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1 Introduction

Causal relations between economic and/or �nancial time series are typically examined using

the popular concept of Granger causality introduced by Wiener (1956) and Granger (1969).

While the concept is naturally de�ned in terms of conditional distribution [see Granger (1980)

and Granger and Newbold (1986)], early studies often focus on the conditional mean [see e.g.

Granger (1969)] or the conditional variance [see e.g. Granger et al. (1986) and Cheung and Ng

(1996)]. Causality in other aspects of the conditional distribution of the variables of interest (e.g.

high-order conditional moments, quantiles/expectiles) has been less studied in practice, despite

empirical evidence showing that for many economic and �nancial time series, e.g. returns

and output, conditional quantiles/expectiles are predictable, but not the conditional mean;

see Taylor, J. W. (2008), Lee and Yang (2012), Cenesizoglu and Timmermann (2008), and

Chuang (2009) among others. In this paper, we pay particular attention to the concept of

expectiles introduced by Newey and Powell (1987), which provides a more complete picture of

the conditional distribution of variable interest. In particular, we de�ne Granger non-causality

in expectiles and propose a parametric test for it. When all expectiles are considered jointly,

the proposed test is equivalent to testing Granger non-causality in distribution. Rather than

checking a necessary condition for Granger non-causality, our approach analyzes a continuous

space of conditional expectile functions that fully characterizes non-causality in distribution.

The theory of Wiener-Granger causality has generated a considerable literature; for reviews,

see Lütkepohl (2005), Boudjellaba, Dufour and Roy (1992, 1994), and Dufour and Taamouti

(2010) and the references therein. However, to the best of our knowledge, no test has been

proposed to test Granger non-causality in expectiles. Most of the existing tests focus on Granger

causality in mean, thus they cannot be used in the presence of causality in expectiles. Several

tests and measures have been proposed to detect Granger causality in distribution; see Su and

White (2007, 2008), Taamouti et al. (2014), Bouezmarni and Taamouti (2014), Bouezmarni et

al. (2012) and the references therein. However, these tests and measures are not informative

about the level(s) (mean, variance, other high-order moments, expectiles) of distribution where

the causality exists. To overcome this issue, Song and Taamouti (2020) consider measures of

Granger causality in quantiles; see also Troster (2018).

Another interesting way of looking at causality across di¤erent levels of conditional distri-
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bution, particularly the tails, is by using the concept of expectile. The latter dates back to

Newey and Powell (1987), but recently re-gained a lot interest in both theoretical and applied

work in econometrics and �nance, see Taylor (2008), Sobotka and Kneib (2012), Holzmann and

Klar (2016), Kratschmer and Zahle (2017), and Daouia et al. (2019) among others. Expectiles

have the advantage of capturing similar information as quantiles, but they also have the merit

of being much more straightforward to use than quantiles, since they are de�ne as least squares

analogue of quantiles. Studying Granger causality in expectiles is practically simpler and can

help us examine the causality in distribution. Roughly speaking, expectiles can be seen as a

mixture of mean and quantiles. On the one hand, they are determined by an asymmetrically

weighted deviations criterion, where the L1-norm of quantiles is replaced by the L2-norm of

expectation. On the other hand, they represent a generalization of the ordinary least square re-

gression - 50% expectile regression is the classical mean regression. In addition, using expectiles

instead of quantiles has the following advantages. First, expectiles lies in the computational

expedience. Indeed, the estimation based on expectile regression reduces to weighted least

squares �ts since the optimality criterion is di¤erentiable with respect to the regression e¤ects,

while linear programming routines have to be used in case of quantile regression. The second

advantage is that inference on expectiles is much easier than inference on quantiles, and their

estimation makes more e¢ cient use of the available data since weighted least squares rely on

the distance to data points, while empirical quantiles only utilize the information on whether

an observation is below or above the predictor; see Newey and Powell (1987), Abdous and

Remillard (1995), and Sobotka and Kneib (2012) among others. Finally, as a risk measure it

has been shown that expectiles have the attractive property of coherence [see e.g. Bellini et al.

(2014)], while quantiles su¤er from the lack of subadditivity. Expectiles were shown to be the

only coherent and elicitable risk measures in Ziegel (2016). Further discussion and application

of expectiles as risk measures are given in Taylor (2008), Kuan et al. (2009), Emmer et al.

(2015), Delbaen (2013), Bellini and Di Bernardino (2017), and Daouia et al. (2018).

In this paper, we propose a consistent parametric test of Granger causality in expectiles,

which is based on expectile regressions. We �rst propose a Wald-type test for non-causality at

a �xed � -expectile, for � 2 (0; 1) : Thereafter, we propose a sup-Wald test for testing Granger

causality at all expectiles. The latter test checks for the joint statistical signi�cance of the

parameters of expectile regressions for all � in (0; 1) ; which is consistent against any deviation
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from non-causality in distribution, as opposed to the conventional tests of non-causality in

moments. Testing Granger non-causality at all expectiles provides a su¢ cient condition for

testing Granger non-causality in distribution. The proposed sup-Wald test statistic has the

correct asymptotic size and power properties. A Monte Carlo simulation study reveals that

our tests have good �nite-sample size and power properties for a variety of data-generating

processes and di¤erent sample sizes. We also compare the properties (size and power) of our

expectile-based test with the existing quantile-based test for di¤erent values of � ; see e.g. Koenker

and Machado (1999): The simulation results show that our test outperforms the test based on

quantile regression even for weak degree of causality and for both small and large samples.

Finally, we provide two empirical applications to illustrate the usefulness of our tests. In these

applications, we re-examine the Granger causality from volume and exchange rates to stock

returns using expectile.

The rest of this paper is organized as follows. In Section 2, we introduce the notations and

de�ne the concept of Granger non-causality in expectiles. In Section 3, we consider a Wald-type

test and a sup-Wald test for testing Granger causality at a given expectile and all expectiles

jointly, respectively. In Section 4, we use Monte Carlo simulations to investigate the �nite

sample size and power properties of our tests, and we compare their performance to those of

quantile-based test. Section 5 contains two applications using economic and �nancial data and

Section 6 concludes. The proofs of the theoretical results can be found in the Appendix.

2 Granger causality in expectiles

We consider two variables of interest Y and Z. Let f(Yt; Zt) : t 2 Zg be the strictly stationary

and ergodic time series process of Y and Z de�ned on some probability space (
; F; P ). We

denote L2 � L2(
; F; P ) a Hilbert space of real random variables with �nite second moments,

de�ned on the probability space (
; F; P ). In the following, we are interested in testing Granger

causality in expectiles between Y and Z.

We now need to de�ne the information sets as this is important for causality analysis.

Hereafter, we consider a sequence I of �reference information sets�such that:

I = fI(t) : t 2 Z ; t > !g; with t < t0 ) I(t) � I(t0) for all t > ! ;
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where I(t) is an information set that represent a Hilbert subspace of L2; ! 2 Z [ f�1g

represents a �starting point�, and Z is the set of integers. The �starting point�! is typically

equal to a �nite initial date (such as ! = �1; 0 or 1) or to�1; in the latter case I(t) is de�ned for

all t 2 Z: The information set I(t) could correspond to a (possibly empty) set, whose elements

represent the information available at any point of time, such as time independent variables

(e.g., the constant in a regression model) and deterministic processes (e.g., deterministic trends).

We denote Y (!; t � 1] the information set spanned by Ys for ! < s � t � 1; and similarly

for Z(!; t� 1]. That is, Y (!; t� 1] and Z(!; t� 1] represent the information contained in the

history of the variables Y and Z up to time t � 1; respectively. Furthermore, the information

sets obtained by �adding�Y (!; t� 1] to I(t� 1) and Z(!; t� 1] to IY (t� 1) are de�ned as

IY (t� 1) = I(t� 1) + Y (!; t� 1] ; IY Z(t� 1) = IY (t� 1) + Z(!; t� 1]:

We assume that Y and Z are Markovians of orders p and q, respectively. In this case, Y (!; t�

1] � Y (t�p; t�1] 2 Rp and Z(!; t�1] � Z(t�q; t�1] 2 Rq, and IY Z(t�1) 2 Rd, for d = p+q.

Furthermore, let FY (ytjIY Z(t�1)) and FY (ytjIY (t�1)) be the conditional distribution functions

of yt given IY Z(t� 1) and IY (t� 1), respectively, which we assume continuous for all yt 2 R.

Before de�ning Granger causality in expectiles, we remind the reader how Granger non-

causality in distribution and mean can be characterized in terms of restricted and unrestricted

information sets. To avoid unnecessary repetitions, we treat only the causality from Z to Y .

Following Granger (1969), causality from Z to Y one period ahead is de�ned as follows: Z

causes Y if observations on Z up to time t � 1 can help predict Yt given the past of Y up to

time t� 1. Formally, Granger non-causality from Z to Y is characterized as follows:

FY (ytjIY Z(t� 1)) = FY (ytjIY (t� 1)); for all yt 2 R; (1)

and will be referred to as Granger non-causality in distribution. Although the concept of

Granger causality is naturally de�ned in terms of conditional distributions, applied work usually

test for Granger non-causality in mean, which is only a necessary condition of Granger non-

causality in distribution. In other words, the most used characterisation of Granger non-

causality from Z to Y uses expectations:

E(ytjIY Z(t� 1)) = E(ytjIY (t� 1)); (2)
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where E(ytjIY Z(t � 1)) and E(ytjIY (t � 1)) denote the expectations of FY (ytjIY Z(t � 1)) and

FY (ytjIY (t � 1)), respectively. Conditional mean, however, only measures one aspect of the

conditional distribution and helps detect the mean dependence only. Indeed, a causal e¤ect

that concerns the tail area of the distribution might signi�cantly di¤er from a causal e¤ect that

take place at the center of the distribution.

On the one hand, failing to reject non-causality in (2) is compatible with Granger non-

causality in mean, but says nothing about Granger causality in other moments or other aspects

(quantiles/expectiles) of conditional distribution. On the other hand, testing Granger non-

causality in distribution using (1) will not be informative about the level(s) (mean, variance,

other high-order moments, quantiles/expectiles) of distribution where the causality exists. To

overcome this issue, we propose to use expectiles as a di¤erent way of looking at Granger causal-

ity between random variables. Expectiles will allow us to determine the pattern of causality

across the conditional distribution of the variable of interest. They also provide su¢ cient con-

dition for testing Granger non-causality in distribution as in (1), since expectiles are known to

completely characterize the distribution. Formally, let �� (:jIY Z(t�1)) and �� (:jIY (t�1)) denote

the �th-expectiles of FY (:jIY Z(t � 1)) and FY (:jIY (t � 1)), respectively. Thus, an alternative

way for testing Granger non-causality in distribution in (1) is by testing

�� (ytjIY Z(t� 1)) = �� (ytjIY (t� 1)); for all � 2 T � [0; 1]: (3)

where T is a subset or of a full set of [0; 1]. If (3) holds, then we say that Z does not Granger

cause Y in all expectiles, and consequently there is no causality in distribution from Z to

Y . In the next section, we will also be testing (3) at one given � only, which corresponds to

testing Granger non-causality at one given expectile. The need for working with expectiles

is motivated by the limits of quantiles. Despite their strong intuitive appeal, quantiles are

not always satisfactory. They can be criticized for being somewhat di¢ cult to work with and

compute as the corresponding loss function is not continuously di¤erentiable, although modern

e¢ cient linear programming algorithms are available to help. Most importantly, quantiles are

relatively ine¢ cient against long-tailed distributions as they are based on absolute rather than

squared loss minimization. However, as we will see in the next sections, it�s much easier to

work with expectiles both theoretically and computationally; see Efron (1991) and Sobotka et

al. (2013), Schnabel and Eilers (2009); Sobotka and Kneib (2012) among others.
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3 Testing non-causality in expectiles

In this section, we use expectile regressions to build statistical procedures for testing Granger

non-causality in expectiles. To this end, we �rst consider parametric regression models to

estimate the �th-expectile of FY (:jIt), for It some information set and � 2 (0; 1). We assume

that the conditional function of the �th-expectile, say �� (ytj:); is correctly speci�ed and belongs

to a family M of linear and parametric functions:

M = fm(:; �(�)) j �(:) : � �! �(�) 2 � � Rd+1; for � 2 T � [0; 1]g;

where �(�) is a vector of parameters that characterise the �th-expectile of Y .

Let yt�1;p = [yt�1; ::::; yt�p]
0, zt�1;q = [zt�1; ::::; zt�q]

0, xt�1 = [1; yt�1;p; zt�1;q], and consider

the following correctly speci�ed �th-expectile regression:

yt = �� (ytjIY Z(t� 1)) + ��t = a(�) + y0t�1;p�(�) + z0t�1;q�(�) + ��t

= x0t�1�(�) + ��t ; for � 2 (0; 1) ; (4)

where �(�) = [a(�); �(�)0; �(�)0]0 is the (d + 1)-dimensional parameter vector, with d = p + q.

The conditional �th-expectile of the error term ��t is equal zero as a result of correctly speci�ed

regression model. Using the parameters of regression (4), testing Granger non-causality from

Z to a given �th-expectile of Y is equivalent to testing the null hypothesis:

H�
0 : �(�) = 0; for a given � 2 (0; 1) ; (5)

and if the null is rejected this would suggest that Z Granger causes Y at a given expectile � .

In order to implement the test of causality in expectile, the vector of parameters �(�) is

estimated by minimizing the following asymmetrically weighted absolute deviation function:

�̂(�) = argmin
�(�)2Rd+1

TX
t=1

 � (�
�
t )
�
yt � x0t�1�(�)

�2
; (6)

where  � (�
�
t ) = j� � I(��t � 0)j; with I(:) is an indicator function that takes the value one if

��t � 0 and zero otherwise. The minimization problem in (6) is known as expectile regression and

the estimator �̂(�) can also be obtained using a likelihood-based approach that uses Gaussian

density with unequal weights placed on positive and negative disturbances. One of the advan-

tages of expectile regression is that estimation basically reduces to (iteratively) weighted least
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squares �ts since the optimality criterion is di¤erentiable, while linear programming routines

have to be used in the case of quantile regression. Sobotka et al. (2011) compare expectiles and

quantiles using both theory and simulations and �nd that the estimation of expectiles may be

more e¢ cient that the estimation of quantiles for a number of distributions. They also show

a smaller probability to obtain crossing expectile curves than crossing quantile curves. In ad-

dition, contrary to quantile regression estimator, expectile regression estimator has an explicit

form, which is given by:

�̂(�) =

 
TX
t=1

 � (�̂
�
t )xt�1x

0
t�1

!�1 TX
t=1

 � (�̂
�
t )xt�1yt

!
; (7)

where �̂�t = yt � x0t�1�̂(�).

Newey and Powell (1987) have studied the properties of the estimation of expectile regression

yt = x0t�1�(�) + ��t

when the data f(xt�1; yt) 2 Rd+1 � Rg is i.i.d. In particular, they showed that the least asym-

metrically weighted squares estimate �̂(�) is consistent and asymptotically normally distributed

�̂(�) � N(�(�);��1V ��1)

with

� = E
�
 � (�

�
t )xt�1x

0
t�1
�
and V = E

�
 2� (�

�
t )(�

�
t )
2xt�1x

0
t�1
�
:

To estimate the variance-covariance matrix of �̂(�), Newey and Powell (1987) proposed to

estimate � and V as follows:

�̂ =
1

T

TX
t=1

 � (�̂
�
t )xt�1x

0
t�1; V̂ =

1

T

TX
t=1

xt�1x
0
t�1 � (�̂

�
t )
2V ar(�̂�t );

where �̂�t = yt� x0t�1�̂(�): They then extended this result to establish the asymptotic normality

of an estimator (�̂(� 1); : : : ; �̂(�m) for a grid point (� 1; : : : ; �m), which was in turn used to build a

test statistic for testing null hypotheses of the form R�(�) = �(�); where R a selection matrix.

However, the data in our expectile regression model (4) is not i.i.d, thus testing the null in

(5) or more generally

H0 : �(�) = 0; 8� 2 (0; 1) (8)
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requires weak convergence of the process
p
T (�̂(�)� �(�)). To overcome this issue, we establish

the weak convergence of the process
p
T (�̂(�)� �(�)) under time series data and we derive the

asymptotic distribution of a test statistic that we use to test (8). The following assumptions

are required to establish the asymptotic results:

Assumptions:

A.1 f(Yt; Zt); t � 0g is a strictly stationary process.

A.2 ��t are random variables with mean zero and variance �2:

A.3 E[ �1(�
�1
t ) �2(�

�2
t )�

�1
t �

�2
t xt�1 x

0
t�1] is nonsingular and E[ � (�

�
t )xt�1x

0
t�1] is �nite.

All of the above assumptions are fairly common in the literature. Assumption A.2 on

homoscedasticity of the error term ��t will be relaxed in the Monte Carlo simulation study. The

following Theorem 1 establishes the asymptotic properties of the process
p
T (�̂(�)��(�)) when

the above assumptions are satis�ed [see the proof of Theorem 1 in the appendix].

Theorem 1 Under Assumptions A.1-A.3, the empirical process
p
T (�̂(�) � �(�)) converges

to a Gaussian process Z(�) with covariance function

Cov(Z(� 1);Z(� 2)) = 	�1�1 	�1;�2	
�1
�2
; (9)

where

	� i = E[ � i(�
� i
t )xt�1 x

0
t�1]; for i = 1; 2, and 	�1;�2 = E[ �1(�

�1
t ) �2(�

�2
t )�

�1
t �

�2
t xt�1 x

0
t�1]:

Theorem 1 will be needed to establish the asymptotic distribution of a Kolmogorov-Smirnov

type-Wald test statistic that we are going to use when we test (8). However, notice that the

terms 	� i ; for i = 1; 2, and 	�1;�2 in (9) are unknown, but they can be estimated as follows:

b	� i = 1

T

TX
t=1

 � i(�̂
� i
t )xt�1x

0
t�1; for i = 1; 2; and b	�1;�2 = 1

T

TX
t=1

xt�1x
0
t�1 �1(�̂

�1
t ) �2(�̂

�2
t )�̂

�1
t �̂

�2
t :

(10)

For i.i.d. data, Newey and Powell (1987) state that b	�1�1 b	�1;�2 b	�1�2 converges in probability to
	�1�1 	�1;�2	

�1
�2
: The proof of this convergence can be adapted to time series under Assumptions

A.1-A.3.
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Now, from Theorem 1 and by observing that
p
T (�̂(�) � �(�)) =

p
T (R�̂(�) � R�(�)); for

R = [0q;1+p; Iq;q] a q�(d+1) matrix, we can deduce that the process
p
T (�̂(�)��(�)) converges

to a Gaussian process W(�) with covariance matrix:

Cov(W(� 1);W(� 2)) = 
�1�1 
�1;�2

�1
�2
;

where


� i = E[ � i(�
� i
t )zt�1;q z

0
t�1;q]; for i = 1; 2, and 
�1;�2 = E[ �1(�

�1
t ) �2(�

�2
t )�

�1
t �

�2
t zt�1;q z

0
t�1;q]:

By analogy to (10), 
� i and 
�1;�2 can be estimated as:

b
� i = 1

T

TX
t=1

 � (�̂
� i
t )zt�1;qz

0
t�1;q; ; for i = 1; 2, and b
�1;�2 = 1

T

TX
t=1

zt�1;qz
0
t�1;q �1(�̂

�1
t ) �2(�̂

�2
t )�̂

�1
t �̂

�2
t :

(11)

In Corollary 1 below, we derive the asymptotic normality of
p
T (�̂(�) � �(�)) for �xed

� 2 (0; 1) : The proof of the Corollary 1 can be straightforwardly deduced from Theorem 1,

hence it will be omitted. Moreover, the result in this corollary will be used to build a test for

H�
0 : �(�) = 0 versus H�

1 : �(�) 6= 0:

Corollary 1. For a �xed � ; for � 2 (0; 1) ; and under Assumptions A.1-A.3, we have

p
T
�b
�1� b
�;� b
�1� ��1=2 (�̂(�)� �(�))

converges to N(0; Iq�q); where b
� and b
�;� are similarly de�ned in (11).
To test the null hypothesis in (8), we �rst de�ne the empirical process:

WT (�) = T (�̂(�)� �(�))0
�b
�1� b
�;� b
�1� ��1 (�̂(�)� �(�)):

Using the process WT (�); we consider a test statistic that is based on Kolmogorov-Smirnov

type-Wald test, say KSWT ; which is de�ned as follows:

KSWT = sup
�2(0;1)

WT (�):

The following proposition states the asymptotic distribution of the test KSWT for testing

(8). The proof of Proposition 1 will be omitted as it can be straightforwardly deduced from

Corollary 1.
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Proposition 1 Under Assumptions A.1-A.3, and the null hypothesis H0; we have

KSWT
d�! sup

�
jjZ(�)jj22;

where Z is a Gaussian process and jj:jj2 is the Euclidean norm. For �xed � ; jjZ(�)jj22 is a

centred Chi-square random variable with q degree of freedom.

The result in Proposition 1 will be used to test Granger causality in distribution from Z to

Y . We next use Monte Carlo simulations to assess the �nite-sample properties (size and power)

of the tests derived in Corollary 1 and Proposition 1 for a variety of data-generating processes

and di¤erent sample sizes. We will also compare the properties of our expectiles-based test

with the existing quantiles-based test, see e.g. Koenker and Machado (1999):

4 Monte Carlo simulations

We conduct a Monte Carlo simulation study to investigate the performance of the tests we

proposed previously. Our primary interest is to assess the properties of the tests derived in

Corollary 1 and Proposition 1. In particular, we examine their size and power properties using

the data-generating processes (DGPs) presented in Table 1.

The �rst four DGPs [DGP1-DGP4] in Table 1 were used to evaluate the empirical size

of the tests since the causality in these DGPs does not exist. DGP3 and DGP4 allow for

heteroscedasticity, with the former model includes the ARCH e¤ect of Engle (1982) and the

latter incorporates the GARCH e¤ect of Bollerslev (1986). The last three DGPs [DGP5-DGP7]

of Table 1 allow for Granger causality in expectiles, thus they serve to illustrate the power of

the tests. DGP5 exhibits Granger causality in the presence of homoscedastic errors, whereas

DGP6 and DGP7 both alow for heteroskedastic errors.

These DGPs focus on testing Granger causality from Z to Y using the regression equation:

Yt = �+ 0:5Yt�1 + c(�)Zt�1 + �1t;

where Z is generated using the processes in Table 1. We then test the null hypothesis H0:

c(�) = 0 against the alternative hypothesis H1: c(�) 6= 0; for � 2 (0; 1). In our simulation and

under the alternative hypothesis, c(�) does not change with � and takes one of the following
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Table 1: DGPs used in the simulation study

DGPs Variables

Yt Zt

DGP1 �1t �2t

DGP2 Yt = 0:5Yt�1 + �1t Zt = 0:5Zt�1 + �2t

DGP3 Yt = (0:01 + 0:5Y
2
t�1)

0:5�1t Zt = 0:5Zt�1 + �2t

DGP4 Yt =
p
h1;T (�)�1t; with Zt =

p
h2;T (�)�2t; with

h1;T (�) = 0:01 + 0:9h1;t�1 + 0:05Y
2
t�1 h2;T (�) = 0:01 + 0:9h2;t�1 + 0:05Z

2
t�1

DGP5 Yt = 0:5Yt�1 + cZt�1 + �1t Zt = 0:5Zt�1 + �2t

DGP6 Yt = 0:5Yt�1 + cZt�1 + �1t Zt = 0:5Zt�1 + �2t

�1t � N(0; t=T + 2) �2t � N(0; t=T + 2)

DGP7 Yt = 0:5Yt�1 + cZt�1 + �1t Zt = 0:5Zt�1 + �2t

�1t � N(0; 1=t+ 2) �2t � N(0; 1=t+ 2)

Note: This table summarizes the DGPs that we consider in the simulation study to investigate the

properties (size and power) of the tests of Granger causality in expectiles.
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values c(�) = 0:1; 0:5; and 0:9, which capture di¤erent degrees of causality from Z to Y . A

higher (in absolute value) of c(�) indicates a stronger causality from Z to Y .

Four sample sizes T = 100, 200, 500, and 1000 were considered. For each sample size T

and DGP, 1000 (number of simulations) independent realisations of length T were obtained

as follows: (i) we generate T + 200 i.i.d. noises �1t and �2t from N(0; 1); except for DGP6

and DGP7 that are generated under normality with variances di¤erent from one, and (ii) each

noise�s sequence is used to generate Yt and Zt, for t = 1; ::::; T + 200. The initial values of Yt

and Zt were set to zero (resp. to one). To attenuate the impact of these initial values, the �rst

200 observations were discarded.

4.1 Size and power of expectile-basd tests

The results for the empirical size of the test derived in Corollary 1 are presented in Table 2.

From this, we see that for almost all DGPs and sample sizes under consideration, the empirical

sizes of the test of Granger causality at a given expectile are very close to the nominal levels

� = 5% and � = 10%. The empirical size is well controlled in both small and large samples

and in the presence and absence of heteroskedasticity. This result generally holds for extreme

expectiles like for � = 0:1 and 0:9.

The results for the empirical power of the test in Corollary 1 are presented in Tables 3-5.

The latter show that the proposed test has good power (very close to 1 or equal to 1) for all

expectiles � , for � 2 (0; 1) ; all DGPS and sample sizes we considered, particularly when the

degree of causality is not low (e.g. c = 0:5 and c = 0:9). When the degree of causality is low,

say c = 0:1, then as expected the power is low, but it improves signi�cantly (above 0.9) once

the sample size is increased to say T = 1000.

Finally, Tables 6 and 7 provide the results for the empirical size and power of the Kolmogorov-

Smirnov type-Wald test in Proposition 1. The results show that the latter controls well its size

and has a very good power for a variety of data-generating processes and di¤erent sample sizes.

The power reaches 1 even for small samples, e.g. T = 100.

12



Table 2: Empirical size of the proposed test of the Granger non-causality test in expectiles

� = 5% � = 10%

DGPs DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

T = 100

� = 0:1 0.043 0.075 0.058 0.062 0.10 0.11 0.11 0.117

� = 0:25 0.054 0.061 0.053 0.052 0.11 0.114 0.109 0.107

� = 0:5 0.045 0.064 0.056 0.046 0.10 0.106 0.091 0.10

� = 0:75 0.059 0.065 0.067 0.053 0.09 0.099 0.112 0.115

� = 0:9 0.054 0.053 0.071 0.054 0.9 0.103 0.101 0.111

T = 200

� = 0:1 0.058 0.061 0.058 0.053 0.112 0.097 0.112 0.114

� = 0:25 0.046 0.065 0.045 0.059 0.095 0.097 0.106 0.108

� = 0:5 0.053 0.052 0.051 0.049 0.112 0.119 0.091 0.104

� = 0:75 0.055 0.059 0.065 0.048 0.111 0.094 0.100 0.101

� = 0:9 0.051 0.066 0.048 0.049 0.114 0.093 0.102 0.092

T = 500

� = 0:1 0.047 0.051 0.068 0.049 0.101 0.103 0.120 0.116

� = 0:25 0.051 0.054 0.055 0.056 0.091 0.095 0.104 0.115

� = 0:5 0.054 0.048 0.057 0.061 0.104 0.096 0.09 0.104

� = 0:75 0.055 0.052 0.064 0.053 0.104 0.082 0.10 0.104

� = 0:9 0.054 0.046 0.057 0.056 0.083 0.106 0.110 0.101

T = 1000

� = 0:1 0.055 0.05 0.057 0.06 0.113 0.097 0.110 0.095

� = 0:25 0.057 0.06 0.061 0.04 0.099 0.110 0.113 0.103

� = 0:5 0.051 0.057 0.048 0.052 0.104 0.089 0.102 0.105

� = 0:75 0.051 0.045 0.052 0.043 0.093 0.105 0.101 0.09

� = 0:9 0.045 0.056 0.065 0.046 0.102 0.120 0.110 0.120

Note: This table reports the empirical size of the test in Corollary 1 for testing the Granger non-

causality at a given expectile from Z to Y at � = 5% and 10% signi�cance levels. The number of

simulations is equal to 1000.
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Table 3: Empirical power of the proposed test of the Granger non-causality test in expectiles

DGP5

Sample size T = 100 T = 200 T = 500 T = 1000

� = 5% � = 10% � = 5% � = 10% � = 5% � = 10% � = 5% � = 10%

c=0.1

� = 0:10 0.178 0.229 0.253 0.375 0.538 0.692 0.833 0.903

� = 0:25 0.194 0.263 0.31 0.448 0.670 0.766 0.927 0.962

� = 0:50 0.211 0.327 0.361 0.474 0.713 0.818 0.952 0.981

� = 0:75 0.202 0.290 0.345 0.440 0.695 0.775 0.938 0.961

� = 0:90 0.167 0.251 0.238 0.364 0.522 0.673 0.835 0.907

c=0.5

� = 0:10 0.975 0.996 1 1 1 1 1 1

� = 0:25 0.997 1 1 1 1 1 1 1

� = 0:50 1 1 1 1 1 1 1 1

� = 0:75 0.999 0.998 1 1 1 1 1 1

� = 0:90 0.977 0.987 1 1 1 1 1 1

c=0.9

� = 0:10 1 1 1 1 1 1 1 1

� = 0:25 1 1 1 1 1 1 1 1

� = 0:50 1 1 1 1 1 1 1 1

� = 0:75 1 1 1 1 1 1 1 1

� = 0:90 1 1 1 1 1 1 1 1

Note: This table reports the empirical power of the test in Corollary 1 for testing the Granger non-

causality at a given expectile from Z to Y at � = 5% and 10% signi�cance levels. The number of

simulations is equal to 1000.
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Table 4: Empirical power of the proposed test of the Granger non-causality test in expectiles

DGP6

Sample size T = 100 T = 200 T = 500 T = 1000

� = 5% � = 10% � = 5% � = 10% � = 5% � = 10% � = 5% � = 10%

c=0.1

� = 0:10 0.152 0.260 0.277 0.345 0.539 0.661 0.829 0.883

� = 0:25 0.203 0.306 0.303 0.448 0.663 0.763 0.920 0.948

� = 0:50 0.201 0.284 0.354 0.478 0.691 0.802 0.952 0.963

� = 0:75 0.188 0.292 0.307 0.445 0.672 0.760 0.920 0.962

� = 0:90 0.147 0.257 0.253 0.341 0.529 0.634 0.838 0.885

c=0.5

� = 0:10 0.968 0.989 0.998 1 1 1 1 1

� = 0:25 0.998 0.998 1 1 1 1 1 1

� = 0:50 0.999 1 1 1 1 1 1 1

� = 0:75 0.997 0.998 1 1 1 1 1 1

� = 0:90 0.965 0.991 1 1 1 1 1 1

c=0.9

� = 0:10 1 1 1 1 1 1 1 1

� = 0:25 1 1 1 1 1 1 1 1

� = 0:50 1 1 1 1 1 1 1 1

� = 0:75 1 1 1 1 1 1 1 1

� = 0:90 1 1 1 1 1 1 1 1

Note: This table reports the empirical power of the test in Corollary 1 for testing the Granger non-

causality at a given expectile from Z to Y at � = 5% and 10% signi�cance levels. The number of

simulations is equal to 1000.
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Table 5: Empirical power of the proposed test of the Granger non-causality test in expectiles

DGP7

Sample size T = 100 T = 200 T = 500 T = 1000

� = 5% � = 10% � = 5% � = 10% � = 5% � = 10% � = 5% � = 10%

c=0.1

� = 0:10 0.161 0.236 0.262 0.386 0.556 0.644 0.834 0.903

� = 0:25 0.176 0.288 0.337 0.423 0.660 0.781 0.927 0.963

� = 0:50 0.215 0.310 0.350 0.485 0.726 0.789 0.950 0.984

� = 0:75 0.215 0.309 0.326 0.437 0.693 0.768 0.941 0.970

� = 0:90 0.174 0.239 0.222 0. 361 0.533 0.687 0.839 0.904

c=0.5

� = 0:10 0.976 0.991 1 1 1 1 1 1

� = 0:25 0.996 1 1 1 1 1 1 1

� = 0:50 1 1 1 1 1 1 1 1

� = 0:75 1 1 1 1 1 1 1 1

� = 0:90 0.978 0.991 1 1 1 1 1 1

c=0.9

� = 0:10 1 1 1 1 1 1 1 1

� = 0:25 1 1 1 1 1 1 1 1

� = 0:50 1 1 1 1 1 1 1 1

� = 0:75 1 1 1 1 1 1 1 1

� = 0:90 1 1 1 1 1 1 1 1

Note: This table reports the empirical power of the test in Corollary 1 for testing the Granger non-

causality at a given expectile from Z to Y at � = 5% and 10% signi�cance levels. The number of

simulations is equal to 1000.
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Table 6: Empirical size of the proposed sup-Wald test of Granger non-causality in expectiles

� = 5% � = 10%

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

T = 100 0.044 0.048 0.046 0.058 0.088 0.100 0.096 0.102

T = 200 0.048 0.046 0.054 0.064 0.082 0.088 0.114 0.110

T = 500 0.062 0.066 0.038 0.046 0.110 0.136 0.098 0.104

T = 1000 0.050 0.044 0.038 0.046 0.102 0.100 0.096 0.104

Note: This table reports the empirical size of the test in Proposition 1 for testing Granger non-

causality in expectiles from Z to Y at � = 5% and 10% signi�cance level. The number of simulations

is equal to 1000.

Table 7: Empirical power of our sup-Wald test of Granger non-causality in expectiles

� = 5% � = 10%

DGP5 DGP6 DGP7 DGP5 DGP6 DGP7

T = 100 0.982 0.984 0.986 0.996 0.998 0.998

T = 200 1.000 1.000 1.000 1.000 1.000 1.000

T = 500 1.000 1.000 1.000 1.000 1.000 1.000

T = 1000 1.000 1.000 1.000 1.000 1.000 1.000

Note: This table reports the empirical power of the test in Proposition 1 for testing Granger non-

causality in expectiles from Z to Y at � = 5% and 10% signi�cance level. The number of simulations

is equal to 1000.
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(a) � = 75% (b) � = 50%

(c) � = 25% (d) � = 10%

Figure 1: This �gure compares the power of expectile-based test (Corollary 1) with the power

of quantile-based test [see e.g. Koenker and Machado (1999)] for testing Granger non-causality

from Z to Y at � = 5% signi�cance level and for a range of values of � : � = 75%; 50%, 25%,

and 10%. The number of simulations is equal to 1000.

4.2 Expectiles versus quantiles-based tests

We consider an additional simulation exercise to compare the size and power of the expectile-

based test in Corollary 1 with those of quantile-based test [see e.g. Koenker and Machado

(1999)] for di¤erent values of � :We use the same simulation settings as in the previous subsection

and for a fair comparison between the two tests, we consider the DGP5 of Table 1:

Yt = �+ 0:5Yt�1 + cZt�1 + �1t;

where Zt = 0:5Zt�1 + �2t, with �1t; �2t � N(0; 1): Under DGP5, conditional expectiles and

quantiles of Yt can be expressed as follows:
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�� (YtjYt�1; Zt�1) = �+ 0:5Yt�1 + cZt�1 + �� (�1tjYt�1; Zt�1)

q� (YtjYt�1; Zt�1) = �+ 0:5Yt�1 + cZt�1 + q� (�1tjYt�1; Zt�1);

(12)

for � 2 (0; 1) ; where �� (�1tjYt�1; Zt�1) and q� (�1tjYt�1; Zt�1) are the �th-expectile and �th-

quantile of the error term �1t: The two equations in (12) show that the degree of causality

(measured by c) is the same for expectiles and quantiles and does not change with � ; which

guarantees fair comparison of the properties of expectile- and quantile-based tests. The results

are reported in Figures 1-4.

Figures 1-4 illustrate the powers of the above-mentioned tests for testing Granger non-

causality based on expectile and quantile regressions for a range of values of � . From these,

we see that the test derived in Corollary 1 outperforms the test based on quantile regression

even when the degree of causality is weak (c low). All the �gures show that our test not only

outperforms the test based on quantiles for large samples like T = 500, but it also provides

reliable results for smaller samples like T = 100. The results are consistent across all the

considered values of � :

5 Empirical applications

5.1 Causality between returns and volume

As a �rst application of the tests proposed in Section (3), we consider the problem of testing

Granger causality (hereafter predictability) in expectiles from volume to market returns. Pre-

dicting the conditional distribution of stock returns using mean and quantile regressions has

been the focus of many empirical studies, see Fama and French (1988), Keim and Stambaugh

(1986), Ülkü and Onishchenko (2019), Baur et al. (2012) among others. Chuang et al. (2009)

have recently investigated the predictability of stock returns using volume based on paramet-

ric quantile regressions. They �rst de�ne Granger non-causality in all quantiles and propose

testing non-causality based on a sup-Wald type test. Using three major stock market indices,

they �nd that the causal e¤ects of volume on return are usually heterogeneous across quantiles.

In particular, the quantile causal e¤ects of volume on return exhibit a spectrum of V-shape
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relations so that the dispersion of return distribution increases with lagged volume.

There is, however, no study on the predictability of stock return distribution using volume

based on expectile regressions. Expectiles have the advantage of capturing similar information

as quantiles, but they also have the merit of being much more straightforward to use than

quantiles, since expectiles are de�ne as least squares analogue of quantiles. Furthermore, testing

Granger causality (predictability) at all expectiles - as we do in this application and the next

one - provides a su¢ cient condition for testing Granger causality in distribution. Thus, in this

section we apply our tests to re-examine Granger causality in expectiles between returns and

volume using daily data on three major stock market indices: NYSE, S&P 500 and FTSE 100.

5.1.1 Data description and results

The dataset that we use in this application comes from Yahoo Finance and consists of daily

observations on NYSE, S&P 500 and FTSE 100 and their volumes. The sample runs from

January 2010 to January 2020 for a total of 3032 observations. We compute the continuously

compounded changes in prices (returns) and trading volume (volume growth rate) and we per-

form Augmented Dickey-Fuller tests (ADF-tests) for testing non-stationarity of the logarithmic

price and volume and their �rst di¤erences. Using ADF-tests with an intercept and trend,

with an intercept and without trend, and without intercept and trend, the results show that all

variables in logarithmic form are non-stationary, but their �rst di¤erences are. Based on this

outcome, we model the �rst di¤erence of logarithmic price and volume rather than their levels.

Consequently, the causality relations have to be interpreted in terms of growth rates.

To test the causality in expectiles from volume to stock market return, we use the expectile

regression (ER):

rt = �0 (�) +

qX
i=1

�i (�) rt�i +

qX
j=1

�j (�) vt�j + ��t ;

where rt�j is the continuously compounded return from one of the stock market indices (NYSE,

S&P 500 and FTSE 100) at time t � j, vt�j is the corresponding continuously compounded

volume at time t � j, and ��t is the error term with zero conditional expectile. Returns are

calculated as rt = 100 � (ln (pt)� ln (pt�1)) and the growth rate of the volume as vt = 100 �

(ln (Vt)� ln (Vt�1)) ; where pt and Vt are the price and traded share volume of a given index at
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time t: We then test the null hypotheses:

H�
0 : �(�) = 0 versus H�

1 : �(�) 6= 0

and

H0 : �(�) = 0; 8� 2 (0; 1) versus H1 : �(�) 6= 0 for some or all � ;

where �(�) =
�
�1 (�) ; :::; �q (�)

�0
: The former null H�

0 corresponds to testing non-causality

(non-predictability) from volume to stock returns at a given expectile � ; whereas the latter

null H0 is about testing non-causality (non-predictability) at all expectiles � 2 (0; 1), which is

equivalent to testing independence between volume and stock returns.

The results for testing H�
0 and H0 for di¤erent lags q are reported in Table 8. Three di¤erent

values of the number of lags are considered: q = 3; 10, and 12. Table 8 shows that changes

in volume are causing changes in stock returns. The causality happens generally at the upper

expectiles (0.9 to 1) of stock returns, except for FTSE. The Kolmogorov-Smirnov type-Wald

test of Proposition 1 also con�rms the causality from volume to stock returns of NYSE, S&P

500 and FTSE 100, especially when the number lags is high (q = 10, 12).

5.2 Stock market return and exchange rates

Given its signi�cance for the economy, the causal relationship between stock prices and exchange

rates is of great importance for academics, policymakers and professionals. Thus, as a second

application of our tests, we investigate the causality in expectiles from exchange rate to market

returns.

In the literature, there is no academic consensus about this relationship and the results are

somewhat mixed as to whether or not exchange rates a¤ect the prices of stock indexes. On the

one hand, Chow et al. (1997) �nd evidence that the link between changes in exchange rate and

stock returns is stronger at long horizons, whereas Williamson (2001) �nd that this link has

changed over time. Yang et al. (2014) have applied parametric regression models to investigate

the causality between stock returns and exchange rate for nine Asian markets. Their empirical

results show that there are more causal relations based on the quantile regression than the

conventional mean regression. On the other hand, Gri¢ n and Stulz (2001) conclude that this

link is small and hardly signi�cant. Most of the conclusions, however, were reached using mean
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Table 8: Granger-causality in expectiles between stock market return and volume

Number of Lags = 3 Number of Lags = 10 Number of Lags = 12

� NYSE S&P FTSE NYSE S&P FTSE NYSE S&P FTSE

0.01 1.132 3.865 3.606 9.716 13.01 22.21�� 11.41 10.99 21.28��

0.05 0.921 1.401 2.564 6.313 6.287 7.820 8.141 8.37 9.070

0.1 0.874 1.475 2.745 6.882 7.036 7.613 8.552 8.31 10.27

0.2 1.187 1.934 3.277 5.841 7.991 10.82 7.809 8.72 11.55

0.3 1.826 2.342 3.191 6.114 8.004 12.75 8.169 10.05 13.36

0.4 2.401 2.693 3.004 6.637 7.913 14.08 8.641 10.04 14.59

0.5 3.056 3.163 2.703 7.069 8.303 14.86 9.424 10.54 15.46

0.6 3.890 3.776 2.251 7.648 9.070 15.00 10.445 11.58 15.56

0.7 4.768 4.354 1.800 8.520 10.07 15.21 11.76 13.02 15.86

0.8 5.523 5.334 1.445 10.29 12.05 15.27 15.31 15.15 17.02

0.9 7.360� 6.410� 1.638 14.62 15.96 14.12 19.01� 17.16 14.42

0.95 8.196�� 7.332� 2.654 21.58�� 20.31�� 15.11 25.94�� 18.24 15.14

0.999 12.60��� 2.697 1.18 51.74��� 36.14��� 19.18�� 40.95��� 30.04��� 15.46

Sup-Wald 12.60��� 7.332� 3.606 51.74��� 36.14��� 22.21�� 40.95��� 30.04��� 21.28��

Note: This table reports the results of Granger-causality in expectiles between stock market return

(NYSE, S&P, FTSE) and volume. Each entry is a test for the null hypothesis of non-causality from

volume to return at a given expectile � ; for � 2 (0; 1). ***. **, and * denote signi�cance at 1%; 5%,

and 10% levels, respectively, and the corresponding critical values are 11.344, 7.814, and 6.251 for

�2 (3) [Number of Lags = 3], and 23.209, 18.307, and 15.987 for �2 (10) [Number of Lags = 10], and

26.217, 21.026, and 18.549 for �2 (12) [Number of Lags = 12].

22



regression-based tests. In this section, we apply the Granger causality in expectiles tests to

examine the causal relationship between stock prices and exchange rates.

5.2.1 Data description and results

For this second application, we use data on S&P 500 Index and US/Canada, US/UK and

US/Japen exchange rates. The data sets consist of monthly observations on S&P 500 Index

and exchange rates and their obtained from St. Louis Fed and Yahoo Finance, respectively,

and the sample runs from January 2004 to January 2020 for a total of 193 observations. As in

the �rst application, we perform ADF-tests for testing non-stationarity of the logarithmic price

and exchange rates and their �rst di¤erences. The results show that all variables in logarithmic

form are non-stationary, whereas their �rst di¤erences are stationary. Thus, we model the �rst

di¤erences of logarithmic price and exchange rates rather than their level.

To test the causality in expectiles from exchange rates to stock market return, we use the

expectile regression:

rt = �0 (�) +

qX
j=1

�j (�) rt�j +

qX
j=1

�j (�) ex
US/i
t�j + ��t ;

where exUS/it�j ; for i =Canada, UK and Japen, is the growth rate of exchange rate US/country i

at time t� j; rt�j is the continuously compounded return from the S&P 500 index at time t� j,

and ��t is the error term with zero conditional expectile. As before, returns are calculated as rt =

100� (ln (pt)� ln (pt�1)) and exchange rates as exUS/it�j = 100�
�
ln
�
EX

US/i
t

�
� ln

�
EX

US/i
t�1

��
;

where pt and EX
US/i
t are the price of S&P 500 index and exchange rate US/country i at time

t, respectively. We then test the null hypotheses:

H�
0 : �(�) = 0 versus H�

1 : �(�) 6= 0

and

H0 : �(�) = 0; 8� 2 (0; 1) versus H1 : �(�) 6= 0 for some or all � :

where �(�) =
�
�1 (�) ; :::; �q (�)

�0
: The former null H�

0 corresponds to testing non-causality

from growth rate of exchange rate to stock return at a given expectile � ; whereas the latter null

hypothesis H0 is about testing non-causality at all expectiles � 2 (0; 1), which is equivalent to

testing independence between growth rate of exchange rate and stock return.
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Table 9: Granger-causality in expectiles between stock market return and exchange rates

Number of Lags = 3 Number of Lags = 10 Number of Lags = 12

� EXCAD EXUK EXJAP EXCAD EXUK EXJAP EXCAD EXUK EXJAP

0.01 0.987 8.271�� 7.562� 30.67��� 5.091 13.16 16.64 165.84��� 22.59���

0.05 0.610 6.298� 1.973 26.73��� 12.28 10.74 37.39��� 63.03��� 11.10

0.1 0.913 8.331�� 1.404 12.12 21.61�� 8.635 27.29��� 49.02��� 10.47

0.2 1.143 11.17�� 1.202 11.62 21.42�� 8.293 18.58� 43.47��� 9.524

0.3 1.127 9.474�� 1.057 10.82 18.49�� 8.642 16.52 31.88��� 9.763

0.4 1.114 8.207�� 0.927 11.12 18.74�� 9.633 15.14 26.30��� 9.594

0.5 1.076 7.508� 0.746 11.41 16.72� 8.495 14.39 21.90� 9.115

0.6 1.072 6.861� 0.581 11.95 14.96 8.130 13.53 19.11� 8.925

0.7 1.060 6.387� 0.371 12.89 14.11 7.836 13.90 17.91 8.923

0.8 0.94 6.008 0.216 14.23 12.48 8.147 14.78 16.03 8.861

0.9 0.547 4.232 0.106 17.83 11.05 7.656 13.22 12.15 7.734

0.95 0.571 4.262 0.012 11.11 16.13 7.502 14.67 14.87 6.497

0.99 1.631 5.328 2.308 22.37�� 7.016 5.216 12.43 13.67 7.931

Sup-Wald 1.631 11.33�� 7.562� 30.67��� 22.66�� 14.99 57.31��� 165.84��� 22.59���

Note: This table reports the results of Granger-causality in expectiles between stock market return

and exchange rate (EXCAD; EXUK ; EXJAP ). Each entry is a test for the null hypothesis of non-

causality from exchange rate to return at a given expectile � ; for � 2 (0; 1). ***. **, and * denote

signi�cance at 1%; 5%, and 10% levels, respectively, and the corresponding critical values are 11.344,

7.814, and 6.251 for �2 (3) [Number of Lags = 3], and 23.209, 18.307, and 15.987 for �2 (10) [Number

of Lags = 10], and 26.217, 21.026, and 18.549 for �2 (12) [Number of Lags = 12].
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The results for di¤erent lags q are reported in Table 9. The latter shows that there is a strong

Granger causality from US/UK exchange rate to S&P 500 index price at di¤erent expectiles, in

particular the lower expectiles and up to 0.7 expectile. We also �nd some evidence of causality

in expectiles from US/Canada and US/Japan exchange rates to S&P 500 index price, although

it is less present compared to causality from US/UK exchange rate to S&P 500 index price.

The Kolmogorov-Smirnov type-Wald test also con�rms the causality from these exchange rates

to stock returns, especially when the number lags is high (q = 10, 12).

6 Conclusion

We proposed a consistent parametric test of Granger causality at a given expectile. We also

derived a sup-Wald test for jointly testing Granger causality at all expectiles that has the

correct asymptotic size and power properties. Working with expectiles has the advantage of

capturing similar information as quantiles, but expectiles has the merit of being much more

straightforward to implement than quantiles, since expectiles are de�ne as least squares analogue

of quantiles. In other words, studying Granger causality in expectiles is practically simpler and

allows us to examine the causality at all levels of the conditional distribution. In addition,

testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger

causality in distribution. A Monte Carlo simulation study revealed that our tests have good

�nite-sample size and power properties for a variety of data-generating processes and di¤erent

sample sizes. We also compared the properties (size and power) of our expectile-based test with

the existing quantile-based test for a range of values of � : The simulation results showed that

our test outperforms the test based on quantile regression even for weak degree of causality and

in both small and large samples. Finally, we provided two empirical applications to illustrate

the usefulness of our tests. In these applications, we re-examined the Granger causality from

volume and exchange rates to stock returns using expectile regressions.
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7 Appendix A: Proofs

This appendix contains the proof of the main result in the text.

Poof of Theorem 1: Consider the check function:

� (u) = j� � I (u � 0)ju2 =  � (u)u
2; for � 2 (0; 1) :

The derivative of the function � is given by �0 (u) = 2u � (u). The main idea of the proof of

Theorem 1 is based on the following decomposition:

� (u� v)� � (u) = �2uv � (u) + v2 � (u) + (2� � 1)R (u; v) (u� v) ; (13)

where R (u; v) = (I (u � 0)� I (u � v)) (u� v) =
R v
0
[I (u � s)� I (u � 0)] ds:

Let ��t = yt � x0t�1� (�) and vt =
�0xt�1p

T
. Denote by

HT (�) =

TX
t=1

[� (��t � vt)� � (��t )] :

From (6), we can show that

p
T
�
�̂ (�)� � (�)

�
= argmin

�2Rd+1
HT (�) :
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Note that HT (�) is a convex random objective function that can be decomposed using (13) as

follows:

HT (�) = H1;T (�) +H2;T (�) +H3;T (�);

where
H1;T (�) = ��UT = �2p

T

PT
t=1 �

0xt�1�
�
t � (�

�
t ) ;

H2;T (�) =
1
T

PT
t=1 �

0xt�1x
0
t�1� � (�

�
t ) ;

H3;T (�) = (2� � 1)
PT

t=1R (�
�
t ; vt) (�

�
t � vt) :

Now, �rst using the fact that 0 � R(�� ; v) and that jR (�� ; v) (�� � v)j = R (�� ; v) j(�� � v)j �

R (�� ; v) jvj ; we obtain

jH3;T (�)j � j(2� � 1)j
j�0xt�1jp

T

TX
t=1

R (��t ; vt) :

From Koenker(2005, pages 121-122), we have
PT

t=1R (�
�
t ; vt) = Op (1) : Hence, one can deduces

that H2;T (�) = op (1) : Second, under Assumptions A.1 and A.2 and the fact that 	� =

E
�
 � (�

�
t )xt�1x

0
t�1
�
is �nite, we have:

H2;T (�) =
1

T

TX
t=1

�0xt�1x
0
t�1� � (�

�
t ) = �0E

�
xt�1x

0
t�1 � (�

�
t )
�
� + op (1) = �0	�� + op (1) :

Third, since xt�1 2 IY Z(t � 1); then E [��t � (��t ) jIY Z(t� 1)] = 0 and xt�1��t � (�
�
t ) is a mar-

tingale di¤erence sequence. Hence H1;T (�) satis�es the conditions of central limit theorem.

Following similar arguments in Portnoy (1984), we can show the tightness of the autoregressive

and thus the weak convergence of the empirical process 1p
T

PT
t=1 xt�1�

�
t � (�

�
t ) ; i.e.,

1p
T

TX
t=1

xt�1�
�
t � (�

�
t ) =) Z (�) ;

where Z (�) is a Gaussian process with covariance function

Cov(Z(� 1);Z(� 2)) = 	�1�1 	�1;�2	
�1
�2
;

where 	� i = E[ � i(�
� i
t )xt�1 x

0
t�1]; for i = 1; 2, and 	�1;�2 = E[ �1(�

�1
t ) �2(�

�2
t )�

�1
t �

�2
t xt�1 x

0
t�1]:

Finally, from Assumption A.3, the basic corollary of Hjort and Pollard (1993), and

HT =
�2p
T

TX
t=1

�0xt�1�
�
t � (�

�
t ) +

1

T

TX
t=1

�0xt�1x
0
t�1� � (�

�
t ) + op (1)

P�! �2�0Z (�) + �0	��;

we can deduce that
p
T
�
�̂ (�)� � (�)

�
=) �	�1� Z (�) :

Which concludes the proof of Theorem 1.
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