).

To find the second moment approximation we shall need the following result:

Lemma 1. Ifn is a random normal vector with mean zero and positive definite
covariance matriz ¥, i.e. n ~ N(0,U), and if A and B are any conformable
matrices, then

E(n'An)(n'Bn) = tr(AV)tr(BY) + tr(AVBWY) + tr(AVB'¥) 9)

A proof of this lemma appears, for example, in Magnus and Neudecker(1979)
and it is used to find the second moment approximation by deriving the expec-
tation of the square of the relevant terms in the following:

E{(vec(ﬂl — Hl)'f-(l) + %(vec(ﬂl — Hl)’f-(z)(vec(ﬂl —1I)

LK ) >
+3 > 2 (Frs = mrs) (vee(lly —1l) fi,rs (vec(Il; —1I))}

r=1s=1

Collecting terms up to order 72 we have:

E(6; — ;) = E{(vee(Il; — IT;) f{M)?

+ (ee(Ily — ) f M) (vee(Tly — T0,) £2) (vee(TT; — I1h))

+ %(“ec(ﬁl — 1) [ (vee(ly —11,))?

K g+1
+ 2 ee(lly — ) F0) S0 D (e — ) (vl T 2, (vee(iT, — T11)))
r=1s=1
+o(T72). (10)



The approximation is then found by taking expectations of the above terms.
Under normality assumptions the Lemma can be applied directly to show that
the approximation coincides with that of Nagar(1959). However, when normal-
ity is not assumed the required approximation has not been obtained. Here
we shall show that Nagar’s result holds without the assumption of normality
provided the disturbances are symmetric but when symmetry does not hold the
approximation must be modified. First we propose a further lemma which is an
extension of the earlier one.

Lemma 2. Suppose (r is a random vector of fixed dimension with mean zero
and positive definite covariance matriz Y, and let Ap and B any conformable
fixed matrices. Suppose also that, as T — oo, {r converges in distribution to
a vector ¢ where  ~ N(0,V¥) while Ar and Br respectively converge to limit
matrices A and B. Then, as T — oo,

E(Cp ApCr)(CrBrr) = tr(AD)tr(BY) + tr(AUBY) + tr(AVB'D) (11)

The result follows from Lemma 1 and the fact that QITATCT and C/TBTCT
converge respectively to C/AC and Q/B(: .

We shall use Lemma 2 in finding the approximation to the second moment
as T — oo. We first note that under the assumptions made, Tz vec(Il; — II;)
is asymptotically normal and converges in distribution to N(0,Q; ® ¥!) as
T — oo and for some of the analysis we shall use this result, We shall consider
the following expectations:

1. E(vec(Il; — 11,) fV)2 = E(vec(l; — 11,) £ (£ vee(IT; — 11;)
where £ = By ® Z'X(X'X)"Le; and vee(Il, — ) = (I @ (2'Z)~' Z")vecV;.
Noting that

vee(T; — L) £ (FY Y wee(Tly — ) = tr(f7 (FM )Y vee(Tl; — T Jvee(TT; — IT;))

we find

B(vee(Th — ) £V (V) vee(Ily —10y))

=tr[(BoBlo ® Z'X(X'X) e;ery(X'X) ' X' Z) (1 @ (2'2) 1))
= By Boeti(X' X)) e;

where E(vec(Il; — Iy )vec(Il; —I11)) = Q1 ® (Z'Z) 7! is used.
Hence, we may write that, as T'— oo,

E{(T?vec(Il; — TI,) f1)2 = BLQ1 Boe, S ke

K2

so that 1
E{(vec(1l; — Hl)'fi(l))z = Tﬂéﬂlﬂ()e;z;xlei

is the first term in the approximation.



2. E[(vec(Ty — T fM) (vee(Ty — ) £ (vee(Tl; — T1y))]
This can be evaluated by considering the following related expression:

E(T?vec(lly — L) ) (T3 vee(Tly — 1) £ (T3 vee(TT; — 10y)).

As T — oo, T2vec(Il; —II;) converges in distribution to a normally distributed

random vector (, fi(l) converges to fi(l) and fi(g) converges to fi(Z). Hence, as

T — o0, the above expectation reduces to
B RV =0

since each component of the vector is an expectation of a product of an odd
number of normal random variables. Thus we have shown that, as T — oo,

E(T?vec(lly — L) ) (T3 vee(Tly, — ) & (T3 vee(l; — 1)) =0 (12)
While this analysis is correct it can be shown that, when the disturbances are
asymmetric, E(vec(IT; — Hl)’fi(l))(vec(ﬁl - Hl)’fi@)(vec(ﬁl —1I)) is O(T7?)
and not O(T~%), so that the large-T approximation will be incorrect to order
T2 unless this is allowed for. This is an example of the phenomenon referred

to in Section 2.

Putting vec(Il; — ;) = (I ® (Z'Z)~*Z")vecV; we find in Note 1 that

El(vecV))(I® Z(Z'Z)™1)

x [ (veeV) (T 2(2'2) ) [ (1 @ (2'2)7 2') (vecWh)]
= 2el(X'X) " HDBo.tr{(P, — Px)F}
—2/(X' X)) X'FX(X'X)"'HDBy.  (13)

Here I is a T'x T diagonal matrix with component F} ; given by x;»qi, where ac; is
the j*" row of X for j = 1,2,..,T and ¢; =Qe; is the i*" column of Q = (X' X)~!
The (g + 1) x (g + 1) matrix D has general element D;; = —w1,;; + f1wz2.ij +
,62(4.}371‘]‘ + .. +6gwg+1,ij, with Ws,ij = E(Ustvitvjt) for S, Z,] = 17 e 7g—|— 1 being
a third moment of the reduced form disturbances. The expression in (14) is
O(T~2) since tr{(P, — Px)F} is O(T~!) while X’FX and D are O(1).

There is an alternative form for the matrix D which follows from noting that
the structural disturbance u1; may be written as: uis = —v1¢ + B1var + Bovss +
woe. + Bg41vge so that D;; = E(uq4vv5¢). This is given in Note 2. Finally we
find that, as T' — oo,

E[T?(vee(Il, — 1) f M) (vee(TTy — 1)’ £ (vee(TT; — I1,))]
=2e/X Y HD By {tr{(X 1Yok — S Sars)} — 205, 8 pe Xy P HDBo ),

where lim X'FX = Y,p,, imZ'FZ = ¥,p, and limTtr{(P, — Px)F} =
tr{(S Y. r. — 218, p,)}. Hence, as T — oo,

E[(vec(l; — I1,) fV) (wee(Tly — )’ £ (vec(IT, —11,))]

1
= ﬁ2{e;2;a}HD50~tT{(Ez_zlzze = Y Sera)} — €500 Yare Yoy HDBo}
(14)



which is the second term in the approximation.
3. E(vec(l; — ;) £ (vec(IT; — 11;))?

‘We commence from

E(T%vec(H —10) f( )(T”}@C(Hl 1))

This is B(¢'f?)? = (tr[f1” (1 @220 +20r [P (@ 22) [P (a0 22)]
as T' — oo using Lemma 12. It therefore follows that, as T — oo,

E(vec(Tl; — 1) £2 (vee(Il; — I1;))?

= AP @ @ S + 2 P o 2 IO o 2] (15)

which is the third term in the approximation.

[

K g+ .
4. E{(vec(H1 L) f; ) > (Trps — Tps) X (vec(H —15) fZ rs(vec(Hl —1II;)}

r=1s=

[

‘We commence from

E{(T?vec(l; — ;) fM)
K g+1 )
X ZZTf Trps — Trs) X Tf(vec(l_[ —1I) f(g) (T2vec(H1 1)}

r=1s=1

This is B(¢'f,") z z B¢ ) = z z E(¢' [V ECC 20 as T — oo,

r=1s=1 r=1s=1

where E,. is a K x (g, + 1) vector with unity in the r + (s — 1) K*" position and
zeros elsewhere so that ETS(T%vec(Hl —1I0;) = T%(frrs — 7ps). Lemma 2 can
now be applied to yield

E{(vec(1I; f(l) igi (ps — mrs) X (vee(Ily — II;)’ f( ) ) (vee(IT;, —T1p))}
L kaen
=i ;(tr[ffl)Em(Ql ® S (F7 (@ 521)]
+tr[ [V B (0 @ 20 I (0 @ 220)]
+tr[f1Y B @ 32 (FEL) (@ 320 (16)

as T — oo, which is the final term in the approximation. Gathering terms from
1-4 we have the following theorem:

10



Theorem 3. As T — oo,

1
E(OAQ — Ozi)Z = —ﬂ691ﬁoe’»2;;el

2{e S YHDBytr (218 r. — B Sure)] — € X e pa Xy
* 1}2 AP @ 22 + 20200 © 92 (0 0 3
11 L& £(1) -1
T2 3{2 z; t’l“ f E.s (Ql ® Ezz )]t’r[fz rs(Ql & Ezz )]
+ tr[f VB () @ 57 )ffil(swz 3]
bl FY B © SO (@ e S0 +olzg). ()

This approximation is of the type given in (3) and so will differ from Nagar’s
approximation, which was obtained under normality assumptions for the struc-
tural disturbances. Nagar’s approximation is obtained though if the matrix D
is set to zero (thus the disturbances become symmetric) and if ﬁ(l)is replaced
by f; )  f; F2) i replaced by f , ) i replaced by fl( while ¥} and X! are

7 ,TrSs

replaced by (TX X)~! and (TZ' Z)~Y respectively. Both are large T approx-
imations, valid to order %, and they are effectively equivalent. It follows that
the second moment approximation of Nagar is valid under less restrictive condi-
tions than those usually imposed, e.g. normality, though symmetry is required.
What is needed apart from symmetry, is a set of assumptions that ensure that,
as T — oo, T2 vec(H1 —1II) converges in distribution to a normally distributed
random vector, (. The standard condition for this, in terms of the specification
of the structural disturbances, is that they be i.i.d. with a finite variance. In
particular, no restrictions are placed on the higher moments of the disturbances,
though for the moment approximation to have a remainder term of the appro-
priate order we require that the fifth order moments of the disturbances exist,
see Phillips (2000). Thus while the structural disturbances are required to be
symmetric for the Nagar second moment approximation to hold, their moments
higher than the fifth may not even exist. This result is at variance with the
second moment approximation presented in Peixe et al (2006) who considered
the case of elliptically symmetric disturbances chosen because members of the
class may have fat tailed distributions. We find that it is asymmetry and not
kurtosis which changes the second moment approximation to order 772.

When the structural disturbances are specified to be i.i.d. with a finite vari-
ance, then 25LS has the same well defined asymptotic normal distribution and,
hence, the same asymptotic variance, regardless of the distribution of the errors.
What the above results indicate is that under symmetry the finite sample vari-
ance does not vary greatly with the distribution of the errors either. Of course,
the analysis is based upon asymptotic expansions which are less accurate the
smaller the sample size but in reasonably large samples, say T = 50, we can
expect the results to be valid. At the same time, we should be aware that the

rs?
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accuracy of the approximations will be influenced by the characteristics of the
underlying distributions to some degree. An interesting question concerns what
happens when the assumption of symmetry is dropped. Now that we have the
second moment approximation allowing for asymmetric disturbances we are in a
position to address this. There is some evidence to support the proposition that
the small sample variance of 2SLS is relatively robust to the distribution of the
errors including the case of non-symmetry. For example Raj (1980, p226), us-
ing Monte Carlo simulations, examined the performance of several econometric
estimators, including 25LS, in a simultaneous equation model with Uniform,
Normal and Logmormal errors, standardised to have mean zero and variance
unity. For all eight parameters estimated it was found that the variance of the
2S5 LS estimator was remarkably stable across the three distributions for a sam-
ple size of only 20. The results were obtained based on just 1000 replications
as was common at the time, so the degree of accuracy might not satisfy mod-
ern standards but, nevertheless, this evidence is of some value. Knight (1985)
examined the exact moments of 2SLS and OLS estimators of the endogenous
regressor parameter in an equation with two included endogenous variables, in
situations where the reduced form disturbances followed a non-normal distri-
bution of the Edgeworth type with specified skewness (A3) and kurtosis (A4).
Knight calculated the relative biases and mean squared errors over a range of
values for the skewness and kurtosis, although the necessary conditions for the
Edgeworth distribution to be a valid probability distribution imposed the re-
strictions —0.5 < A3 < 0.5 and 0.4 < Ay < 3.8. Hence extreme cases of skewness
were not covered by his study. Knight concluded that the effects of departures
from normality of the error distribution on both bias and MSE for both esti-
mators were very slight and became negligible as the non-centrality parameter
increased. Thus the 25LS and OLS estimators were shown to be robust to
non-normal error distributions characterised by the Edgeworth family. These
results suggest that the extra term in the second moment approximation, which
acounts for the asymmetry, has a relatively small effect. This can be checked
by direct calculation for a given structure.

In the next section, we consider a set of Monte Carlo experiments which will
provide further evidence. We consider the 2SLS estimator in the context of
symmetric model errors and model errors that are more asymmetric than the
values allowed by an Edgeworth distribution, thus checking the MSE robustness
conclusion of Knight (1985) for further departures from Normality. We employ
a very large number of replications, 15 million, and compare the Monte Carlo
simulated MSE against values from the new mean squared error approxima-
tion and the approximation obtained under a Normality assumption by Nagar
(1959). When the second moment approximation is calculated under asymmet-
ric disturbances, we simply add to the original Nagar approximation the extra
term:

2{el(X'X)"*HDBy.tr{(P, — Px)F} — /(X' X) "' X'FX(X'X) "' HDB}

which is derived on page 24.
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5 Numerical and simulation results

We use the same two-equation models as Liu-Evans and Phillips (2018), who
investigate the performance of a higher-order bias approximation in asymmetric
cases. We compare the improved MSE approximation with the original due to
Nagar and illustrate how skewness in the structural errors in each equation,
u1 and wuo, can have a substantial effect on the MSE of the 2SLS estimator.
Consider the simple model given by

Y1t = Bryas + u1
Yor = PBayre + Y 20+ uz (18)

fort =1,...,T, where z; = (1, 21, 22t) is a 3 X 1 vector of exogenous variables
so that the order of overidentification in the first equation is L = 2. The terms
z1¢ and zo¢, t = 1,..., T, are generated once from an AR(1) with zero mean
and autoregressive coefficient 0.9, and fixed across Monte Carlo replications.
To investigate the effects of skewness in u; and us, two parameterisations for
the structural model coefficients and covariance matrices are fixed, while the
skewness values are varied. We use the numerical approach in Phillips and Liu-
Evans (2018) to obtain structural disturbances that have the desired covariance
matrix and a relatively wide range of positive and negative skewness values.
The sample size is set at T = 50.
The structural disturbances are generated from

U= SQ/, (Uit = €2Q/€i) (19)

where € is a T x 2 matrix with row ¢}, = (g;,22:) where, for each i, g; is
i.i.d. standardised Beta, t = 1,...,T, with parameters (af, 3%), and where Q
is a factor in the Choleski decomposition ¥ = Q@’. It is possible to write
the skewness of u;; in terms of the skewness of the underlying e;; variables,
11 (B(a?, BY) = y1(a?, B%). Let vi denote the skewness of u;;, i = 1,2. Then,
as shown in Phillips and Liu-Evans (2018),

i _ Qtr(N;©1), tr(N};02))’

= 5 7/:1,2 20
Y1 t?”(N“)% (20)

1 31
where NZ] = Q/€i€9Q7 @1 E (’71(0107/8 ) 8) and @2 = (8 ’yl(ag 52)) . The

formulae for o111, o112 and o109 are similar. Structural disturbance vectors
uy and ug with the desired skewness values 7% are then obtained by choosing
the Beta distribution parameters o', 5%, a? and 32 appropriately by numerical
computation; this was done for each different pair of u; and us skewness values.
Results for the two coefficient and covariance matrix parameterisations follow,
based on 15m replications unless otherwise indicated.

Model A
Here 8, = 2.732654, Bo = —16.388196, 7 = (38.126172, 6.204823, 3.870217)’,
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and

5 38.106464 —11.779951 0 0.31560 0.068204
- \—11.779951  92.106520 )’ ~\0.068204  5.1107 )°

Table 1: (Beta) MSE vs approximation, Model A

Skewness values and third moments

")/11 ’)/% 0111 0112 0122 09222 approx. MSE MSE
-5 5 -1176.2 433.09 -49.951 4419.8 1.2078 1.1035
-3 3 -705.7 259.85  -29.970 2651.9 1.2135 1.1593
-101 -235.23  86.617  -9.9901 883.97 1.2191 1.2775
0 0 0 0 0 0 1.2228 1.3119
1 -1 23523 -86.617 9.9901 -883.97 1.2248 1.3269
3 -3 705.7 -259.85 29.970  -2651.9 1.2305 1.3680
) -5 1176.2  -433.09 49.951  -4419.8 1.2361 1.4085
Model B

Here 51 = —3.916203, 32 = 47.041079, v = (39.838039, —12.940695, —10.705920)’,
and

5 13.056401  7.482774 - 0.025934  —0.029021
-~ \ 7482774 60.983007 )’ ~ \—0.029021  0.86445

Table 2: (Beta) MSE! vs approximation, Model B

Skewness values and third moments

’}/11 ’}/12 0111 0112 0122 0922 approx. MSE MSE

-5 5 235.89  48.68 -152.08 -2381.1 3.1817 2.3493
33 141.53  29.208 -91.246 -1428.7 3.2123 2.6879
-101 47.178  9.736 -30.415 -476.23 3.243 3.2825
0 0 0 0 0 0 3.2583 3.6545
1 -1 -47.178  -9.736 30415  -476.23 3.2736 3.5327
3 -3 -141.53 -29.208 91.246  -1428.7 3.3012 3.5705
5 -5 -235.89 -48.68 152.08 -2381.1 3.3349 3.4756

The approximate MSE for Models A and B understates the true magnitude of
the changes in MSE, but seems to capture the direction with respect to changes
in w1 and us skewness. We confirm this below using a more extensive set of u;
and uy skewness pairs.

A summary comparison of the MSE

The MSE values corresponding to a grid of w; and ug skewness values are com-
pared below for Models A and B with the corresponding O(T~?2) approximate
MSE values. We choose 21 sets of (a1, 81) to achieve u; skewness values in the

IThese are based on 1m replications as the 15m run has not finished yet.
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set v ={-5,—-4.5,...,-0.5,0,0.5,...,4.5,5}, and do the same for the (a2, 32)
corresponding to us skewness values. The grid of skewness values for u; and us
is then a set S = v x 7, and we denote by M SFE (in italics) a vector of Monte
Carlo simulated ("true”) MSE values corresponding to members of S, and by

MAS/ESym and MSE,sym the vectors of corresponding approximate values un-
der symmetry and asymmetry assumptions, respectively. We then compare
how near M SEy,, and MSE,gym are to M SE in terms of Euclidean distance:

AMSE — ||MSE — MSEyn||, dMSE = || MSE — MSE44ym||- The terms dMSF

sym asym sym
and d%;ﬁ are summary performance measures for the approximations over
and uy skewness values in the interval [—5,5], based on a total of 212 = 441
pairs of skewness values.

Each of the 441 pairs (a1, 81) and (aq, B2) was chosen numerically for Models
A and B in the same way as earlier, so that the required structural disturbance
skewness values were obtained but without changing the structural disturbance
covariance matrices, it was also verified in each case that aq, 81, as and (2 were
all positive, and that the implied values for the skewnesses were numerically
correct to at least the 8th significant figure. The results are presented in Table
3 below.

Table 3: Distance between true and approximate MSE

dsym dasym

Model A 2.284503 2.139094
Model B 9.713572  8.695195

The results in Table 3 indicate that the new MSE approximation does better
in this overall sense for both Model A and Model B. Figure 1 below plots the
Monte Carlo simulated MSE and the MSE approximations for the 212 different
skewness pairs, for Models A and B. It is clear from these figures that the MSE
can change substantially when the skewnesses of the structural disturbances are
varied, and that the approximations capture part of this nonlinear effect.

15



Figure 1: Monte Carlo simulated MSE vs O(T~2) approximate MSE

MSE vs approx MSE MSE vs approx MSE

5.1 Conclusions

This paper has demonstrated that the well known second moment approxima-
tion of Nagar, obtained to order O(T~2) under a Normality assumption, con-
tinues to be valid under symmetric but not necessarily Normal disturbuances.
Moreover, the result of Nagar has been extended to the case of asymmetric
structural errors via an additional term that captures the effect of asymmetry.

Our results suggest that skewness in the error distribution has a greater
effect on the 2SLS mean squared error than previously thought, e.g. by Knight
(1985). This complements a similar finding in Liu-Evans and Phillips (2018)
for the higher-order 2SLS bias, where it is shown that skewness can have a
substantial effect despite being of order O(T~2). More generally, it appears that
asymmetry is a potentially important consideration when developing refined
asymptotic procedures such as those discussed in Phillips and Tzavalis (2007).
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Appendix

Note 1
In this note, which was referred to above in the main part of the Appendix, we
evaluate

E(vec(Tly — 1) fV) (wee(Tl; — ) £ (vee(Ty — 1Iy)), (21)
which may be written as

E[(vecVy) (I02Z(Z'Z) ) M (veeVi)Y I02(Z2' 2) ") fB (1e(2' 2) " Z') (vech)).
(22)
First we note that
(eeVi)' (I ® 2(2'2) ") ) = (veeVh) (Bo ® X Qe;)
= —v] XQe; + B1v5XQe; + ...... + Byvtg+1 X Qe;
since By = (—1,5")

where v;, the i*" column of V;, is T x 1 for i = 1,2,...,g + 1. Next we define

/ !/ ! !
V1] VIVy VIV .. U1Ug4g
/ !/ / !
V2V V2Vy V2U3 ’Ugvg+1
vecVy(vee(V1) = | wsv] U3Vy  U3V3 .. U3Vgiq |,
Vgp1V]  Vgi1) Vg1,
g+1V1 g+1V2  .eeen g+1Vg 11

which is a (T'x (g+ 1)) x (T x (g + 1)) matrix. It is our purpose to evaluate

E{vecVi(vecVy) (vecVh) (Bo @ X Qe;)}
= E{—v1XQe; + B1v5XQe; + ...... + Bgvtg+1 X Qei)vecVy (vecVy)' }.

The general "term” of E[—vecVy(vecVy) (vi X Qe;] is the T x T matrix

Vi1Vj1  ViVj2  Vi10U53... Vill5T
E(fvivg-viXQei) _ 7E{ Vi2Vj1  Vi2Vj2 Vi2Uj53...  Vi2U;T U’lXQei}
ViTVj1  UViTUj2  .eeeee ViTV5T
—Vi1V51 0 .0.... 0
—pf| et 0 O | vixqed (23)
0 . . —ViTV5T

since the off diagonal terms will involve products of three reduced form dis-
turbances that are not all of the same time period. On putting XQe; =
(21, ..., x7)'Qe;, where z; is the 4" row of X for j =1,2,..,T, it is seen that

01 XQe; = —v1171Qe; — v1275Qe; — ........ — virarQe;. (24)
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We may now write the required expectation in (6.22) as:

!

_Uil'Ujl'Ull-rlQei 0 .0.. 0
/
B 0 —Vi2Uj2U12T50e; 0
{ .0. 0 ..
/
0 . .0 7’UiT’UjT’UlTSCTQ61'
/
71 Qe;
/
_ r5Qe;

= —Wiij )

!

rpQe;

since E(v;v;1v1¢) = wiy; for t =1,2,...,T. In a similar way
) Qe;
/
xhQe;
E[p1v5X Qe;v;v}] = frwa,; 200¢: ,
x'TQei

and a similar result goes through for the remaining terms in E{—v|XQe; +
B1v X Qe; + ... + Bgvlg41 X Qe;)vecVy (vecV)'}. We have thus shown that the
T(g+ 1) x T(g + 1)matrix of interest, E{vecV(vecV1) (vecV1) (8o @ XQe;)},
has a general matrix term given by

z1Qe;
(—wiij + Prwsij + - + Bgwgr1,ij) Qe B ;
2 Qe;
and there are (g + 1)? such matrices.

Let D be the (g+1) x (g + 1) matrix where {D;;} = —w1;; + frwaij + ... +
Bgwg+1,ij- Then E{vecVy(vecVh) (vecVy) (Bo® X Qe;)} can be written as D® F

where
1‘/1 Qe;
/ .
F= Qe . (25)

rrQe;
We now have all the terms we need to evaluate the required term in the second
moment approximation which can be expressed as:

tr{lIl® 2(Z'2) "7l © (Z'2)"' Z'][D ® F]} (26)
To proceed we note that, by direct multiplication,

Iez2(22) PlUe 22712 =
H(X'X)eify@ (P, — P) — [HX(X'X) ' o X(X'X) te; o) T*
+ Boei(X'X) T H @ (P, — P,) — [Boey(X'X) ' X' @ X(X'X) 'H|I*
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and from this tr{[I©Z(Z'Z)~\|f® [I&(Z' Z)~' Z'||D® F]} has four components
given by
tr{{H'(X'X) ey @ (P, — P)][D @ F]
—tr{[H'X(X'X)" @ X(X'X) "e;8)]*[D & F]
+tr{[Boci(X'X) T H ® (P, — P,)][D © FI}
— tr{[Boel(X'X) ' X' @ X(X'X) ' H|I *[D ® F|}
= tr{H'(X'X)"te;yD}tr{(P. — P;)F}
—tr{DH"(X'X) ' X'FX(X'X) 'e; 55}
+ tr{Boe(X'X) " *HD}tr{(P, — P,)F}
—tr{DBoes(X'X) ' X'FX(X'X) ' H},

which simplifies to yield the result

E(vec(IT; — Hl)’fi(l))(vec(ﬁl - Hl)'fi@) (vee(Il; —114))
=2{e(X'X) ' HDBy}tr{(P, — P,)FfBy — ei(X'X) ' X'FX(X'X) "' HDpo},

which is O(T2).
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Note 2
Here an alternative form is presented for HDfy. This was mentioned in the
main part of the Appendix. The expected values in Tables 3 and 4 refer
to final form of HDpy presented in this note. We have seen that u;;y =
—v1p + Prvar + Bavze + ... + Bgp1vge, so that D;; = E(uqv;v:). The first
row of D is given by E(u1401¢V1t, U1£V16V2t, U1£U1V3t, -evee.- , U1£V1£Vg+1,¢). There-
fore the first component of E{Dfp} is E{(u1tv1¢)(v1, Vat, Ust, ene... Vg+1,6) B0},
where (v1¢, Vat, U3ty v ,Vg+1,¢) B0 = u1e. It follows that the first component of
the vector E{Dfy} is E{u},v1;}. By a similar argument we can state that the
rt" component is E{u?,v,+}, 7 = 1,2,.....,g + 1. Hence we have shown that
E{DBo} = E{u3,v}} where (v})’ is the first row of V;.

Noting that (v})’, the first row of V; is equal to (ut) B!, where (u}) is

g+1»
the first row of the matrix U and Bg_ﬁl is formed from the first g + 1 columns
of B71, it is clear that vj = (B;jl)’u’{.
Finally we have that E{Dgy} is given by
E{U%tvl} = E{(B;-h)/ulﬂft}
= E{(Bg 1) (uly, ufyuze, uyuse, . ufyuce)'} (27)

Hence it is required to find (B, },) E(u},, uf,uae, uf,us, .., uduc). In fact, we
. . 0 I
need H times this vector where H = [O 6’

(g+1).

}, which has dimension (g + k) x
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