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Abstract

It is well known, in structural break problems, that it is much easier to detect
the existence of a break in a data set than to determine the location of such a break
in the sample span. This paper investigates why, in the context of Gaussian linear
regressions, using a decision theory framework. The nub of the problem, even for
moderately sized breaks, is that the posterior probability distribution of the possible
break points is usually not very informative about the true break location. The in-
formation content is measured here by a proper scoring rule. Hence, even a locally
optimal break location procedure, as introduced here, is ine¤ective. In the regres-
sion context, it turns out to be quite common, indeed the norm, for break location
procedures to misidentify the true break position up to 100% of the time. Unfortu-
nately too, the magnitude of the di¤erence between the misidenti�ed and true break
locations is usually not small.

Keywords: CUSUM test, Phantom Break Locations, Structural change

1 Introduction

Structural break procedures typically proceed by �rst determining if a break exists in a
sample and, if so, they suggest a location in the sample span for the break to have oc-
curred. Unfortunately, even for breaks that are of moderate magnitude relative to a given
sample size, it appears that detecting the existence of a break is fairly easy while subse-
quently identifying the correct location is very di¢ cult and sometimes almost impossible.
This leads to the conclusion that many suggested break locations are potentially spurious
because, as argued persuasively by Elliott and Muller (2007), small breaks appear to be
empirically very relevant. The objective of this paper is to explore this issue of phantom
break locations in the context of Gaussian linear regressions. We �rst derive a locally
optimal procedure for �nding a break location in a (Bayesian �avoured) frequentist deci-
sion theory framework. This provides a baseline against which other procedures may be
compared. In this way, we also directly analytically address the question of how di¢ cult it
is to determine the location of breaks by examining the (posterior) probability distribution
of the possible break locations. The basic problem is that the posterior distribution of the
possible break points will contain little information on the true break position for small
to moderate break sizes. The information content of the break point distribution relative
to the true break point is measured by a proper scoring rule; the spherical score. This
analysis is valid in �nite samples and does not rely on embedding a model in, a possibly
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arti�cial, sequence of experiments, as would be necessary for a large sample asymptotic
analysis.
A locally optimal procedure is suggested and it is based on the posterior distribution of

the break points which is approximated by a residual CUSUM process. The maximum of
the cusum process tests for the existence of a break and the argmax identi�es the location,
when the test rejects. The procedure can easily reject the hypothesis of no break (power),
but it is not able, despite the optimality, to overcome the potential lack of information
in the sample and identify the correct break location reliably (an ability we might call
sensitivity). In fact, the CUSUM procedure can misidentify the true break point 100%
of the time for larger sample sizes as the argmax is shown to be a biased estimator of the
true break point. This makes spurious (phantom) break location identi�cation endemic
in this situation. Unfortunately, it is not the case that, when the CUSUM procedure
misidenti�es a break location, the magnitude of the error is small and, perhaps, of little
practical signi�cance. Large sensitivity errors are very frequent, especially at smaller
sample sizes.
The structure of the paper is as follows. We set up the regression decision model in

Section 2 and derive the locally optimal decision rule in Section 3. In Section 4, we discuss
the posterior distribution for break points while Section 5 introduces the broken trend
model as an exempli�er and assesses the information content of the posterior. Section 5.2
provides a theoretical investigation of the behaviour of the argmax, using orders of magni-
tude based on the sample size and shows that the argmax of the CUSUM is systematically
biased for the true break location. Sub-section 5.3 introduces a weighted modi�cation, the
W -CUSUM , that eliminates bias. It turns out that this W -CUSUM is equivalent to the
popular structural break test of Bai (1997). Section 6 conducts some simulations. These
simulations assess the information in the posterior of the model as well as the power and
sensitivity of the CUSUM and W -CUSUM procedures. The simulated behavior of the
argmax of the CUSUM procedure is also discussed in this Section and it is noted that
the mode of the argmax distribution is biased for the true break point, in general, in con-
formity with the theoretical results in Section 5.2. While the W -CUSUM eliminates the
bias, unfortunately this is accompanied by a relatively larger spread and is insu¢ cient to
overcome the lack of information in the posterior. The �nal Section concludes and suggests
an empirical strategy.

2 The Regression Decision Model

The set of models we consider for the observations is (see McCabe and Rao (2017) for
more details on the basic setup) the multiple regression

y = X� + !q� + " (1)

" s N(0; �2I)

where y is a T �1 vector of observations, X is a T � k full rank matrix of variables that
is conditioned on, � is a vector of unknown coe¢ cients and " is a vector of independent
normal disturbances with zero mean and variance �2. The independent variables are
assumed to be ordered in some way like a trend or seasonal in time series applications
or by a treatment e¤ect in cross sections. The regressors may be random and follow a
stochastic process, for example, they may be stationary or unit root processes; the essential
feature is that their distribution does not depend on �, hence X is ancillary and therefore
conditioned upon. The form of the structural break is captured by !q� with !q being a
�xed vector and � a scalar which may be positive or negative indicating the magnitude
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of the break. For example, !q =

0@ q�1z }| {
0; :::; 0; 1; :::; 1

1A0

would model a shift in the intercept

after position q.
We use the notation r = My, M = I � X (X 0X)

�1
X 0, �̂2 = r0r= (T � k) and cq =

!0qM!q. The distribution of the maximal invariant (under the addition to y of vectors
of the form X� and multiplication of y by scalars c 6= 0) may be written in terms of the
residuals, r, of the regression of y on X as

fq (rj�) = c: exp
�
�1
2
�2cq

�
(r0r)

�(T�k)
g

 
�
!0qr

(r0r)
1=2

!
(2)

where g (x) =
R1
0
exp

�
� 1
2u

2
	
cosh (ux)uT�k�1du. Here and throughout c is a generic

normalising constant. Unfortunately, fq is pretty intractable and so we approximate locally
in terms of the parameter �. This is done in the following theorem using the previously
de�ned notation.

Theorem 1 When terms of order �4 and above are ignored, an approximate expression
for the maximal invariant (2) corresponding to the model (1), is given by

faq
�
rj�2

�
= c: (r0r)

�(T�k)
 
1 +

1

2
�2

"�
!0qr
�2

�̂2
� cq

#!
: (3)

The proof of this theorem is in the Appendix.

3 Locally Optimal Break Locations Rules

We wish to decide between, H0, a model with no break or, H2, a break at position q = 2
speci�ed by !2� or, H3, a break at position q = 3 speci�ed by !3� and so on up to position
q = T . Thus we have a multiple decision problem with T models to choose from. It follows
from Ferguson (1961, 1967) that an optimal rule for deciding if a break exists and if so,
where in the sample span it is located, takes the form

Decide H0 : if max
q2[2;T ]

pqfq < K

otherwise

Decide Hq� : q� being the argmax of max
q
: (4)

Here fq is the fully speci�ed density of the observations and each of the possible break
points is assigned prior weights/probabilities pq. The constant K is used to determine the
size of the initial test and the rule is uniform in �2. Unfortunately, it is not possible to
use fq in (2) as it is intractable. However, using the approximation faq in (3) allows an
approximately optimal procedure to be constructed for any prior values pq.
We now consider the scenario where we do not have any information favouring a break

in one location over another and so the prior weights/probabilities of a break over the span
are uniform. Using (3), the locally optimal procedure is based on the test

max
q2[2;T ]

( �
!0qr
�2

�̂2
� cq

!)
:
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This procedure is locally invariant admissible i.e. the probability of deciding a break
at position q, given the break did occur at q, i.e. P (Dec qjHq), cannot be increased by any
other invariant rule without decreasing the equivalent P (Dec sjHs) at some other point
s 6= q, for small �. It is also a local Bayes rule when a 0 � 1 loss function is used and no
other rule with a smaller Bayes risk exists for small values of �1 .

4 Posterior Distribution for Break Points

Since we often have no real prior information on � or �2 or the sign of �, we may consider
the invariant fq as equivalent to likelihood of the data without the need to specify priors
for these parameters in this decision problem. So, interpreting faq as the (approximate)
likelihood and using a uniform prior on the breaks gives a posterior break distribution
(mass function)

�q
�
�2
�
_ faq

�
rj�2

�
_
 
1 +

1

2
�2

"�
!0qr
�2

�̂2
� cq

#!
(5)

where �q represents the posterior probability that a break occurs at position q. Hence we
see that the optimal rule uses the mode (most probable value) of the posterior distribution
as the screening test. In addition, should the size of the break be small, the posterior will
be quite �at (it may also be deduced that dfq=d�j�=0 = 0 in (2)) indicating there will
be little precise information about the location of the break in the data. Furthermore,
the posterior probability is spread across all T (possibly large) break locations and, when
combined with a �at pro�le (small �), it suggests that the probability allocated to any
individual location q may be small indeed.
To get a quantitative measure of the information in the posterior distribution we calcu-

late a variant of a proper scoring rule as used in the evaluation of forecast density functions
(see, for example, Gneiting et al (2007)). Scoring rules are loss functions where the action
chosen is not represented a simple number but by an entire mass function (or density)
and the loss incurred is a measure of the deviation between what the mass function pre-
dicted for outcomes and the actual realised future outcome itself. We use a variant of the
spherical score i.e.

S = �s=��

where �s is the value of the posterior at the true breakpoint s and �� is the standard
deviation of the �q. Hence S rewards a posterior placing high weight on the true break
location but penalises a large spread. Thus a small value of S indicates that a posterior
will not be very informative about the location of the true break position relative to one
with a large value. Of course, S is only useful in theoretical investigations as s, the true
break location, is not known in empirical contexts. The expression (7) in the Appendix
is used for faq in (5) to compute S, as it is accurate to the order �

6. The expression is
also used in Section 6 to assess the content of the posterior in simulations from the broken
trend model, described next.

1This sort of optimality is in contrast to studying the power of CUSUM tests i.e. the ability to reject
the null of no break against some weighted combination of the possible break points; see, for example,
Andrews et al. (1996) and Forchini (2002).
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5 Broken Trend Model

A commonly used model is the broken (continuous) trend break given (in the usual time
series notation) by

yt = �+ �t+ "t; t = 1; :::; TB � 1 (6)

yt = �+ �t+ � (t� TB) + "t; t = TB ; :::; T

which simultaneously introduces a change in slope and intercept. The matrix used to
compute M is X = [1 t], where 1 is a column of 1�s and t =(1; 2; :::; T )0. The breaks are

speci�ed by !q =

0@ q�1z }| {
0; :::0; 1; :::; (T � q + 1)

1A while cq = !0qM!q q 2 [2; T ]. The test is

then based on

max
q2[2;T ]

8><>:
0B@
�PT

t=q (t� q) rt
�2

�̂2
� cq

1CA
9>=>;

and hence the locally optimal procedure is essentially a mean corrected version of the
ordinary CUSUM based on OLS residuals, see McCabe and Harrison (1980) and Ploberger
and Krämer (1990, 1992).

5.1 The Information in the Posterior: Scoring Rule

We conducted a small simulation study to assess the information in the posterior of the
broken trend model via the S statistic. We simulated the model (6) with � = � = 1,
"t iid N(0; 102) and T = 100. The critical values were computed by the bootstrap and
1; 000 replications were used. We use � = s=T to indicate the true break fraction. The
magnitude of � = 0:6 was chosen as it is the smallest magnitude such that the power of
the test was close to 1 for some value of � over the sample span. This strategy was chosen
to help alleviate the trade-o¤ between size of the break and the size of the sample.
In this simulation environment we are able to calculate the S statistic for each replica-

tion since we know the true break location s. Table 1 shows the average S over the 1; 000
replications while Tables 2 and 3 show the components �s and ��, for three values of �.
Table 3 indicates that the spread of the posterior of the break points is pretty constant
over the span but decreases markedly as T gets larger. On the other hand from Table 2,
the weight allocated by the posterior to the true break point decreases as we move away
from the center of the span. As T increases the situation gets worse and less weight is
allocated by �s. Table 1 suggests that, overall, the shrinking spread is insu¢ cient to o¤set
the lack of precision in �s.

Table 1. Values of S-statistics
� 0:3 0:5 0:7
T = 100 1:2772 2:9487 1:3420
T = 250 1:2082 3:0611 1:2631

Table 2. Values of �s-statistics
� 0:3 0:5 0:7
T = 100 0:0192 0:0447 0:0202
T = 250 0:0069 0:0183 0:0073
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Table 3. Values of ��-statistics
� 0:3 0:5 0:7
T = 100 0:0148 0:0151 0:0148
T = 250 0:0057 0:0059 0:0057

The general conclusion of the Tables is that the approximate posterior does not accu-
rately re�ect the position of the true break except perhaps when it occurs at the center
of the span. While these results refer speci�cally to the information in the posterior itself
they are indicative of how the max and argmax of the posterior will behave. This suggests
that the CUSUM procedure will perform relatively poorly in identifying break locations
that occur away from the center of the span (in the broken trend model) and that the
sensitivity will deteriorate there for larger sample sizes. The next Section investigates the
the behaviour of the posterior process, using orders of magnitude in T , to shed further
light on the behaviour of the argmax of the CUSUM .

5.2 The Information in the Posterior: Analytic

We investigate the observed process

Cq;s =

�
!0qrs

�2
�̂2s

� cq

which is the posterior, up to a linear transform, and also the process on which the CUSUM
procedure is based when the true breakpoint occurs at s in (1). Speci�cally, we have

rs = Mys =MX� +M!s� +M"

= M!s� +M"

and �̂2s is the usual variance of the residuals. It does not seem feasible to establish the
�nite sample distribution of argmaxq Cq;s But E [Cq;s] is an average or typical residual
based pro�le over q, given the break position s. Thus we suggest that argmaxq E [Cq;s]
be investigated to assess the information in the posterior and to see how the identi�cation
procedure might behave when the true break point is at s. Despite the fact that Cq;s
involves ratios, we can approximate and use the ratio of the expectations i.e.

E

"�
!0qrs

�2
�̂2s

#
'
E
h�
!0qrs

�2i
E
�
�̂2s
� :

In fact, when � = 0 we have a ratio of quadratic forms in normal variables and the ratio
is independent of the denominator (See Pitman (1937)). The expectation of the ratio is
then the ratio of the expectations and the approximation is exact. It may, therefore, also
be considered accurate for small � and, in any event, the approximation is the �rst term
in a Taylor series expansion for the ratio. The expectation in the numerator is

E
h�
!0qrs

�2i
=

�
!0qM!s

�2
�2 + E

�
!0qM":"

0M!q
�

� c2q;s�
2 + �2cq:
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Following McCabe and Rao (2017) and after some lengthy algebra outlined in the Appen-
dix, we have, using � = q=T , � = s=T and the broken trend model,

cq = T 3
1

3
�3 (1� �)3 + o

�
T 3
�

cq;s =
1

6
T 3 (1�max (� ; �))2 (3 j�� � j � 2max (� ; �) + 2)

�1
6
T 3 (1� �)2 (1� �)2 (� + �+ 2��+ 2) + o

�
T 3
�

� 1

6
T 3g (� ; �) + o

�
T 3
�

which gives the orders of magnitude as T 3 under the no break model. It also follows that

E

�
r0srs
T

�
= �2 + �2T 2

1

3
�3 (1� �)3 + o

�
T 2
�
:

Collecting terms, in orders of magnitude, we get

E

"
T�3

�
!0qrs

�2
�̂2s

#
�

T 3
�
1
6g (� ; �)

�2
�2

�2 + �2T 2 13�
3 (1� �)3

+
�2�3 (1� �)3

�2 + �2T 2�3 (1� �)3

which is of order T when a break is present. Thus, our large T approximate expression
for calculating the argmax when � 6= 0 is

E

"
T�4

 �
!0qrs

�2
�̂2s

� cq

!#
�
�
1
6g (� ; �)

�2
1
3�

3 (1� �)3

Even though this expression appears quite complex and g is not di¤erentiable in � , it is
easy to derive the argmax by simply plotting the function over � . Given a true break point
�, such a diagram shows (approximately) what a typical residual based pro�le looks like
over � as well as its argmax.

In Figure 1, the pro�le of the CUSUM is the solid line shown in red. From the left
panel, we see that the argmax of the pro�le does not match the true � = 0:3 and takes
a value somewhat greater than 0:4. This over positioning by the CUSUM argmax is a
general feature for � < 0:5. For � = 0:5 the argmax is properly positioned. For � = 0:7 the
argmax understates the true break position. This too is a general feature for � > 0:5. We
can surmise that outside of the center of the span (for the broken trend model), the argmax
of the CUSUM distribution is systematically biased and hence the CUSUM procedure
is incapable of �nding the true break location reliably.

5.3 A Modi�ed Procedure

It is interesting to enquire if the bias of the CUSUM could be removed by a suitable
transformation. Now, V [!qr] = �2cq and hence

V

"
1

c
1=2
q

!0qr

#
= �2:
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Figure 1: Expected Residual Pro�le of the W-CUSUM and CUSUM

Thus the weighted cusum process has constant variance for all q. This suggests the use of
the W -CUSUM

max
q2[2;T ]

c�1q

�
!0qr
�2

�̂2
= max

q2[2;T ]
c�1q

�PT
t=q (t� q) rt

�2
�̂2

in the broken trend model and it is equivalent to the minimum sum of squares test of Bai
(1997) (see McCabe and Rao (2017)).
Repeating the algebra of the previous section we get the expectation of the residual

based pro�le

E

"
T�1

�
!0qr
�2

cq�̂
2

#
�

�
1
6g (� ; �)

�2
1
3�

3 (1� �)3 13�3 (1� �)
3 :

This is graphed in Figure 1 and is shown as the dotted line in blue. The lack of bias in
the argmax of the typical weighted residual based pro�le is evident. In the next Section
we conduct some simulation studies to get more detailed information on the behaviour of
the CUSUM and W -CUSUM processes.

6 Simulations

Using the same setup as in Section 5.1, we conducted a simulation to assess power and
sensitivity of the CUSUM and W -CUSUM procedures. We also simulate the sampling
distribution of the argmax itself. First we discuss the CUSUM whose results are displayed
in the right hand panels of the diagrams below. Subsequently, we discuss the W -CUSUM
whose results are in the left hand panels.
The right hand panel of Figure 2 illustrates the performance of the CUSUM at T =

100; the top line shows the power (the ability to reject the no break model) while the
lower line shows the sensitivity. It is clear that the test has greatest power in the center
of the span but that tapers o¤ towards the extremities. But, the most striking feature of
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Figure 2: The power and percentage of times the correct location was identi�ed for the
W-CUSUM and CUSUM procedures for T = 100

the diagram is that, even when the power is close to 1, the procedure is not e¤ective in
identifying the exact location of the break (just 13% of the time).
To give an idea of the spread of possible values chosen by the procedure we plot, in the

right hand (CUSUM) panels of Figure 3, the frequency distribution of the chosen break
points (the argmax) for three true values of �, again at T = 100. When the true � is 0:3,
in the top panel, the mode of the argmax distribution badly overestimates the true break
point, being located around position 40. In the center panel, when the true position is
50, the modal value is well positioned but with a small positive bias while Panel three,
where � = 0:7, is a mirror image of � = 0:3 with the mode of the argmax distribution
underestimating the true breakpoint. These results are in conformity with the algebraic
derivations of Section 5.2. In all cases the argmax distribution based on the CUSUM
has a quite large spread, increasing as � deviates from 0:5. The implication is that the
magnitude of the sensitivity error can be very large indeed in smaller sample sizes.
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Figure 4: The power and the percentage of times the correct location was identi�ed for
the W-CUSUM and CUSUM procedures for T = 250

Next the sample size was increased to T = 250, the smallest size such that the power
was 1 for almost all of the span. The results are presented in Figure 4 in the right hand
panel.

The ability to identify the correct location of the break improves at the � = 0:5 central
position (from 13% to 23% ) but in other areas of the span the sensitivity of the CUSUM
procedure is essentially zero! The argmax frequency distributions are shown in Figure 5
for various � again on the right.
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The variation of the argmax distributions shrinks but the biases do not. When the
break deviates from the center of the span, there is no intersection whatsoever between
the distribution and the true break position, for the larger sample size. In this situation,
all the argmax suggestions of a break location are incorrect. The unfortunate implication
of this is that while the procedure �ags the existence of a break with probability close to
1, it almost certainly misidenti�es the location e.g. a phantom location is suggested 100%
of the time by the CUSUM over almost all of the span. Not only that but the size of
the sensitivity error, while signi�cantly reduced at the larger sample size, remains quite
substantial. These �ndings are complimentary to the information gleaned from the scoring
rule S of Section 5.1.
The left hand panels of Figures 2 to 5 show the performance of theW -CUSUM . From

Figure 2 we see that the power of the W -CUSUM is less than that of the CUSUM in the
center of the span at T = 100. From Figures 2 and 4 we see the ability of the W -CUSUM
to identify the correct break location is also less in the center of the span but marginally
better near the extremities. From Figure 3, it is clear that the bias has indeed been
eliminated from the distribution of the W -CUSUM argmax but that the price paid is an
increase in the spread of the distribution. This translates into much greater sensitivity
error for the W -CUSUM . Figure 5 also demonstrates the lack of bias and the gain in
precision for T = 250 but the ability to �nd the correct location is still quite low (under
10% at best)

7 Conclusions

This paper investigated the phenomenon whereby structural change tests correctly recog-
nise that a break has taken place but fail to correctly identify the location thereby giving
rise to phantom break locations. The broken trend model and two CUSUM procedures
are used to illustrate but the ideas are quite general. The basic problem is that the pos-
terior distribution of the possible break points contains too little information on the true
break position even for moderately sized � in relation to a given sample size. This lack
of information is quanti�ed by a variant of a spherical score measure. The two CUSUM
procedures are compared and they both perform best in identifying the break location
(though quite poorly!) if the break occurs at the center of the span for the broken trend
model. The locally optimal CUSUM dominates the weighted version there for small �.
When a break occurs that is not in the center of the span, the performance of both pro-
cedures deteriorates with the CUSUM misidentifying the true break point 100% of the
time for larger sample sizes. An analysis based on orders of magnitude shows that the
argmax of the CUSUM procedure is badly biased for the true break point outside the
center of the span while that of the weighted version is not. Unfortunately removing the
bias is insu¢ cient to overcome the paucity of information in the posterior, resulting in the
argmax distribution of the W -CUSUM having a very wide spread unless the sample size
is large. In consequence, the magnitude of the di¤erence between the misidenti�ed and
true break locations (sensitivity error) is much larger for the W -CUSUM than it is for
the CUSUM in small and moderate samples.
These results suggest a strategy for applications. Apply both tests. If both tests

accept the no break model, proceed on that basis. If one test only rejects, accept the
recommended break location. If both tests reject, accept the recommendation of the W -
CUSUM . Of course, this strategy cannot overcome lack of information about the break
position in the sample. However, if there is some guidance as to the location of a possible
break, induced by some major event say, then the observation span could be tailored so
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that the possible break location is near the center of the span (for the broken trend model)
and/or non uniform prior probabilities for the possible break locations employed. Other
models may require positioning the potential break location at other fractions of the span
but these may be deduced by the same methods that are employed here, see McCabe and
Rao (2017).

APPENDIX
Proof on Theorem
Since cosh (x) = 1 + x2

2! +
x4

4! + ::: and using x = �rq, rq = !0qr= (r
0r)

1=2 we may
approximate g (x) =

R1
0
exp

�
� 1
2u

2
	
cosh (ux)uT�k�1du to getZ 1

0

exp

�
�1
2
u2
��
1 +

u2x2

2!
+
u4x4

4!

�
uT�k�1du

=

Z 1

0

exp

�
�1
2
u2
�
uT�k�1du+

x2

2!

Z 1

0

exp

�
�1
2
u2
�
u2:uT�k�1du

+
x4

4!

Z 1

0

exp

�
�1
2
u2
�
u4:uT�k�1du

= k1 + �
2 1

2
k2r

2
q + �

4 1

4!
k3r

4
q

With a bit of algebra the integrals in the constants k1 and k2 may be computed usingR1
0
exp

�
� 1
2u

2
	
uMdu = 2

M�1
2 �

�
M+1
2

�
which gives k2 = k1 (T � k), k3 = k1 (T � k + 2) =2

and g (�rq) � k1
�
1 + �2 12 (T � k) r

2
q + �

4 1
48 (T � k + 2) r

4
q

�
The maximal invariant fq = c exp

�
� 1
2�
2cq
	
(r0r)

�(T�k)
g (�rq) itself may then be ap-

proximated by expanding the exponential. Including higher order powers in the expansion,
we have, ignoring �6 and higher and approximating with �̂2 = r0r=T ,

faq = c:

�
1� 1

2
�2cq +

1

8
�4c2q

�
(r0r)

�(T�k)
�
1 + �2

1

2
(T � k) r2q + �4

1

48
(T � k + 2) r4q

�
(7)

= c: (r0r)
�(T�k)

�
1 +

1

2
�2
�
(T � k) r2q � cq

�
� �4 1

4
(T � k) c2qr2q + �4

1

48
(T � k + 2) r4q +

1

8
�4c2q

�
= c:

 
1 +

1

2
�2

"�
!0qr
�2

�̂2
� cq

#
+ �4

 
�1
4
cq

�
!0qr
�2

�̂2
+
1

48

�
!0qr
�4

�̂4
+
1

8
c2q

!!

We use this expansion when computing the posterior for the spherical score. Note�
1� 1

2
�2cq +

1

8
�4c2q

�
=

1

2

�
2� �2cq +

1

4
�4c2q

�
=

1

2

�
1 + 1� �2cq +

1

4
�4c2q

�
=

1

2

 
1 +

�
1

2
�2cq � 1

�2!

and so faq in (7) is always positive. Ignoring terms �
4 and higher gives the simpler expres-

sion

faq = c:

�
1 +

1

2
�2
h�
!0qr
�2
=�̂2 � cq

i�
:
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and this approximation is suitable for deriving local procedures that are uniform in �2.

Derivation of the Orders of Magnitude
Consider the regression where X consists of a column on 1�s and the variable xt i.e.

X = [1 x]. De�ne � =
PT

j=1 (xj � �x)
2, x2 =

PT
j=1 x

2
j=T and vectors ~x =x21 � �xx,

x̂ = x��x1 with 1 being a column of 1�s. Then

I �X (X 0X)
�1
X 0 = I ���1

�
~x10 + x̂x0

�
In the case of the broken trend, with bq = (0; :::; 0; 1; :::; (T � q + 1)), and substituting

the trend notation t = x we get

cq = b
0
qbq � t2��1 (10bq)

2 ���1 (t0bq)2 + 2�t��110bqb0qt:

Hence using � to denote orders of magnitude and with
PT

t=1 t
2 � 1

3T
3 and

PT
t=1 t � 1

2T
2

we see

cq �
(T � q)3

3
� T

2

3

12

T 3

 
(T � q)2

2

!2
� 12

T 3

�
1

6
(T � q) (T � q) (2T + q)

�2
+ T

12

T 3
1

6
(T � q) (T � q) (2T + q) (T � q)

2

2

=
1

3T 3
q3 (T � q)3

=
1

3
T 3�3 (1� �)3

with � = q=T . Let p = max (q; r), � = s=T and noting that b0qt =
PT�q

j=1 j (q + j) =
1
6 (T � q) (T � q + 1) (2T + q + 1) �

1
6 (T � q)

2
(2T + q) we �nd

cq;s = b
0
qbs � t2��1b0q110br + �t��1b0qt10bs ���1b0qtt0bs + �t��1b0q1t0bs

� (T � p)3

3
+ js� qj (T � p)

2

2

� T
2

3

12

T 3

 
(T � q)2

2

! 
(T � s)2

2

!
+
T

2

12

T 3

�
1

6
(T � q)2 (2T + q)

� 
(T � s)2

2

!

� 12

T 3

�
1

6
(T � q)2 (2T + q)

��
1

6
(T � r)2 (2T + s)

�
+
T

2

12

T 3

 
(T � q)2

2

!�
1

6
(T � r)2 (2T + s)

�

=
1

3
(T � p)3 + js� qj (T � p)

2

2
� 1

6T 3
(T � q)2 (T � s)2

�
Tq + Ts+ 2qs+ 2T 2

�
=
1

6
T 3
h
(1�max (� ; �))2 (3 j�� � j � 2max (� ; �) + 2)� (1� �)2 (1� �)2 (� + �+ 2��+ 2)

i
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