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Abstract

This paper studies an optimal growth model where there is an infectious disease with
SIR dynamics which can lead to mortality. Health expenditures (alternatively intensity
of lockdowns) can be made to reduce infectivity of the disease. We study implications
of two different ways to model the disease related mortality - early and late in infection
mortality - on the equilibrium health and economic outcomes. In the former, increasing
mortality reduces infections by decreasing the fraction of infectives in the population,
while in the latter the fraction of infectives increases. We characterize the steady states
and the outcomes depend in the way mortality is modeled. With early mortality,
increasing mortality leads to higher equilibrium per capita output and consumption
while in the late mortality model these decrease. We establish sufficiency conditions
and provide the first results in economic models with SIR dynamics with and without
disease related mortality - a class of models which are non-convex and have endogenous
discounting so that no existing results are applicable.
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1 Introduction

The Covid-19 pandemic has brought the study of interaction of infectious disease with the
economy, i.e. economic epidemiology models, to the frontier of economic research. The first
generation of economic epidemiology models typically studied SIS models without disease
related mortality. 1 However, with Covid-19 the modeling of mortality has become important
as this seems to be a driver of the policy responses adopted in many countries.2

This paper analyses the SIR model which has been used to model Covid-19 (Ferguson,
et al. (2020)) when there is disease related mortality3 in a neoclassical growth model so
that the model is fully general equilibrium.4 The literature has largely studied immediate
effects of Covid-19 and in this paper we concentrate on the medium to long run effects,
i.e. effects of the disease on the steady state.5 Households can save through investing in
capital and production of the single consumption good uses capital and labor. Only those
that are not infected (i.e. those who are susceptible and those recovered from the disease)
individuals can work. There are two effects of the disease: there is morbidity, i.e. those who
are ill do not work, and there is mortality, so that a fraction of those who have contracted
the disease die due to it. The contact rate is endogenous in the model and is decreasing in
health expenditures, which can also be interpreted as self-isolation costs (Eichenbaum, et
al. (2020).6 In our model the households are homogeneous and we do not model disease
related externality where households do not take into account the effect of their decisions
on the evolution of the disease in the population. The recent paper, Goenka and Liu (2020)
explores in detail the effect of this health externality7 in a dynamic general equilibrium model
with health expenditures and we abstract from it to concentrate on the role of mortality in
modeling diseases of the SIR type. In the model we use an extended welfare function

1See et al. (2004), Goenka and Liu (2013, 2020), Goenka, Liu and Nguyen (2014), and Toxvaerd (2019)
and the references there.

2Boucekkine and Laffargue (2010) and Chakraborty, et al. (2010) model disease related mortality in the
overlapping generations framework but did not use a compartment epidemiology model as in this paper and
the emerging literature.

3Whether there is long-lasting immunity in Covid-19 is contentious. Long, et al. (2020) using data from
China find evidence consistent with steep decline in 2-3 months. Similar results were found in a study in
the US (Ibarrando, et al. (2020)). On the other hand Wajnberg, et al. (2020) and Sekine, et al. (2020) find
evidence suggesting longer immunity. Dan, et al. (2021) find evidence that suggests immunity lasts atleast
8 months in a cohort study. As in our companion paper we have studied issues related to the SIS model,
here we study implications of the alternate, SIR model.

4Goenka, Liu and Nguyen (2020) in a companion paper study optimal lockdown and other issues in a
SIS model with disease related mortality.

5There are other papers using the SIR model with disease related mortality e.g. Acemoglu, et al. (2020),
Alvarez, et al. (2020), Eichenbaum, et al. (2020), and Jones, et al. (2020). These papers concentrate on
short-run models and are not fully general equilibrium as all variables (wages, interest rate, and capital) do
not adjust.

6Goenka and Liu (2020) and Goenka, Liu and Nguyen (2020) modeled optimal health expenditures in
a similar growth framework. These papers treated health expenditures as accumulating in health capacity
which is important for understanding response to Covid-19 and the mortality due to it. This introduces
another state variable and in this paper to simplify the analysis we treat health expenditures as only a flow
variable.

7This has been modeled in different ways in the literature, see Geoffard and Philipson (1996), Gersovitz
and Hammer (2004), Goenka and Liu (2020), and Hellwig, et al. (2020).
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that depends on utility from consumption as well as a loss in welfare from disease related
mortality as without it there can be counter-intuitive effects where increase in mortality is
welfare improving.8

There are two main methodological issues that we feel have not received adequate at-
tention which we study in the paper. The first is examining different modeling choices for
modeling mortality in the SIR model. We present a general model where encompasses the
two canonical ways of modeling mortality in the epidemiology SIR model - early mortality
so that there is immediate death of the infectives, and late in infection (delayed) mortality
- where death takes place later so that those who succumb to the disease are those who
are not circulating in the population transmitting the disease (see Busenberg and van den
Driessche (1990) and Keeling and Rohani (2008)). This is consistent with the experience
in Covid-19 where most of the mortality has taken place in hospitals and care homes so
that these individuals are not effectively mixing with the general population of susceptibles.
The timing of mortality affects epidemiology dynamics. We examine the implications of the
epidemiology modeling choices on optimal choices and on the equilibrium steady state out-
comes. When there is early mortality, the direct effect of higher deaths is drop in fraction of
infectives which reduces infections, while with later mortality this does not happen. Thus,
there is a self-limiting effect of increase in mortality. This has implications for the cut-off
for persistence, R0, and the long run effect of the disease.

The second methodological issue is that we study the sufficiency conditions for the optimal
control problem. The SIR epidemiology dynamics are non-convex. Endogenous mortality
adds another problem as the population becomes endogenous. The economic epidemiology
SIR model, thus, has endogenous discounting and is non-convex. As a result the standard
Arrow or Mangasarian conditions do not apply. There are no results for the SIR model
with and without mortality that can be used in economic models to our knowledge. 9 We
directly address this issue and given the special structure of the problem, we directly show
the relevant transversality conditions and establish sufficiency by adapting the method of
Leitmann and Stalford (1970) that was used for convex problems.10 The key to the proof
in the current paper is to show the co-state variables associated with the bounded state
variables converge to zero with time, and this implies a different transversality condition
than in Goenka, Liu and Nguyen (2020). As a special case, we obtain the sufficiency in the
SIR model without disease related mortality.

The model is a fully dynamic general equilibrium model and we characterize the Euler
equations that govern the evolution of the economy. As our interest is beyond the very
short run, we show that there are two steady states for the economy: a disease free and
disease endemic steady state. The optimal health expenditure depends on a function of the
parameters and the equilibrium values of the economic variables. This function is interpreted

8See Goenka, Liu and Nguyen (2020) for extensive discussion of the issues associated with modeling the
objective function.

9The transversality and sufficiency conditions for convex endogenous population models (see Boucekkine,
et al. (2018)) do not apply.

10Sufficiency for a neoclassical growth model with SIS disease dynamics without disease related mortality
was established by Goenka, Liu and Nguyen (2014). The recent work, Goenka, Liu and Nguyen (2020)
establishes sufficiency for the SIS model with disease related mortality. There are differences between the
SIS and SIR models: that there is one less state variable for the epidemiology dynamics in the SIS models.
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as the net marginal benefit of health expenditure (net of the marginal cost) and its position
determines whether health expenditures (or non-pharamceutical interventions such as ‘lock-
downs that reduce economic activity) are positive or not in a steady state, and if they
are, their magnitude. Thus, the equilibrium reproduction rate, R∗0 will depend on both the
infectivity of the disease and endogenous economic choices. As the models are too complex
to solve analytically we study how the steady state values of variables of interest change as
the rate of disease related mortality changes (and thus, the number of disease related deaths
in equilibrium). While the actual disease dynamics will typically have both early and late
in infection mortality to understand how each affects equilibrium outcomes we analyze the
polar cases where there is only mortality of one kind in detail. The endogenous economic
choices interact with the inherent disease dynamics. With early mortality model the death of
the infectives directly reduces infections and there is a an indirect concentration effect as the
population size also reduces. If the direct effect dominates then the per capita capital stock,
output and consumption increase as those infected only consume but do not work. When
there is late mortality, death does not directly reduce infections as those who succumb to
the disease are not transmitting infection in the general population of susceptibles. Capital
stock, output and welfare decline as infections are increasing - the fraction of the infectives
in the population is increasing. Thus, the details of the epidemiology modeling will affect
economic outcomes and how to think about optimal control of epidemics.

The plan of the paper is as follows: Section 2 studies the pure SIR model with early and
late mortality. Section 3 introduces the economic epidemiology model, and characterizes the
Euler equations and steady states, and Section 4 does comparative statics of equilibrium
steady state outcomes when mortality is varied. Section 5 studies the transversality and
sufficiency conditions, and Section 6 concludes.

2 The Epidemiological Model

In this section, we introduce the simplest SIR model with disease induced mortality. The
transfer diagram is shown in Figure 1. The total population, N , is divided into three
groups: S, the susceptible (healthy and susceptible to the disease), I, the infective (infected
and capable of transmitting the disease), and the recovered, R (recovered with subsequent
immunity to the disease). Individuals are born at the rate b, healthy and susceptible to the
disease. We assume homogeneous mixing so that the likelihood of any individual contracting
the disease is the same. There is horizontal incidence of the disease i.e. transmission from
peers. Let α be the average number of adequate contacts of a person to catch the disease per
unit time or the contact rate. Then, the number of new cases per unit of time is α(I/N)S,
depending on the fraction of the infected. This contact structure is the standard incidence
or frequency dependant model, commonly used in the epidemiology literature for human
diseases.It is adopted as the pattern of human interaction is relatively stable and invariant
to the size of the population. The recovery of individuals is governed by the parameter ψ
and the total number of individuals who recover from the disease at each time period is ψI.
Each individual faces the exogenous death rate, d, irrespective of health status.

In the epidemiology literature, there are two ways of introducing disease induced mor-
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Figure 1. The Transfer Diagram For the SIR Epidemiology Model with mortality

Note: The total population is divided into three groups: the susceptibles, S, the infectives, I and
recovered, R. The birth rate is b and newborns are born healthy and susceptible. All individuals
irrespective of health status die at the rate d. The susceptible get infected at the rate αI/N and the
infected recover at the rate ψ. In model I (early mortality), the infected die at the rate φ1 due to disease,
while in model II (late mortality) the recovered die at the rate φ2.

tality. The first is early mortality where the infected die at the rate φ1
11 due to the disease.

The second is late in infection mortality where the recovered die at the rate φ2 due to the
disease.12 This difference between the two affects the disease dynamics. In the first way of
modeling (Model I) it affects transmission directly as size of infectives drops due to mortality
while in the second (Model II) it does not.

Mortality among the recovered but not in infectives may seem strange at first. Whether
infectives are asymptomatic, have mild, or severe symptoms, it is their coming into contact
with susceptibles that leads to the transmission of the disease. Early mortality reduces the
fraction of infectives and thus, reduces the transmission of the disease. The interpretation of
late in infection or delayed mortality is that the seriously ill have been identified and isolated
so their mortality does not change the fraction of infectives mixing in the population. This
seems to be the case in the case of Covid-19. In Covid-19 it is those with severe symptoms
who die from the disease and it seems that a large part of this mortality has taken in either
hospitals or care homes. Thus, one can think of them not circulating in the population
and thus, one can treat this group in the recovered group from a modeling point of view.
This is consistent with the evidence that risk of infections in the community are higher than
that in hospitals, i.e. nosocomial infections (Carter, et al. (2020)). The mortality in the
recovered group also covers pre-mature mortality of those who have been treated and free
of the disease. While Covid-19 is too recent to have data on this, there are several other

11φ is similar to the Infection Fatality Rate which also covers those that are untested and asymptomatic
rather than the Case Fatality Rate which depends on the number of individuals diagnosed with the disease.

12The pure SIR epidemiology models with varying population size are well studied in mathematical
biological literature (see Busenberg and van den Driessche (1990), Hethcote (2008), Keeling and Rohani
(2008) and Mena-Lorca and Hethcote (1992)).
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infectious diseases where those who have successfully been treated have shorter conditional
life expectancies: for example for TB it is 3.6 years (Hoger, et al. (2016), and for HIV it is
6.8 years (9.5 years without any co-morbidities) (Marcus, et al. (2020)). There is emerging
evidence that Covid-19 induces damage to lungs - Ground-glass opacities and lesions, and
long term lung fibrosis (Bernheim, et al. (2020), Hosseiny, et al. (2020), and Li and Xia
(2020)) and to the heart tissue (see PÃ¨rez-Bermejo, et al. (2020)) and thus, one may expect
impairment of life expectancy. Thus, in this case while there is only a morbidity effect on
infectives there is an increased mortality effect on the recovered.

We can write the model incorporating both early and late in infection mortality the
following system of differential equations :

Ṡ = bN − αSI

N
− dS

İ =
αSI

N
− ψI − dI − φ1I

Ṙ = ψI − dR− φ2R

Ṅ = bN − dN − (φ1I + φ2R).

The outflow of susceptibles is due to new infections, α(I/N)S, and exogenous death dS.
All individuals are born healthy and thus there is a flow into the susceptible class, bN .13 The
infectives grow by α(I/N)S and infectives recover at rate ψ or succumb to the disease at
rate φ1. There is also mortality from other causes given by dI. The individuals who recover
from the disease have subsequent immunity from the disease and inflow is given by ψI and
there is mortality from other causes dR as well as the disease at the rate φ2 The population
changes due to net births, (b− d)N and disease related mortality, φ1I + φ2R.

We impose the following assumptions on the demographic and epidemiological parame-
ters.

Assumption 1. We assume the parameters in the SIR model satisfy:

1. The demographic parameters b and d are non-negative, and b ≥ d+ φ1 + φ2;

2. The recovery rate ψ > 0;

3. The disease induced mortality rate φ1 ≥ 0 and φ2 ≥ 0.

The first assumption ensures that the total population grows over time, regardless of the
level of disease prevalence, otherwise there may be extinction of the population. In a SIR
model with mortality the dynamic properties depend on the evolution of the population
size. We make the above assumption which is consistent with existence of steady states with
a growing population. Busenberg and van den Driessche (1990) have a weaker condition
that depends on the properties of the steady state fractions of susceptibles and infectives.
Mena-Lorca and Hethcote (1992) study the case of only early mortality and have a weaker

13These are new entrants to the population.
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condition that depends only on the parameters and not on the steady state.14 Here, we
assume this stronger condition which is meaningful and easy to interpret. We assume the
recovery rate is positive as this is an SIR model. We do not impose any assumption on
the contact rate α as it is endogenous in the economic epidemiological models in the next
section. The contact rate in the epidemiology literature is understood to depend not only on
the biology of the disease but also on behavioural, social and policy (e.g. non-pharmaceutical
interventions) considerations.

Since N = S + I +R, we define i = I/N and r = R/N and rewrite the model as:

i̇ = α(1− i− r)i− ψi− bi− φ1i+ i(φ1i+ φ2r) (1)

ṙ = ψi− br − φ2r + r(φ1i+ φ2r) (2)

Ṅ

N
= b− d− (φ1i+ φ2r). (3)

Note that the proportion of the susceptible s = R/N = 1 − i − r. We denote the steady
state of a variable x as x∞ to distinguish it from the optimal value in a trajectory in the
later part of the paper which is denoted as x∗.

Proposition 1. (Busenberg and van den Driessche (1990), Mena-Lorca and Hethcote (1992))

Consider the epidemiological model given by equation (1) - (3). Then

1. The disease free steady state with i∞ = 0, r∞ = 0 and s∞ = 1 always exists. It is

stable when α
b+ψ+φ1

≤ 1, and unstable when α
b+ψ+φ1

> 1;

2. When α
b+ψ+φ1

> 1, there exists a unique endemic steady state with 0 < i∞ < 1,

0 < r∞ < 1 and 0 < s∞ < 1, which is stable. The endemic steady state (i∞, r∞) is the

solution to the following system of equations:(
φ2 +

(α− φ2)φ1

φ1 − α

)
r2 +

(
−b− φ2 +

(α− φ2)ψ

φ1 − α
+ φ1 +

φ1(ψ + b)

φ1 − α

)
r + ψ +

ψ(ψ + b)

φ1 − α
= 0

i =
α− φ2

φ1 − α
r + 1 +

ψ + b

φ1 − α

Note that even though fraction of recovered, r, is given by a quadratic equation there is
only one admissible solution in the range 0 < r < 1 in the pure epidemiology model (see
Busenberg and van den Driessche (1990)).

2.1 Comparing the effects of early and late in infection mortality

To highlight the implications of the different ways to model mortality, we focus on the polar
cases - when there is only early mortality and when there is only late mortality. When

14Essentially in the first model they assume b ≥ d + φ1i
∞ and in the second model, b ≥ d + φ2r

∞ where
i∞ and r∞ are steady state values of the two variables.
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φ2 = 0 there is only early mortality, we call this case ‘Model I’. When φ1 = 0 there is only
late mortality and we call this ‘Model II’. The early in infection mortality case (Model I) and
the late mortality case (Model II) differ in their modeling strategies for the disease induced
mortality rate.

When the disease mortality rate φ1 = φ2 = 0, the two models coincide as it is the
standard SIR model without disease related mortality. The total population grows at a
constant rate b− d, and we have

i∞ =
b(α− ψ − b)
α(ψ + b)

, r∞ =
ψ(α− ψ − b)
α(ψ + b)

and s∞ =
b+ ψ

α
.

However, the two models differ dramatically when the disease mortality rates φ1 and φ2

are positive. The cut-off point or the reproduction number R0 for the eradication of infectious
diseases is different for both the models. Proposition 1 shows that the reproduction number
R0 = α

b+ψ+φ1
depends on φ1 and not on φ2 as mortality of the recovered does not affect

transmission. Thus, the two models have different R0. In model I with φ2 = 0, we have
R0 = α

b+ψ+φ1
, and when R0 < 1 there is only one disease free steady state, which is stable.

That is, the disease is eradicated. In model II with φ1 = 0, we have R0 = α
b+ψ

, and when
R0 < 1 the disease is eradicated. Therefore, in the early mortality model, disease induced
mortality rate affects the reproduction number. The higher the disease induced mortality rate
φ1, the more likely the disease is eradicated. This is because in model I people who die from
the disease are the infected and infectious, and as more infected people die, the lower is the
chance to infect others, and it is more likely the disease is eradicated. In contrast, in the late
mortality model, disease induced mortality does not affect the reproduction number. This
is because in model II, people who die from the disease are those who are not transmitting
the disease as they are isolated or recovered from the disease. They are neither infectious
nor susceptible, and thus do not have direct effect on the prevalence of infectious diseases.

Furthermore, when the reproduction number R0 > 1 in both models, that is, the disease
is prevalent, the two models’ predictions differ when we vary the disease mortality rates. In
particular, two models differ dramatically on the prediction of the proportion of the infected
as disease induced mortality rates vary. In model I (φ2 = 0), there are two effects due to the
disease induced mortality rate φ1. There is a direct effect, which leads to a reduction in the
proportion of the infected i. This is captured by the term −φi in equation (1). The other is
an indirect concentration effect which is a reduction in the population growth rate, shown
in equation (3). It further leads to an increase in the proportion of the infected, captured
by the term φ1i

2 in equation (1), and the recovered, captured by the term φ1ir in equation
(2). Therefore, if we assume the direct effect dominates the indirect effect, when disease
induced mortality rate φ1 increases, the proportion of the infected decreases and it becomes
easier to control the spread of diseases. In contrast, in model II (φ1 = 0), there are also two
effects due to disease induced mortality rate φ2. The direct effect leads to a reduction in the
proportion of the recovered r. This is captured by the term −φ2r in equation (2). The other
effect is a reduction in the population growth rate, shown in equation (3). It further leads to
an increase in the proportion of the infected, captured by the term φ2ir in equation (1), and
the recovered, captured by the term φ2

2r in equation (2). This is the indirect concentration
effect. If we assume as before that the direct effect dominates the indirect effect, when the
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disease induced mortality rate φ2 increases, the proportion of the recovered decreases and the
proportion of the infected increases and it becomes more challenging to control the spread
of diseases.

To clearly see the difference between the two models, we conduct the following simulation.
Define D as the proportion of disease induced mortality rate in the total population –
D = φ1i + φ2r. That is, in model I, we have D = φ1i, while in model II, we have D = φ2r.
We choose the following parameters: b = 2%, death rate d = 1%, recovery rate ψ = 0.1 (i.e.
recovery takes ψ−1 = 10 days) and contact rate α = 0.4. We assume all parameter values
in both models are the same, and they are chosen such that both models predict disease
endemic steady states. This is shown in Figure 2 - simulation results for model I (the early
mortality model) varying φ1 and model II (the late mortality model) varying φ2. We show
the evolution of i, r, s and D as disease induced mortality rates change. When φ1 = φ2 = 0
and D = 0, the two models coincide. When we increase φ1 in model I and φ2 in model II, the
total death rate D increases. For the same disease induced mortality rates φ1 = φ2, there
is higher death D in model II, because in steady state the proportion of the recovered is
larger than the proportion of the infected. For model I (the solid line), the general situation
improves, as when φ1 rises, i decreases. This is because the infectives transmit the disease
and as their proportion drops, the transmission of the disease decreases. In contrast, for
model II (the dash line), as φ2 increases, the general situation deteriorates as i increases.
This is because as there are more deaths from the group of the recovered - i.e. those that
are not circulating in the population transmitting the disease, rather than the group of the
infected, the proportion of the infected goes up and the proportion of the recovered goes
down. Since there is a larger proportion of the infected, the susceptible are more likely to
get infected and the proportion of the susceptibles is smaller.

Note that the simulation here only focuses on the change in model predictions when
we change disease mortality rate φ1 and φ2. We ran simulations of changes in the other
parameters parameters b, d, ψ and α, and the two models predict the similar trend for all
the variables.15 For this reason, the paper focuses on the comparison of the early mortality
model and the late mortality model when disease induced mortality rates vary.

15We do not report the diagrams for conciseness of the paper.
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Figure 2. Simulation for the early and late in infection mortality models varying disease
induced mortality rates

The panels are i, r, s and D. The solid line is the simulation for model I, while the dash line is the
simulation for model II. The parameter values are b = 0.02, d = 0.01, α = 0.4 and ψ = 0.1. The disease
induced mortality rates φ1 and φ2 vary from 0 to 0.5%.

3 The Economic Epidemiology Model

For the pure epidemiological model, it matters how we model disease induced mortality. With
early mortality, the higher the disease mortality rate, the easier it is to control the spread of
infectious diseases, while for the late mortality model, the higher the disease mortality rate,
the more challenging it is to control the spread of the disease. What is the consequence of the
difference in modeling mortality on economic outcomes? Do we still see the sharp difference
in terms of the severity of prevalence of infectious diseases when the response to control the
disease is endogenous and how does this affect economic variables such as capital, output,
consumption and total welfare?

3.1 The model

The model is based on the growth model with SIS disease dynamics in Goenka and Liu
(2013, 2020) and Goenka, Liu and Nguyen (2014, 2020). In this paper we use an underlying
neoclassical growth model with SIR dynamics with mortality. To avoid keeping track of
the history of healthy, infected and recovered individuals, and to stay close to the canonical
growth model, we adopt the framework of a large representative household.

Households: We assume the economy is populated by a continuum of non-atomic identical
households who are the representative decision-making agents. In the absence of the disease,
the size of the population in each household grows over time at the rate of b−(d+φ1+φ2) ≥ 0,
where b is the birth rate and d is the death rate. Within each household, an individual is
either healthy or infected or recovered from the diseases. We assume that diseases follow the
SIR dynamics (see the discussion in Section 2).

We model the infectious disease as having two effects - reducing productivity of the
infected and disease related mortality. We make the simplifying assumption that when an
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infected individual is incapacitated by the disease the productivity falls to zero.16 We assume
the labor is supplied inelastically.17

We use an extended welfare function. If a purely utilitarian welfare function is used
then mortality can lead to an increase of welfare of the survivors. (see Goenka, Liu and
Nguyen (2020) for a further discussion) to avoid counter-intuitive effects due to increasing
mortality.18 When there is no disease prevalence, the disutility from disease mortality is of
course zero. Define the total disease related mortality D = φ1i+φ2r. There is full insurance
within the household so that consumption of all members irrespective of health status is the
same. The representative household’s preferences are given as:

∫ ∞
0

e−ρt[u(ct)− χν(Dt)]Ntdt

=

∫ ∞
0

e−
∫ t
0 (ρ−b+d+D(τ))dτ [u(ct)− χν(Dt)]N0dt (4)

where ρ is the discount factor with ρ > b− d, the initial size of household is assumed to be
one. ν(D) is the loss in welfare from disease related mortality, D, and χ ≥ 0 is the weight.

Assumption 2. The felicity function u, u : R+ → R is C2 with u′ > 0 and u′′ < 0.

The discount rate, ρ > 0.

Assumption 3. The loss from mortality function ν(D) : R+ → R is a convex function with

ν ′ > 0 and ν ′′ ≥ 0 and ν(0) = 0.

Production: The production side of the model is a standard neoclassical growth model
where households can invest in capital which is productive next period and depreciates at
rate δ.19 Households own representative firms that use capital and labor as inputs.

Assumption 4. The production function f(k, l), f : R2
+ → R is C2 with

1. fk > 0, fl > 0,

2. f is concave and homogeneous of degree 1,

3. with f(0, ·) = f(·, 0) = 0.

4. limk→0 fk(k, ·) = liml→0 fl(·, l) =∞; limk→∞ fk(k, ·) = 0.

16How much productivity is affected varies across diseases and see Goenka, Liu and Nguyen (2020) for a
discussion of this. If we assume partial decrease in productivity the qualitative results are not affected.

17In Goenka and Liu (2012) we endogenize the labor-leisure choice with SIS disease dynamics and show
that the dynamics are invariant under standard assumptions.

18This is also consistent with the welfare function used in models which are partial equilibrium, e.g.
Acemoglu, et al. (2020), and Alvarez, et al. (2020). See Goenka, Liu and Nguyen (2020) for further
discussion.

19Goenka and Liu (2020) have an endogenous growth model where there is human capital accumulation
and households choose time to work and time for human capital accumulation. It uses SIS dynamics without
disease related mortality.
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5. The physical capital depreciates at the rate δ ∈ (0, 1].

The total labor force is

L = N − I ⇒ l =
N − I
N

= 1− i. (5)

The contact rate, which is key to determine the prevalence of infectious disease, is affected
by health expenditure. That is, each household can control infection by investing in health
expenditure h = H/N . This can be thought of preventive measures taken to prevent the
transmission of the disease. This is the specification used in Goenka, Liu and Nguyen (2014)
and Goenka and Liu (2020). The first paper also modeled expenditures that increase recovery
rates from the disease but we abstract from this in this paper as there are no known therapies
for recovery from Covid-19.20 Eichenbaum, et al. (2020) interpret this loss of output, h in
our context, as the cost of a lockdown which also reduces the transmission rate α and thus,
is also consistent with interpreting it as the cost of a lockdown which reduces transmission
of the disease by forgoing output.21

Assumption 5. The contact rate is a function of h - that is, α(h). We assume

• α′(h) < 0;

• α(h) → ᾱ when h→ 0;

The law of evolution of capital stock is:

K̇ = f(K,N − I)− C −H − δK.

We define for each household, physical capital per capita k = K/N and consumption per
capita c = C/N . Since the two models differ in the growth rate of total population N , which
is affected by death rate caused by infectious diseases, the maximization problems which is
set up in terms of per household are different. Since the growth rate of total population is
b− d− φ1i− φ2r. Then, the law of motion for physical capital can be rewritten as:

k̇ = f(k, 1− i)− c− h− δk − (b− d)k + (φ1i+ φ2r)k (6)

We define the following variable which is the effective discount rate (see Uzawa (1968).
In Das (2003) discounting depends on consumption and in Boucekkine, et al. (2018) on
population similar to this paper).

∆ =

∫ t

0

(ρ− b+ d+ φ1i(τ) + φ2r(τ))dτ

∆̇ = ρ− b+ d+ φ1i+ φ2r. (7)

20Antivirals and anti-inflammatory drugs are now known to reduce mortality but these are inexpensive
and widely available prior to the outbreak. While ventilators are used in severe cases, there is an emerging
view that their use can complicate recovery and in fact cause ventilator induced lung injury (Marini and
Gattinoni (2020).

21In Goenka, Liu and Nguyen (2020) we have a different way of modeling a lockdown or quarantine where
a fraction of the non-infective population has to work from home with a reduced productivity.
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Thus, the social planner maximizes equation (4) subject to equation (6), (1), (2) and
(7) with the constraints that i, r lie in the unit interval and that health expenditure, h, is
non-negative.

The maximization problem is:

max

∫ ∞
0

e−∆[u(c)− χν(φ1i+ φ2r)]N0dt

s.t.

k̇ = f(k, 1− i)− c− h− δk − (b− d)k + (φ1i+ φ2r)k (8)

i̇ = α(h)(1− i− r)i− ψi− bi− φ1i+ i(φ1i+ φ2r) (9)

ṙ = ψi− br − φ2r + r(φ1i+ φ2r) (10)

∆̇ = ρ− b+ d+ (φ1i+ φ2r) (11)

0 ≤ i ≤ 1

0 ≤ r ≤ 1

h ≥ 0.

The control variables are c, h, and state variables are k, i, r,∆. Define λ1, λ2, λ3 and λ4

are co-state variables for k, i, r and ∆, respectively. µ1, µ2 and µ3 are Lagrangian multipliers
for i ≥ 0 , r ≥ 0 and h ≥ 0.22

The problem is one where there is endogenous discounting in a non-convex model so that
the usual sufficiency conditions do not apply.

Remark 1. The Hamiltonian is not jointly concave in state and control variables if the

welfare function is positive, i.e. if u(c)− χν(φ1i+ φ2r) > 0. In particular, the condition for

the Hessian matrix to be semi-negative definite which require alternating signs of principal

minors Mj(j = 1, . . . , 6) is not satisfied in our model.

Let us rewrite the Hamiltonian as H(k, i,∆, r, h, c) then it is easy to check, the first minor

M1 = |Hkk| = λ1f11 < 0. Let M2 =

∣∣∣∣∣ Hkk Hki

Hik Hii

∣∣∣∣∣ denote the second minor. We then have

M3 =

∣∣∣∣∣∣∣
Hkk Hki Hk∆

Hik Hii Hi∆

H∆k H∆i H∆∆

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Hkk Hki 0

Hik Hii Hi∆

0 H∆i H∆∆

∣∣∣∣∣∣∣
= H∆∆M2 + (−1)2+3H∆i

∣∣∣∣∣ Hkk 0

Hik Hi∆

∣∣∣∣∣
= H∆∆M2 −H2

∆iHkk.

22We can ignore the constraints i ≤ 1 and r ≤ 1.
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Because H∆∆ = e−∆[u(c)− χν(φ1i+ φ2r)] > 0, Hkk < 0, we have

M3 = H∆∆M2 −H2
∆iHkk > 0 if M2 > 0.

So the condition for the Hessian being semi-negative definite fails.

We establish the sufficiency conditions for this model in section 5.23 The equilibrium
is determined by the following necessary and sufficient first order necessary and sufficient
conditions and the evolution of the state variables:

e−∆u′(c) = λ1 (12)

λ1 = λ2α
′(h)(1− i− r)i+ µ3 (13)

λ̇1 = −λ1[f1(k, 1− i)− δ − (b− d) + φ1i+ φ2r] (14)

λ̇2 = e−∆χφ1ν
′(φ1i+ φ2r) + λ1(f2(k, 1− i)− kφ1) (15)

−λ2(α(h)(1− i− r)− αi− ψ − b− φ1 + 2φ1i+ φ2r)− λ3(ψ + φ1r)− λ4φ1 − µ1

λ̇3 = e−∆χφ2ν
′(φ1i+ φ2r)− λkφ2 + λ2(α(h)i− φ2i) (16)

−λ3(−b− φ2 + φ1i+ 2φ2r)− λ4φ2 − µ2

λ̇4 = e−∆[u(c)− χν(φ1i+ φ2r)] (17)

µ1 ≥ 0, i ≥ 0, µ1i = 0 (18)

µ2 ≥ 0, r ≥ 0, µ1r = 0 (19)

µ3 ≥ 0, h ≥ 0, µ3h = 0, (20)

along with equation (1), (2), (6) and (7).

The economic epidemiology models with only early mortality and only late mortality are
two special cases of the model we above. When φ2 = 0, it is early mortality model (model I)
where the infected die due to diseases, and the equilibrium conditions are given by equation
(1), (2), (6), (7), (12) - (20) with φ2 = 0. When φ1 = 0, it is late mortality model (model II)
where the infected die due to diseases, and the equilibrium conditions are given by equation
(1), (2), (6), (7), (12) - (20) with φ1 = 0.

There are four ways how the disease induced mortality affects the economic equilibrium in
both models. The effects are largely symmetric. That is, how disease induced mortality rate
φ1 affects the behavior of model I is similar to how disease induced mortality rate φ2 affects
the behavior of model II. First, it leads to direct death. For model I, this is captured by −φ1i
in equation (1) and the reduction in the proportion of the infected further leads to change in
shadow value for for i , which is captured by λ2φ1 in equation (15). For model II, the direct
death effect is captured by −φ2r in equation (2) with the reduction in the proportion of the
recovered further leading to a change in the shadow value for r , which is captured by λ3φ2 in
equation (16). Second, the disease induced mortality leads to a reduction in the population
growth rate. Since the variables in the model are per capita terms, a reduction in population

23Goenka, Liu and Nguyen (2014) prove sufficiency in a SIS model without disease related mortality and
Goenka, Liu and Nguyen (2020) show sufficiency in a SIS model with disease related mortality. These are
the only sufficiency conditions for optimal control in economic epidemiology models we are aware of.
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growth means an increase in the value of the variables. This is what we call concentration
effect. If the population growth rate decreases by the amount D = φ1i+φ2r due to infectious
diseases, the proportion of the infected increases by i(φ1i+ φ2r) shown in equation (1), the
proportion of the recovered increases by r(φ1i+φ2r) shown in equation (2), and the physical
capital per capita k increases by k(φ1i + φ2r) shown in equation (6). They further lead to
change in their shadow values. The change in the shadow value for k is captured by the
term −λ1(φ1i+ φ2r) in equation (14). The change in the shadow value for i is captured by
the term −λ1kφ1 − λ2(2φ1i + φ2r) − λ3φ1r in equation (15) and the change in the shadow
value for r is captured by the term −λ1kφ2−λ2φ2i−λ3(φ1i+ 2φ2r) in equation (16). Third,
the disease induced mortality means additional loss in utility. Since the objective function
incorporates the disutility from the disease related death χν(φ1i+φ2r), the shadow values of
i and r include additional value loss when more people die as a result of increases in i and r .
This is captured by the term e−∆χφ1ν

′(φ1i+ φ2r) in equation (15) and e−∆χφ2ν
′(φ1i+ φ2r)

in equation (16). Fourth, with disease induced mortality, the probability of dying is higher
and people become less patient. That is, disease induced mortality leads to higher discount
rates shown in 7, and to further changes its shadow value λ4 in equation (17).

3.2 Steady states

In this subsection, we look at the steady states - how epidemiological and economic variables
behave in the long-run. Please see the appendix for all the proofs.

When the contact rate without any disease control is small enough such that the repro-
duction number R0 = ᾱ

b+ψ+φ1
is smaller than one, the infectious diseases are eradicated in the

long-run. The economy is the same as the standard new-classical economy without disease
prevalence.

Proposition 2. There always exists a unique disease free steady state with i∞ = 0, r∞ = 0

and h∞ = 0. The economic variables k∞ and c∞ are determined by

f1(k, 1) = ρ+ δ

f(k, 1) = c+ δk + (b− d)k.

The disease free steady state is stable when ᾱ
b+ψ+φ1

≤ 1, and unstable when ᾱ
b+ψ+φ1

> 1.

Proof. Please see the Appendix.

The physical capital, total output and consumption in the disease free steady state are the
benchmark for us to evaluate those economic variables in a disease endemic steady state
later. Note that when ᾱ

b+ψ+φ1
> 1, there also exists a disease free steady state, though

unstable.

Next, we look at the disease endemic steady state, which exists only when ᾱ
b+ψ+φ1

> 1.
The key variable to determine in the disease endemic steady state is the level of health
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expenditure h. We start by defining a function G - the net marginal benefit of health
expenditure. The marginal benefit of health expenditure is in reducing the contact rate
α(h) and hence the proportion of the infected by α′(h)(1 − i − r)i due to the standard
incidence assumption. Since the shadow value of the infected i is λ2, the value of additional
one unit investment in health expenditure is λ2α

′(h)(1 − i − r)i. The marginal cost of
health expenditure is the economic resource which otherwise could have been consumed
and captured by the term λ1. Therefore, the net marginal benefit of health expenditure is
λ2α

′(h)(1 − i − r)i − λ1. Moreover, since λ1 = e−∆u′(c), we can redefine the net marginal

benefit of health expenditure as e−∆
[
λ̃2α

′(h)(1− i− r)i− u′(c)
]

with λ̃2 = λ2/e
−∆.

Definition 1. Define the function G(h) :

G(h) = λ̃2α
′(h)(1− i− r)i− u′(c), (21)

where

(φ2 +
(α− φ2)φ1

φ1 − α
)r2 + (−b− φ2 +

(α− φ2)ψ

φ1 − α
+ φ1 +

φ1(ψ + b)

φ1 − α
)r + ψ +

ψ(ψ + b)

φ1 − α
(22)

i =
α− φ2

φ1 − α
r + 1 +

ψ + b

φ1 − α
(23)

f1(k, 1− i) = ρ+ δ (24)

f(k, 1− i) = c+ h+ δk + (b− d)k + (φ1i+ φ2r)k (25)

λ̃2 = λ2/e
−∆ (26)

=
M1(−ρ− d− φ2 + φ2r)−M2(ψ + φ1r)

(α(1− i− r)− ρ− d− ψ − φ1 + φ1i− αi)(−ρ− d− φ2 + φ2r)− (ψ + φ1r)(φ2i− αi)

M1 = χφ1ν
′(φ1i+ φ2r) + u′(c)(f2(k, 1− i)− kφ1) + φ1

u(c)− χν(φ1i+ φ2r)

ρ− b+ d+ φ1i+ φ2r
(27)

M2 = χφ2ν
′(φ1i+ φ2r)− u′(c)kφ2 + φ2

u(c)− χν(φ1i+ φ2r)

ρ− b+ d+ φ1i+ φ2r
. (28)

By equations (22) - (28), all variables in the model are functions of h. Thus, the function
G is essentially a function of health expenditure h. In other words, once we determine the
level of health expenditure in the model, we can solve for all the other variables.

Proposition 3. If ᾱ
b+ψ+φ1

> 1, there are two scenarios

• If G(h)|h=0 ≤ 0, there exists a disease endemic steady state with no health expenditure

h∞ = 0.

• G(h)|h=0 > 0, there exists a disease endemic steady state with positive health expendi-

ture, which is determined by G(h) = 0.
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Given the optimal h∞, the steady state variables i∞, r∞, k∞ and c∞ are determined by

equations (22) - (28).

Proof. Please see the Appendix.

From equation (13), we have

µ3 = −[λ2α
′(h)(1− i− r)i− λ1]

= −e−∆[λ̃2α
′(h)(1− i− r)i− u′(c)]

= −e−∆G(h)

where λ1 is marginal cost of health expenditure and λ2α
′(h)(1 − i − r)i is marginal benefit

of health expenditure. When G(h)|h=0 ≤ 0, that is, µ3 ≥ 0, the marginal cost of health
expenditure is larger than the marginal benefit, which implies we have a corner solution
with the optimal health expenditure h∞ = 0. When G(h)|h=0 > 0, that is, µ3 < 0, the
marginal cost of health expenditure is smaller than the marginal benefit, which implies we
have an interior solution (h∞ > 0) determined by G(h) = 0.

Given the optimal health expenditure h∞, we can solve for the contact rate α∞. Once we
know the contact rate, from the epidemiological part of the model - equation (22) and (23),
we can derive the proportion of the infected i∞ and the recovered r∞. Then, we can get the
labor force l∞ = 1− i∞. Furthermore, from the economic part of the model – equation (24)
and (25), we can get the optimal physical capital k∞, total output y∞ and consumption c∞.

The analysis for steady states here applies for both the early mortality model and the
late mortality model. In the propositions above, if φ2 = 0, we get steady states for the early
mortality model, and if φ1 = 0, we get steady states for the late mortality model.

4 Comparing the Early and Late in Infection Mortality

Models

The marriage of the economic and epidemiological models provides us a framework to un-
derstand the close link between the the economy and disease prevalence. In this paper, we
focus on how the modeling strategy in epidemiology affects our understanding about the
interaction between the prevalence of infectious diseases and the economy. As the model is
too complex for closed form solutions, in this section, we parameterize the model and run
comparative statics. We focus on examining the effects of varying disease induced mortality
rates, rather than other parameters. The reason is that the effects of varying other param-
eters are similar in both models. Moreover, the analysis here focuses on the equilibrium
steady states before and after the change as we want to capture the medium to longer term
effects when investment and returns to labor and capital have adjusted.

The following functional forms and parameters are chosen in line with the literature. The
production function is assumed to be Cobb Douglas: y = f(k, 1 − i) = Akβ(1 − i)1−β with
A = 1 and β = 0.36. Physical capital depreciates at the rate δ = 0.05 and discount rate
ρ = 0.055. The utility function is of the CES form U(c) = c1−σ

1−σ and we choose σ = 1, that
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Figure 3. A depiction of G function in Model I and II

The figure depicts G function, which is the net marginal benefit of health expenditure. The left panel
is G function for the early mortality model (model I), and the right panel is G function for the late
mortality model (model II). In each panel, we plot G function for three different disease mortality rates
- 0, 0.5% and 1%. The weight is χ = 0.

is, the utility function is log utility. We assume the disutility from disease induced death
takes the form: ν(D) = Dν0 with ν0 = 1.2 in line with the assumptions in the paper. In the
simulation, we vary the weight we attach to this disutility χ. We set the birth rate b = 2%
and death rate d = 1%. The recovery rate is ψ = 0.1. We do not have enough empirical
evidence in suggesting for functional form for contact rate function. Therefore, the contact
rate function is chosen in line with the assumption on α(h) and large enough to generate a
disease endemic steady state in the simulation. We assume contact rate function is a power
function: α(h) = ε0(h+ ε2)ε1 with ε0 = 0.2, ε1 = −0.2 and ε2 = 0.0215.

We start by examining the G function, shown in Figure 3. It depicts net marginal benefit
of health expenditure as a function of health expenditure h. The left panel is for model I, and
the right panel is for model II. In each panel, we plot G function with three different levels of
disease induced mortality rate. In all three scenarios, we can see that the net marginal benefit
of health expenditure decreases as health expenditure increases. This is rather intuitive and
a direct consequence of the assumptions in the paper. The functional form of the contact
rate function α(h) implies that α′(h) < 0 and α′′(h) > 0. Thus, when health expenditure
h increases, the contact rate α(h) decreases, but it decreases at a diminishing rate. This
suggests the marginal benefit of health expenditure decreases as h increases. At the same
time, as more resource spent in controlling diseases, consumption is lower and marginal
utility of consumption is higher. This suggests the marginal cost of health expenditure rises
as h increases. Therefore, the net marginal benefit of health expenditure G(h) decreases as
health expenditure h increases. Furthermore, when we increase the disease induced mortality
rate, the net marginal benefit of health expenditure increases in both models. In the case
of φ1 = 0 in model I and φ2 = 0 in model II, the two models coincide and the G function
in both panels are exactly the same. At the point h = 0, the net marginal benefit of health
expenditure is negative. It implies that the marginal benefit of health expenditure is smaller
than marginal cost, and the optimal health expenditure is zero. Thus, we have an endemic
steady state with corner solution. In the case of φ1 = 1% in model I, at the point of h = 0,
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Figure 4. The simulation for the early mortality model (model I) varying disease in-
duced mortality rate φ1

The figure shows changes in steady state as we vary disease induced mortality rate φ1 in the early
mortality model. The top panels are the proportion of the infected i, the proportion of the recovered r,
the proportion of the susceptible s, the proportion of disease related death in total population D and
the contact rate α. The bottom panels are health expenditure h, physical capital k/kDF , total output
y/yDF , consumption c/cDF , total welfare W/WDF . The solid line is the simulation when χ = 0, while
the dash line is the simulation when the weight χ = 40.
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the net marginal benefit of health expenditure is positive, and it implies model I has an
endemic steady state with interior solution. This is true in the right panel of model II with
φ2 = 1%. Figure 3 provides the net marginal benefit of health expenditure when we choose
the weight χ = 0. For both models, when we increase the weight χ, the net marginal benefit
health expenditure increases, due to the additional gain from the drop in the disutility of
disease related death. It suggests with larger weight in disutility of disease related death, it
is more likely to invest in health expenditure to control the spread of infectious disease.

To further investigate how the steady state variables change as we change the disease
induced mortality rate, we provide simulation results in Figure 4 for model I and Figure 5
for model II. In each of these figures , the solid line is the scenario when the household only
derives utility from consumption with weight χ = 0, and the dashed line is the scenario where
there is additional disutility from disease related death with weight χ = 40. When there are
no disease related deaths (φ1 = φ2 = 0), both models are the same, which predict zero health
expenditure as the net marginal benefit of health expenditure is negative, shown in Figure
3. Therefore, in both figures, all variables have the same starting point. For instance, in
model I when φ1 = 0 the proportion of the infected is 12% of the population, and in model
II when φ2 = 0 the proportion of the infected is 12% as well.

Now lets focus on how the epidemiological and economic variables vary as we change the
disease induced mortality rates in both models. First, when the disease induced mortality
rate rises, households are more likely to invest in health expenditure in controlling diseases
or increase heath expenditure. This is reflected in the G function - Figure 3. When mortality
rate rises, the net marginal benefit of controlling diseases increases. This is true for both
models.

Second, for the epidemiological variables, their variations largely mirror those in the pure
epidemiological models. This mirroring effect is not immediately obvious, as in the economic
epidemiological model the health expenditure and hence the contact rate change as the
disease mortality rate rises, while in the pure epidemiological model (Figure 2) the contact
rate is a constant. In model I, an increase in mortality of infectives decreases the proportion
of infectives in the population. This is the self-limiting effect of mortality on pandemics. In
contrast, in model II, when disease mortality rate φ2 increases, the proportion of the infected
increases though the health expenditure increases and the contact rate decreases.

Third, the evolution of economic variables are drastically different between the two models
as the disease induced mortality rates varies. To explore the change in economic variables -
physical capital k, output y and consumption c, we plot them as a proportion of the disease
free steady state, which implies how much worse off of the disease endemic steady state is
as compared to the disease free steady state. Note that, for both models the disease free
steady states are exactly the same. The prevalence of infectious diseases affect the economy
mainly because of three reasons: (i) the infected can not participate in labor force, (ii) that
investing in health in controlling diseases can squeeze the economic resources and (iii) the
disease related mortality changes population size, which has two consequences: first, the per
capita amount of resources change and second, the change in population affects the discount
rate. As we can see, for model I, as disease death rate φ1 increases, physical capital stock,
total output, consumption all increase. This seems to be counter intuitive. In fact, this is
like a gift of dying effect. The individuals who die due to infectious diseases are those who
are infected, infectious and can not work, but consume. So from a purely economic point of
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Figure 5. The simulation for the late mortality model (model II) varying disease in-
duced mortality rate φ2

The figure shows changes in steady state as we vary disease induced mortality rate φ2 in the early
mortality model. The top panels are the proportion of the infected i, the proportion of the recovered r,
the proportion of the susceptible s, the proportion of disease related death in total population D and
the contact rate α. The bottom panels are health expenditure h, physical capital k/kDF , total output
y/yDF , consumption c/cDF , total welfare W/WDF . The solid line is the simulation when χ = 0, while
the dash line is the simulation when the weight χ = 40.
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view (when the objective is only about maximizing consumption per capita), the society is
better off when disease mortality rate is high. This is because with a decreasing proportion
of the infected, the labor force 1 − i increases, which implies higher marginal product of
capital, and higher physical capital. Since both labor force and physical capital are higher,
the total output and consumption also increase as mortality rate rises. Moreover, the total
welfare in fact rises as the disease mortality rate increases. However, this gift of dying effect
is absent in model II. In model II, when disease death rate φ2 increases, physical capital
stock, total output, consumption and total welfare all decrease. This is because in model
II, increasing mortality does not limit the spread of infections and the pandemic gets worse
rather than better. This effect not only directly affects per capita availability of resources
but also increases discounting. Thus, this leads to lower investment in capital, and lower
total output and consumption. The total welfare also decrease as mortality rate rises.

We now look at the case where there is a welfare loss from mortality, χ > 0, shown
as the dashed lines in Figure 4 and 5. With positive weight on disutility, the evolution
of epidemiological and economics variables largely remain the same. One difference is that
when we take into account the additional utility loss from the disease related death, in model
I the total welfare decreases as φ1 increase. This is because with positive weight on disease
related death, the rise in disutility from death outweighs the rise in utility from consumption,
which leads the total welfare to fall. However, how physical capital, output and consumption
change does not depend on the weight attached to the disutility.

To sum up, differences in epidemiological modeling matters not only for disease evolution
but also for the equilibrium economic outcomes. As the difference in modeling mortality
affects evolution of the infective population, the optimal health expenditure is affected. The
extent of the effect depends on how much weight is given to the welfare loss due to mortality.
This affects other economic outcomes and the welfare in equilibrium. Thus, there is an a
non-trivial interaction between economic and epidemiological choices in understanding the
effects of pandemics on welfare and economic outcomes.

5 Sufficient conditions

In this section we study the sufficiency of the first order conditions with disease related
mortality. It is well known in the literature that with SIS or SIR dynamics the constraints
are not convex and it is unclear if either the Arrow or the Mangasarian sufficiency conditions
will be satisfied (Gersovitz and Hammer (2003))). Goenka, Liu and Nguyen (2014) provided
a sufficiency result in a neo-classical framework, such as in the current paper, with SIS
dynamics but no disease mortality24 and Goenka, Liu and Nguyen (2020) show sufficiency in
the SIS with disease related mortality. We give the first sufficiency result for the SIR model.
The result is with disease related mortality and the case without disease related mortality
is a special case. We give the result for the general model so that it covers both the case
of early and late mortality. The problem is non-trivial because including disease related
mortality effectively makes the effective discount rate, ∆, endogenous. The Hamiltonian is

24This paper also included the additional state variable health capital which can reduce contact rate and
increase recovery rate.
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non-concave so in this situation the Arrow and Mangasarian conditions do not apply (see
below) as well as the conditions endogenous population models that are convex (for example
Boucekkine, et al. (2018)). While the proof follows the strategy of the SIS disease related
model, there are now two state variables for disease evolution, i, r as opposed to only one
for the SIS model. The control variable h is also different from the control variable for
quarantine in the same paper.

We directly show the inequality of local optimality of the Hamiltonian along any interior
path that satisfies the first order necessary and transversality conditions. This is done by
adapting the method of Leitmann and Stalford (1971). As a corollary, the disease endemic
steady state will be locally optimal. Optimality of the disease free steady state is not in
question as it is the neoclassical steady state.

Denote the interior state variables x∗t = (k∗t , i
∗
t , r
∗
t ,∆

∗
t ) where x∗0 = (k∗0, i

∗
0, r
∗
0,∆

∗
0), the

control variables z∗t = (c∗t , h
∗
t ) and co-state variables λt = (λ1,t, λ2,t, λ3,t, λ4,t).

The Hamiltonian becomes

H(xt, zt, λt) = e−∆{u(c)− χν(φ1i+ φ2r)}+ λ1{f(k, (1− i)− c− h− δk − (b− d− φ1i− φ2r)k}
+λ2{α(h)(1− i− r)i− ψi− bi− φ1i+ i(φ1i+ φ2r)}
+λ3{ψi− br − φ2r + r(φ1i+ φ2r)}+ λ4{ρ− b+ d+ (φ1i+ φ2r)}

= e−∆{u(c)− χν(φ1i+ φ2r)}+ < λt, ẋt >

where < x,y >=
n∑
1

xjyj is the dot product of two vectors x = (x1, .., xn),y = (y1, ..., yn).

The first-order necessary conditions are satisfied at (x∗t , z
∗
t ) :

e−∆u′(c) = λ1 (29)

λ1 = λ2α
′(h)(1− i− r)i (30)

λ̇1 = −λ1[f1(k, 1− i)− δ − (b− d− φ1i− φ2r)] (31)

λ̇2 = e−∆χφ1ν
′(φ1i+ φ2r) + λ1(f2(k, 1− i)− kφ1)

−λ2 [α(h)(1− i− r)− αi− ψ − b− φ1 + 2φ1i+ φ2r]− λ3(ψ + φ1r)− λ4φ1 (32)

λ̇3 = e−∆χφ2ν
′(φ1i+ φ2r)− λ1kφ2 + λ2(αi− φ2i)

−λ3(−b− φ2 + φ1i+ 2φ2r)− λ4φ2 (33)

λ̇4 = e−∆[u(c)− χν(φ1i+ φ2r)] (34)

The standard transversality conditions are

lim
t→∞

λj,tx
∗
j,t = 0, j = 1, .., 3. (35)

It is standard that 0 ≤ kt ≤ max{k0, k̂} where k̂ is the maximum sustainable capital
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stock25 Then is ct is bounded by a constant26, ct ≤ A, and hence

u(c)− χν(φ1i+ φ2r) ≤ u(A) + χν(φ1 + φ2) < +∞. (36)

Similarly, ht is also bounded by A.
The proof proceeds via three Lemmas.

Lemma 1. We have

lim
t→∞

λ4,t(∆t −∆∗t ) = 0.

Proof. Please see the Appendix.

Lemma 2. When α
b+ψ+φ1

> 1 we have

i) lim
t→∞

λ1(k∗ − k) ≤ 0.

ii) lim
t→∞

λ2(i∗ − i) = 0.

iii) lim
t→∞

λ3(r∗ − r) = 0.

Proof. Please see the Appendix.

In the SIS model there is only one state variable, i, describing the disease dynamics and
we can show the appropriate transversality condition for it directly (see Goenka, Liu and
Nguyen (2020, Lemma 2)). In the SIR model there are two variables i, r thus we need the
additional parametric restriction that ensures an endemic steady state in order to derive the
limiting properties of the co-state variables.

We will adapt the method developed by Leitmann and Stalford (1971)27 for a sufficiency
condition to our (non-convex) infinite-horizon optimal control problem for the endogenous

25Definition of maximal capital stock is k̂ ∈ (0,∞) such that f(k, l) > k for all k ∈ (0, k̂) and f(k, l) < k

for all k > k̂. It implies k ≤ max{k0, k̂} := k̄.
26If investment is irreversible, then ct ≤ f(kt, lt) ≤ f(k̂, 1) := A. Otherwise, as in Goenka, Liu and Nguyen

(2014), we can assume that there exists κ ≥ 0, κ 6= ∞ such that −κ ≤ k̇/k. This reasonable assumption
implies that it is not possible that the growth rate of physical capital converges to −∞ rapidly and is
weaker than those used in the literature (see, e.g. Chichilnisky (1981)). Let us define the net investment
ι = k̇+(δ+b−d)k = f(k, l)−c−m, it then implies there exists κ ≥ 0, κ 6=∞ such that ι+[κ−(δ+b−d)]k ≥ 0.
If the standard assumption 2 (v) in Chichilnisky (1981) holds (non-negative investment, ι ≥ 0) then it holds
with κ = δ+ b−d. Therefore, assuming non-negative investment is stronger in the sense that κ can take any
value except for infinity. And we have ct ≤ f(k̄, 1) + κk̄ := A.

27We re-state the Leitmann and Stalford result. (Leitmann-Stalford, 1971): Consider the problem:

max

∫ ∞
0

g0(x(t), z(t))

subject to
ẋ(t) = g(x(t), z(t)), x(0) = x0, z(t) ∈ Z

24



discounting problem. The Leitmann-Stalford result allows for potential non-convexities but
not endogenous discounting. This condition is weaker than standard Arrow-Mangasarian
sufficient conditions (see Theorem V, Peterson and Zalkind (1978), page 595).

Define the augmented Hamiltonian H̄(xt, zt, λt) = H(xt, zt, λt)+〈λ̇t,xt〉 and M(xt, λt) =
maxzt H̄(xt, zt, λt) as the augmented maximized Hamiltonian.

We need the following Lemma.

Lemma 3. We have H̄(x∗t , z
∗
t , λt) ≥ H̄(x∗t , zt, λt) for all zt. In other word, given x∗t then

z∗t = arg max H̄(x∗t , zt, λt) and thus M(x∗t , λt) = H̄(x∗t , z
∗
t , λt).

Proof. Please see the Appendix.

In line with Leitmann and Stalford (1971), we will use the following assumption.

Assumption 6. Assume that

H̄(x∗t , z
∗
t , λt) ≥ H̄(xt, zt, λt) (37)

Remark 2. Assumption 6 is weaker than assumption on the concavity of maximized Hamil-

tonian M(xt, λt) in xt as in Arrow’s sufficiency condition. Indeed, assuming M(xt, λt) is

concave in xt. Since M(xt, λt) ≥ H̄(xt, zt, λt) and by Lemma 3 M(x∗t , λt) = H̄(x∗t , z
∗
t , λt)

and

H̄xj,t(x
∗
t , z
∗
t , λt) = Hxj,t(x

∗
t , z
∗
t , λt) + λ̇j,t

= −λ̇j,t + λ̇j,t = 0

Define the Hamiltonian

H(x, z, λ) = g0(x(t), z(t))+ < λ, g(x(t), z(t)) >

where < λ, g(x(t), z(t)) > is the inner product in Rn. Let z∗ ∈ Z, let x∗ = x(z∗) be the corresponding
trajectory, and let λ : [0,∞) → Rn be absolutely continuous. Let following conditions be fulfilled for every
z ∈ Z and x = x(z)

i)

∫ ∞
0

e−ρt[H(x∗(t), z∗(t), λ(t))−H(x(t), z(t), λ(t))+ < λ̇, x∗(t)− x(t) >]dt ≥ 0,

and
ii) lim

t→∞
〈λ, x∗(t)− x(t)〉 ≤ 0.

Then (x∗, z∗) is an optimal solution.
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we get

H̄(x∗t , z
∗
t , λt)− H̄(xt, zt, λt) ≥ M(x∗t , λt)−M(xt, λt)

≥ < Mx(x
∗
t , λt),x

∗
t − x∗t >

= < H̄x(x
∗
t , z
∗
t , λt),x

∗
t − xt >

= 0.

Also, if the Hamiltonian is jointly concave in state and control variables as in the Man-

gasarian sufficient condition, we easily get (37) by the properties of a concave function and

the FOCs (29)-(34):

H̄(x∗t , z
∗
t , λt)− H̄(xt, zt, λt) ≥< H̄x(x

∗
t , z
∗
t, λt),x

∗
t − xt > + < H̄z(x

∗
t , z
∗
t, λt), z

∗
t − zt >= 0.

However, in our model, the Hamiltonian is not jointly concave if the welfare function is

positive, i.e. if u(c)− χν(φ1i+ φ2r) > 0. (see Remark 1 above).

Remark 3. SIR model without disease related mortality is a special case and with exogenous

discounting Assumption 6 is not needed.

We are now ready to prove the sufficient condition.

Proposition 4. Consider the maximization problem (4) and suppose that an interior con-

tinuous (x∗t , z
∗
t ) and associated costate variables λt exist and satisfy (29)-(34). Then under

Assumptions 1-6, (x∗t , z
∗
t ) is a locally optimal solution.

Proof. The results of Lemmas 1-2 yield

lim
t→∞
〈λt,x∗t−xt〉 ≤ 0. (38)

From Assumption A6 we get∫ ∞
0

{H(x∗t , z
∗
t , λt)−H(xt, zt, λt)] + 〈λ̇t,x∗t−xt〉}dt ≥ 0.

It implies∫ ∞
0

e−∆∗ [u(c∗)−χν((φ1i
∗+φ2r

∗))]dt−
∫ ∞

0

e−∆[u(c)−χν((φ1i+φ2r))]dt ≥ − lim
t→∞
〈λt,x∗t−xt〉.

Therefore, it follows from (38) that∫ ∞
0

e−∆∗ [u(c∗)− χν((φ1i
∗ + φ2r

∗))]dt−
∫ ∞

0

e−∆[u(c)− χν((φ1i+ φ2r))]dt ≥ 0

and we get the sufficient condition.

26



As the endemic steady state satisfies the necessary conditions, we have shown that it is
indeed optimal.

Remark 4. Using properties of the function G the proposition can be amended to cover the

case where there are no health expenditures in the steady state. Similarly, the optimality of

the disease free steady steady state can be established. These are omitted for brevity.

5.1 Discussion

We are using the FOCs and the standard transversality conditions

lim
t→∞

λj,tx
∗
j,t = 0, j = 1, .., 3. (39)

to provide a direct proof for sufficient condition. Note that this condition holds only at the
optimal path x∗j,t . For any admissible path xj,t it may not be satisfied. Moreover, λt is only
identified by the FOCs at optimal solutions (x∗t , z

∗
t ).

The literature also used a transversality condition where along the optimal paths

lim
t→∞

H(x∗t , z
∗
t , λt) = 0. (40)

The transversality condition (40) is taken from Michel (1982) for a constant discount
rate. In general, these two conditions are not equivalent. Six and Wirl (2015) in a pollution
model with endogenous discounting model using the convergence of the state variable to a
steady state show that if (35) holds then (40) also holds. We now also show a similar result
but for our non-convex model based on the usual transversality condition and additional
assumptions on function α(h).

Lemma 4. If α′(0) 6= −∞ and α
′′
> 0 then the usual transversality condition (35) implies

the (40) transversality condition.

Proof. Please see the Appendix.

Note we only assume that α′(0) < 0 for existence of steady state (Assumption 5). The
assumption that α′(0) 6= −∞ is ruling out an Inada type condition on the α function. This
is consistent with our results on the existence of a steady state with zero health expenditure.
We did not need to impose a condition on the second derivative of α for the earlier results.

Note that the transversality condition (40) can also imply the usual transversality con-
dition (35) but we need more assumptions. For example, Aseev and Kryazhimskiy (2004)
show that (40) implies (35) if additional assumptions on the constraint of state variables
imposed. (see Corollary 4, page 1111).

For the sufficiency, we assume only (35) holds. However, since our model is non-convex
with endogenous discounting, this condition is not enough for a sufficiency as the framework
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of the earlier results do not hold. Using the special structure of the autonomous problem, we
provide a direct proof of sufficiency by proving the transversality condition for state variables
for any admissible xt,

lim
t→∞

λj,t(x
∗
j,t − xj,t) ≤ 0. (41)

These kind of tranversality conditions were assumed directly in Cartigny and Michel (2003),
Acemoglu (2009) (Theorem 7.11, page 246) for a sufficiency condition but for convex prob-
lems and standard discounting. This condition is difficult to check because the admissible
path xj,t does not necessarily satisfy the FOCs while the co-state λj,t is only determined at
the optimal path x∗j,t. We do not get any information for xj,t from two standard transversal-
ity conditions (35) and (40). However, if xj,t is bounded, then the condition limt→∞ λj,t = 0
implies (41). If λj,t ≥ 0 and xj,t ≥ 0 then (35) implies (41). Thus, Acemoglu (2009) (Theo-
rem 7.14) makes this assumption as limt→∞ λj,txj,t ≥ 0. In our model, the co-state variable
associated with the infective is negative so this inequality is only satisfied as a zero identity
which will be proven in our model.

Finally, it is crucial when we check the maximality of the Hamiltonian we can decompose
it into two parts: the first just relies on the separability of control and state variables and
the concavity in control variables of the objective function, and thus, using standard results
the difference between the candidate solution and any other solution is non-negative; and
a term that depends on the co-state and the state variables as given above. Recall, the
non-concavity in the problem arises from the law of evolution of state variables and the
Hamiltonian is also non-concave. As indicated, we show this term converges to a negative
value, and we are able to obtain sufficiency of the first order conditions.

6 Conclusion

Due to the ongoing Covid-19 pandemic there is an increasing interest in economic epidemiol-
ogy which study the interaction of infectious diseases using compartmental disease modeling
and economic outcomes. Many papers use the Kermack-McKendrick model with mass action
to model the epidemiology. However, this model due to the linear effect on infections of pop-
ulation size may not be the most suitable to look at medium to long run effects as population
size change due to birth and deaths - both due to the disease and other causes. The standard
incidence model does not have this effect and is the model of choice by epidemiologists. We
investigated two models: where there are early deaths so that deaths of infectives which
shortens the duration of the epidemics and late deaths when the individuals who succumb
to the disease are not circulating in the population - either because they are hospitalized
or there is pre-mature mortality of the recovered population. It seems that in Covid-19 an
increasing part of the mortality is of the later type. These are early days of the pandemic
and long run effects of the disease on pre-mature mortality are not fully understood. We
studied the optimal response which can be either interpreted as preventive health expendi-
tures or self-isolation. In a fully general equilibrium neoclassical growth model, the optimal
response and equilibrium outcomes are sensitive to the modeling choice as they have very
different implications for disease evolution. This generates different equilibrium effects even
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when mortality is the same in both models. Thus, economists should pay close attention to
what choices are made for modeling infectious diseases.

In economic epidemiology models, the interest is in optimal choices. The models with
SIR dynamics are non-convex and if there is disease related mortality, discounting is also
endogenous. Thus, the usual conditions for sufficiency of first order conditions do not apply.
We present the first results on sufficiency for this model. The SIR model without disease
related mortality is a special case. The results differ from the SIS model as there are now
two state variables, s, i to describe disease dynamics rather than just one.
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7 Appendix

7.1 Proof of Proposition 2: Disease free steady state

From i̇ = 0 and ṙ = 0, we have one disease free steady state with i∞ = 0 and r∞ = 0. From
equation (13), we have

µ3 = λ1 − λ2α
′(h)(1− i− r)i = λ1 > 0

Therefore, µ3 is strictly positive and implies h∞ = 0. From equation (14), we have

λ̇1

λ1

= −[f1(k, 1)− δ − b+ d].

Moreover, from equation (12), we have

λ̇1

λ1

= −(ρ− b+ d) +
u′′(c)

u′(c)
ċ.

Since the economy is bounded, all economic variables including k, c and l are constant in
the steady state. That is, ċ = 0 in the steady state. Thus, combing the above two equations,
we have

f1(k, 1) = ρ+ δ,

from which we can solve for k∞.
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Therefore, there always exists a unique disease free steady state with i∞ = 0, r∞ = 0,
s∞ = 1 and h∞ = 0. The economic variables k∞ and c∞ are determined by

f1(k, 1) = ρ+ δ

f(k, 1) = c+ δk + (b− d)k.

The disease free steady state is stable when ᾱ
b+ψ+φ1

≤ 1, and unstable when ᾱ
b+ψ+φ1

> 1.

7.2 Proof of Proposition 3: Disease endemic steady state

If ᾱ
b+ψ+φ1

≤ 1, the infectious diseases are eradicated and only the disease free steady state

exists. Therefore, the disease endemic steady states only exist when ᾱ
b+ψ+φ1

> 1.

From equation (13), we have

µ3 = λ1 − λ2α
′(h)(1− i− r)i,

where λ1 is the marginal cost(MC) of health expenditure and λ2α
′(h)(1− i− r)i is marginal

benefit (MB) of health expenditure. There are two scenarios. When µ3 > 0, that is MC
is greater than MB, we have a corner solution with h∞ = 0, and the other is an interior
solution (h∞ > 0) determined by µ3 = 0, that is,

λ1 = λ2α
′(h)(1− i− r)i. (42)

In a steady state, all economic variables converge to the steady state, and all co-state

variables grow at the same rate with λ̇1
λ1

= λ̇2
λ2

= λ̇3
λ3

= λ̇4
λ4

.
From equation (12), we have

λ̇1

λ1

= −(ρ− b+ d+ φ1i+ φ2r).

Combined with equation (14), we have

f1(k, 1− i) = ρ+ δ. (43)

From equation (17), we have

λ̇4

λ4

=
e−∆[u(c)− χν(φ1i+ φ2r)]

λ4

= −(ρ− b+ d+ φ1i+ φ2r)

λ4 =
e−∆[u(c)− χν(φ1i+ φ2r)]

−(ρ− b+ d+ φ1i+ φ2r)
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From equation (15), we have

λ̇2

λ2

=
e−∆χφ1ν

′(φ1i+ φ2r)

λ2

+
λ1(f2(k, 1− i)− kφ1)

λ2

− [α(h)(1− i− r)− αi− ψ − b− φ1 + 2φ1i+ φ2r]−
λ3(ψ + φ1r)

λ2

− λ4φ1

λ2

Moreover, since
λ̇2

λ2

=
λ̇1

λ1

= −(ρ− b+ d+ φ1i+ φ2r),

we can rearrange the above equation as

[α(h)(1− i− r)− ρ− d− ψ − φ1 + φ1i− αi]λ2 + (ψ + φ1r)λ3 = e−∆M1, (44)

where

M1 = χφ1ν
′(φ1i+ φ2r) + u′(c)(f2(k, 1− i)− kφ1) + φ1

u(c)− χν(φ1i+ φ2r)

(ρ− b+ d+ φ1i+ φ2r)
.

From equation (16), we have

λ̇3

λ3

=
e−∆χφ2ν

′(φ1i+ φ2r)

λ3

− λ1kφ2

λ3

+
λ2(αi− φ2i)

λ3

− (−b− φ2 + φ1i+ 2φ2r) +
λ4φ2

λ3

Moreover, since
λ̇3

λ3

=
λ̇1

λ1

= −(ρ− b+ d+ φ1i+ φ2r),

we can rearrange the above equation as

(φ2i− αi)λ2 + (−ρ− d− φ2 + φ2r)λ3 = e−∆M2, (45)

where

M2 = χφ2ν
′(φ1i+ φ2r)− u′(c)kφ2 + φ2

u(c)− χν(φ1i+ φ2r)

(ρ− b+ d+ φ1i+ φ2r)
.

Define λ̃2 = λ2/e
−∆. Then, combing equations (44) and (45), we can solve for λ2:

λ̃2 = λ2/e
−∆ (46)

=
M1(−ρ− d− φ2 + φ2r)−M2(ψ + φ1r)

[α(h)(1− i− r)− ρ− d− ψ − φ1 + φ1i− αi] (−ρ− d− φ2 + φ2r)− (ψ + φ1r)(φ2i− αi)
.

Substituting λ1 and λ2 into equation (13), and we have

µ3/e
−∆ = λ̃2α

′(h)(1− i− r)i− u′(c).
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Thus, the steady state (i∞, r∞, k∞, c∞, h∞) is determined by the following five equations

[
φ2 + φ1

α− φ2

φ1 − α

]
r2 +

[
−(b+ φ2) + ψ

α− φ2

φ1 − α
+ φ1 + φ1

ψ + b

φ1 − α

]
r + ψ + ψ

ψ + b

φ1 − α
= 0

(47)

i =
α− φ2

φ1 − α
r + 1 +

ψ + b

φ1 − α
, (48)

f1(k, 1− i) = ρ+ δ, (49)

f(k, 1− i) = c+ h+ δk + (b− d)k + (φ1i+ φ2r)k, (50)

λ̃2α
′(h)(1− i− r)i− u′(c) ≥ 0, h ≥ 0, (λ̃2α

′(h)(1− i− r)i− u′(c))h = 0. (51)

Let us focus on equation (51) and define a function G:

G(h) = λ̃2α
′(h)(1− i− r)i− u′(c), (52)

where λ̃2 is defined in equation (46), and i, r, k and c are all functions of h defined by
equations (47)-(50). Therefore, the function G is a function of health expenditure h, i.e. the
net marginal benefit of health expenditure. There are two scenarios.

One is the disease endemic steady state with a corner solution h∞ = 0. When G(h)|h=0 ≤
0, that is, the MC is larger than the MB, we have a corner solution with h∞ = 0 and
α(h∞) = ᾱ. With h∞ = 0, we can solve for the steady state r∞, i∞, k∞ and c∞ with
equations (47) - (50).

The other is the disease endemic steady state with an interior solution h∞ > 0. When
G(h)|h=0 > 0, that is, the MB is larger than the MC, we have an interior solution and h∞ is
determined by G(h) = 0. Given the optimal h∞, the steady state variables r∞, i∞, k∞ and
c∞ are determined by equation (47) - (50).

7.3 Proof of Lemma 1

Proof. Consider any feasible path (xt, zt) with the same initial condition x∗0.

It follows from (34) that

λ4,t = λ4,0 +

∫ t

0

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ.

The transversality condition (41) implies

lim
t→∞

[λ4,0 +

∫ t

0

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ ]∆∗t = 0.
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Since limt→∞∆∗t = +∞, the identity above is satisfied only if

λ4,0 = −
∫ t

0

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ

which in turn implies

λ4,t = −
∫ ∞

0

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ +

∫ 0

t

−e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ

= −
∫ ∞
t

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ.

For any ∆, since d∆ = (ρ− b+ d+ φ1i+ φ2r)dt we have∫ ∞
t

e−∆τdτ =

∫ ∞
t

e−∆τd∆τ

ρ− b+ d+ φ1iτ + φ2rτ
. (53)

Let denote qτ = ∆τ , if τ = t then qt = ∆t. If τ = ∞ then q∞ = ∆∞ = ∞. Moreover,

since 0 ≤ i, r ≤ 1 from (53) we get

1

ρ− b+ d+ φ1 + φ2

∫ ∞
∆t

e−qdq ≤
∫ ∞
t

e−∆τdτ ≤ 1

ρ− b+ d

∫ ∞
∆t

e−qdq

⇔ e−∆t

ρ− b+ d+ φ1 + φ2

≤
∫ ∞
t

e−∆τdτ ≤ e−∆t

ρ− b+ d
. (54)

It follows from (36), (54) and using the l’Hôpital’s rule we have

0 ≤ lim
t→∞

∆t

∫ ∞
t

e−∆∗τ [u(c∗τ )− χν(φ1i
∗
τ + φ2r

∗
τ )]dτ ≤ (u(A) + χν(φ1 + φ2)) lim

t→∞
∆t

∫ ∞
t

e−∆∗τdτ

≤ (u(A) + χν(φ1 + φ2)) lim
t→∞

∆te
−∆∗t

ρ− b+ d

=
u(A) + χν(φ1 + φ2)

ρ− b+ d
lim
t→∞

∆t

e∆∗t
=
u(A) + χν(φ1 + φ2)

ρ− b+ d
lim
t→∞

∆̇t

∆̇∗t e
∆∗t

=
u(A) + χν(φ1 + φ2)

ρ− b+ d
lim
t→∞

ρ− b+ d+ φ1i+ φ2r

ρ− b+ d+ φ1i∗ + φ2r∗
1

e∆∗t
= 0

because

ρ− b+ d

ρ− b+ d+ φ1 + φ2

≤ ρ− b+ d+ φ1i+ φ2r

ρ− b+ d+ φ1i∗ + φ2r∗
≤ ρ− b+ d+ φ1 + φ2

ρ− b+ d
and e∆∗t →∞ as t→∞.
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Therefore, for any feasible ∆t,

lim
t→∞

λ4,t∆t = − lim
t→∞

∆t

∫ ∞
t

e−∆τ [u(cτ )− χν(φ1iτ + φ2rτ )]dτ = 0. (55)

Together with (41) we have

lim
t→∞

λ4,t(∆t −∆∗t ) = 0.

Note that , since limt→∞∆t =∞ so from (55) we get limt→∞ λ4,t = 0.

7.4 Proof of Lemma 2

Proof. i) From (29) we get λ1 ≥ 0. Therefore λ1k ≥ 0 and (35) implies

lim
t→∞

λ1(k∗ − k) ≤ 0.

ii) From Proposition 3, either i∗ converges to a positive steady state or the sequence lies in

the unit interval and does not converge to 0. In both cases, it follows from (35) that

lim
t→∞

λ2 = 0.

As i is bounded, we have

lim
t→∞

λ2(i∗ − i) = 0.

Similarly, we have

lim
t→∞

λ3 = 0 and hence lim
t→∞

λ3(r∗ − r) = 0.

7.5 Proof of Lemma 3

Proof. We have

H̄(x∗t , z
∗
t , λt)− H̄(x∗t , zt, λt)

= e−∆∗ [u(c∗t )− u(ct)]− λ1(c∗t − ct)− λ1(h∗t − ht) + λ2(1− i∗ − r∗)i∗(α(h∗)− α(h))

As u(c) is concave we have

e−∆∗ [u(c∗t )− u(ct)] ≥ e−∆∗u′(c∗t )(c
∗
t − ct) = λ1(c∗t − ct). (56)
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Since α(h) is convex, we have

α(h∗)− α(h) ≤ α′(h∗)(h∗ − h). (57)

From (29) and (30), 0 < e−∆u′(c∗) = λ1 = λ2α
′(h∗)(1−i∗−r∗)i∗ thus (1−i∗−r∗)i∗λ2 < 0

because α′(h∗) < 0. Therefore, from (57) we have

(1− i∗ − r∗)i∗λ2(α(h∗)− α(h)) ≥ (1− i∗ − r∗)i∗λ2α
′(h∗)(h∗ − h) = λ1(h∗ − h). (58)

It follows from (56) and (58) that H̄(x∗t , z
∗
t , λt)− H̄(x∗t , zt, λt) ≥ 0.

7.6 Proof of Lemma 4

Proof. As 0 ≤ h∗ ≤ A and α
′′
> 0, we have α′(0) ≤ α′(h∗) ≤ α′(A) ≤ 0. There-

fore, 0 ≤ |α′(h∗)(1− i∗ − r∗)i∗λ2| ≤ |α′(0)i∗λ2| . Therefore the usual transversality con-

dition implies limt→∞ |α′(h∗)(1− i∗ − r∗)i∗λ2| = 0. Thus from (30) we have limt→∞ λ1 =

limt→∞ α
′(h∗)λ2(1− i∗ − r∗)i∗ = 0.

We have

lim
t→∞

H(x∗t , z
∗
t , λt) =

lim
t→∞

e−∆∗ [u(c∗)− χν(φ1i
∗ + φ2r

∗)] + lim
t→∞

λ1{f(k∗, 1− i∗)− c∗ − h∗ − δk∗ − (b− d− φ1i
∗ − φ2r

∗)k∗}

+ lim
t→∞

λ2i
∗E + λ3F + lim

t→∞
λ4{ρ− b+ d+ (φ1i

∗ + φ2r
∗)}

where

E = α(1− i∗ − r∗)− ψ − b− φ1 + φ1i
∗ + φ2r

∗,

F = ψi∗ − br∗ − φ2r
∗ + r∗(φ1i

∗ + φ2r
∗).

It is easy to see that

0 ≤ |E| ≤ α + ψ + b+ 2φ1 + φ2 <∞,
0 ≤ |F | ≤ ψ + b+ 2φ2 + φ1 <∞.

Using the results of Lemma 1 and Lemma 2 with the fact that k∗, c∗, h∗, i∗, u(c∗), ν(φ1i
∗+

φ2r
∗) and f are bounded, it implies that the transversality condition (40) is satisfied.
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