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Abstract

In this paper, we consider estimating spot/instantaneous volatility matrices of high-frequency
data collected for a large number of assets. We first combine classic nonparametric kernel-based
smoothing with a generalised shrinkage technique in the matrix estimation for noise-free data
under a uniform sparsity assumption, a natural extension of the approximate sparsity commonly
used in the literature. The uniform consistency property is derived for the proposed spot volatility
matrix estimator with convergence rates comparable to the optimal minimax one. For the high-
frequency data contaminated by the microstructure noise, we introduce a localised pre-averaging
estimation method in the high-dimensional setting which first pre-whitens data via a kernel filter
and then uses the estimation tool developed in the noise-free scenario, and further derive the
uniform convergence rates for the developed spot volatility matrix estimator. In addition, we also
combine the kernel smoothing with the shrinkage technique to estimate the time-varying volatility
matrix of the high-dimensional noise vector, and establish the relevant uniform consistency result.
Numerical studies are provided to examine performance of the proposed estimation methods in
tinite samples.
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1 Introduction

Modelling high-frequency financial data is one of the most important topics in financial economics
and has received increasing attention in recent decades. Continuous-time econometric models
such as the Itd semimartingale are often employed in the high-frequency data analysis. One of the
main components in these models is the volatility function or matrix (if there are multiple financial
assets). In the low-dimensional setting (with a single or a small number of assets), the realised
volatility (or covariance matrix) is often used to estimate the integrated volatility over a fixed time
period (e.g., Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002, 2004; Andersen
et al., 2003). In practice, it is not uncommon that the high-frequency financial data are contaminated
by the market microstructure noise, which leads to biased realised volatility if the noise is ignored
in the estimation procedure. Hence, various modification techniques such as the two-scale, pre-
averaging and realised kernel have been introduced to account for the microstructure noise and
produce consistent volatility estimation when there is a single asset or a small number of assets (e.g.,
Zhang, Mykland and Ait-Sahalia, 2005; Barndorff-Nielsen et al., 2008; Kalnina and Linton, 2008;
Jacod et al., 2009; Podolskij and Vetter, 2009; Christensen, Kinnebrock and Podolskij, 2010; Park,
Hong and Linton, 2016). Shephard (2005), Andersen, Bollerslev and Diebold (2010) and Ait-Sahalia
and Jacod (2014) provide comprehensive reviews for estimating volatility with high-frequency
financial data under various settings.

In recent years, financial economists often have to deal with the situation that there are a large
amount of high-frequency financial data collected for a large number of assets. A key issue is to
estimate the large volatility structure for these assets which has applications in various areas such
as the optimal portfolio choice and risk management. Partly motivated by recent developments
in large covariance matrix estimation for low-frequency data in the statistical literature, Wang
and Zou (2010), Tao, Wang and Zhou (2013) and Kim, Wang and Zou (2016) estimate the large
volatility matrix under an approximate sparsity assumption (Bickel and Levina, 2008); Zheng
and Li (2011) and Xia and Zheng (2018) study large volatility matrix estimation using the large-
dimensional random matrix theory (Bai and Silverstein, 2010); and Lam and Feng (2018) propose a
nonparametric eigenvalue-regularised integrated covariance matrix for high-dimensional asset
returns. Given that there often exists co-movement between a large number of assets and the co-
movement is driven by some risk factors which can be either observable or latent, Fan, Furger and
Xiu (2016), Ait-Sahalia and Xiu (2017), Dai, Lu and Xiu (2019) extend the methodologies developed
by Fan, Liao and Mincheva (2011, 2013) for large low-frequency data to estimate the large volatility
matrix by imposing a continuous-time factor model structure on the high-dimensional and high-
frequency financial data, and Ait-Sahalia and Xiu (2019) study the principal component analysis
of high-frequency data and derive the asymptotic distribution for the estimates of the realised



eigenvalues, eigenvectors and principal components.

The estimation methodologies in the aforementioned literature rely on the realised volatility
(or covariance) matrices, measuring the integrated volatility structure over a fixed time interval. In
practice, it is often interesting to further explore the actual spot/instantaneous volatility structure
and its dynamic change over certain time interval, which is a particularly important measurement
for the financial assets when the market is in a volatile period (say, the global financial crisis or
COVID-19 outbreak). For a single financial asset, Fan and Wang (2008) and Kristensen (2010)
introduce a kernel-based nonparametric method to estimate the spot volatility function and
establish its asymptotic properties including the point-wise and global asymptotic distribution
theory and uniform consistency. For the noise-contaminated high-frequency data, Zu and Boswijk
(2014) combine the two-scale realised volatility with the kernel-weighted technique to estimate the
spot volatility, whereas Kanaya and Kristensen (2016) propose a kernel-weighted pre-averaging
spot volatility estimation method. Other nonparametric spot volatility estimation methods can
be found in Fan, Fan and Lv (2007) and Figueroa-Lépez and Li (2020). Chapter 8 of Ait-Sahalia
and Jacod (2014) reviews some recent developments on spot volatility estimation. It seems
straightforward to extend this local nonparametric method to estimate the spot volatility matrix
for a small number of assets. However, a further extension to the setting with vast financial assets
is non-trivial. There is virtually no work on estimating the vast spot volatility matrix except Kong
(2018) which considers estimating large spot volatility matrices and their integrated versions under
the continuous-time factor model structure for noise-free high-frequency data.

We consider the large spot volatility matrix estimation problem in two scenarios: (i) noise-free
high-frequency data, and (ii) noise-contaminated high-frequency data. In scenario (i), we first
use the nonparametric kernel-based smoothing method to estimate the volatility and co-volatility
functions as in Fan and Wang (2008) and Kristensen (2010), and then apply a generalised shrinkage
to off-diagonal estimated entries. With small off-diagonal entries forced to be zeros, the resulting
large spot volatility matrix estimate would be non-degenerate. We derive the uniform consistency
property for the proposed spot volatility matrix estimator under a uniform sparsity assumption,
which is also adopted by Chen, Xu and Wu (2013), Chen and Leng (2016) and Chen, Li and Linton
(2019) in the low-frequency data setting. In particular, the derived uniform convergence rates
are comparable to the optimal minimax rate in large covariance matrix estimation (e.g., Cai and
Zhou, 2012). The number of assets is allowed to be ultra large in the sense that it can grow at
an exponential rate of 1/A with A being the sampling frequency. In scenario (ii) when the high-
frequency data are contaminated by the microstructure noise, we extend a localised pre-averaging
estimation method from the low-dimensional setting (e.g., Kanaya and Kristensen, 2016) to the
high-dimensional one. Specifically, we first pre-average data via a kernel filter and then apply
the same estimation method to the kernel fitted high-frequency data (at pseudo-sampling time



points) as in the noise-free scenario (i). The microstructure noise vector is assumed to be weakly
correlated and heteroskedastic with the time-varying covariance matrix satisfying the uniform
sparsity assumption. We further combine the kernel smoothing with generalised shrinkage to
estimate the time-varying noise volatility matrix and derive its uniform convergence property.
Some simulation studies are provided to examine the finite-sample performance of the proposed
estimation methods.

The rest of the paper is organised as follows. In Section 2, we estimate the large spot volatility
matrix in the noise-free high-frequency data setting and give the uniform consistency property.
In Section 3, we extend the methodology and theory to the noise-contaminated data setting
and further estimate the large noise volatility matrix. Section 4 discusses the spot precision
matrix estimation and addresses the asynchronicity issue in the estimation. Section 5 reports the
simulation studies. Section 6 concludes the paper. All the mathematical proofs are available in
Appendices A and B. Throughout the paper, we let || - ||, be the Euclidean norm of a vector; and
for a d x d matrix A = (Ajj)axa, we let ||A]] and ||A||f be the matrix spectral norm and Frobenius
norm, [All = Y Y 1 Ayl JAlL = maxigica X 1Ayl [All,q = maxicica Y i |A4|9 and

HAHmax = maXjgiga MaXigigd |Aij|-

2 Estimation with noise-free data

Suppose that Xy = (Xq¢,- -, Xplt)T is a p-variate Brownian semi-martingale solving the following
stochastic differential equation:
dXt - tht ‘I— O-tdwt, (21)

where Wy = (Wi, -+, Wp,t)T is a p-dimensional standard Brownian motion, u, = (py,- -, up,t)r
is a p-dimensional drift vector, and o = (0yj,¢) pxp is a p x p matrix. The spot volatility matrix of
X, is defined as

Lo = (Zijq) = 0.0;. (2.2)

PXPp
Our main interest lies in estimating X, when the size p is large. As in Chen, Xu and Wu (2013)
and Chen and Leng (2016), we assume that the true spot volatility matrix satisfies the following
uniform sparsity condition: {X, : 0 <t < T} € 8(q, @(p), T) which is defined by

{Zt = [Zij,t]pxpr te[0,T] ‘ sup ||Z¢lloo,q < /\@(p)} , (2.3)

0<t<T

where 0 < q < 1, T is a fixed positive number and A is a positive random variable satisfying
E[A] < CA < oo. This is a natural extension of the approximate sparsity assumption (e.g., Bickel



and Levina, 2008; Tao, Wang and Zhou, 2013). The asset prices are assumed to be collected over
a fixed time interval [0, T] at 0, A, 2A, - - - ,nA, where A is the sampling frequency and n = [T/A|
with | -] denoting the floor function. In this section, we focus on a simple case of equidistant time
points in the high-frequency data collection and will discuss the asynchronicity issue in Section 4.2.

For each 1 < 1,j < p, we estimate the spot co-volatility Z;; ¢ by

n

=) Kn(tk —t)AXxAXjy, 0<t<T, (2.4)
k=1
where t,, = kA, Ky, (1) = h™'K(u/h), K(-) is a kernel function, h is a bandwidth shrinking to zero

and AX; x = Xit, —Xit,_,- A naive method is to estimate the spot volatility matrix X, by ft, directly
using ii)‘,t as its entry. However, this estimate often performs poorly in practice when the number
of assets is very large (say, p > n). To address this issue, a commonly-used technique is to apply a
shrinkage function to fij,t when i # j, forcing very small estimated off-diagonal entries to be zeros.
Let s,(-) denote a shrinkage function satisfying the following three conditions: (i) |s,(u)| < [ul
foru € R; (ii) sp(u) = 0if Ju|] < p; and (iii) |s,(u) — u| < p, where p is a user-specified tuning
parameter. With the shrinkage function, we construct the following nonparametric estimator of X:

L= (z; t>po with 5 = 55,00 (Zy,0)10 #) + Ziddd =), (2.5)
where p;(t) is a tuning parameter which is allowed to change over t and I(-) denotes the indicator
function. The above estimation method of the spot volatility matrix can be seen as a natural
extension of the recent work on the kernel-based large covariance matrix estimation (e.g., Chen,
Xu and Wu, 2013; Chen and Leng, 2016; Chen, Li and Linton, 2019) from the low-frequency data
setting to the high-frequency one. We next give some technical assumptions which are needed to
derive the uniform convergence property of ..

Assumption 1. (i) {i+} and {0y, } are adapted locally bounded processes with continuous sample path.

(ii) With probability one,

min inf X >0, min inf ¥ >0,
1<i<p 0<s<T 1<i£j<p 0<s<T

where LY o = Lii s + 55,5 +2%55,5. For almost all path of the spot covariance process {Zi; ¢}, the m-th

ij,s

derivative (with respect to time), denoted by Zgj“ft), m > 0, exists and satisfies that

sup yim _ylm < B(t,¢e)lelY +o(le]Y), e =0, (2.6)

ij,t+e ij, t
1<Li<p

where 0 <y < 1, and B(, €) is a positive random function slowly varying at € = 0 and continuous

5



with respect to t.
Assumption 2. (i) The kernel K(-) is a bounded and Lipschitz continuous function with a compact support
[—1,1]. In addition, fl_l Ku)du =1, fl_l uKuwdu=0,i=1,---,k, and fl_l [u|*K(u)du < oo.

(ii) The bandwidth h satisfies that h — 0 and

I
oglpva 1) 7

(iii) Let the time-varying tuning parameter p1(t) in the generalised shrinkage be chosen as

Alog(p\/A_l)]l/2

p1(t) = M(t)Cap, Cap =h™Y + [ -

where M(t) is a positive function satisfying that

< i < <C :
0<Cum < Ogl?iT M(t) < OZ?ET M(t) < Cm < o0

Remark 1. Assumption 1 imposes some mild restrictions on the drift and volatility processes. By a
typical localisation procedure as in Section 4.4.1 of Jacod and Protter (2012), the local boundedness
condition in Assumption 1(i) can be strengthened to the bounded condition over the entire time
interval, i.e., with probability one,

max sup. |ui,s| < Cp < oo, D, sup Liit < Cz < oo,
which are similar to Assumption A2 in Tao, Wang and Zhou (2013) and Assumptions (A.ii) and
(A.iii) in Cai et al (2020). Assumption 1(ii) gives the smoothness condition on the spot covariance
process, crucial to derive the uniform asymptotic order for the kernel estimation bias. A similar
condition is also used by Kristensen (2010) and Zu and Boswijk (2014) in the univariate spot
volatility estimation. Note that we allow %;;; to be either deterministic or generated by standard
stochastic volatility models. When the spot covariance is driven by continuous semimartingales,
(2.6) holds withm =0and vy < 1/2 (e.g., Ch. V, Exercise 1.20 in Revuz and Yor, 1999). Assumption
2(i) contains some commonly-used conditions for the kernel function. For k > 2, K(-) becomes
the so-called higher-order kernel, which, together with the condition m > 2, leads to reduction
of bias order in kernel estimation. Assumptions 2(ii)(iii) impose some mild conditions on the
bandwidth and time-varying shrinkage parameter. In particular, when p diverges at a polynomial
rate of 1/A, Assumption 2(ii) reduces to the regular bandwidth restriction. Assumption 2(iii)
is comparable to that assumed by Chen and Leng (2016) and Chen, Li and Linton (2019). It is
worthwhile to point out that the developed methodology and theory still hold when the time-
varying tuning parameter in Assumption 2(iii) is allowed to vary over the (i,j) entries in the spot
volatility matrix estimation, which is expected to perform well in finite samples. For example, we



~ -~ 1/2
construct py;(t) = p(t) (Zﬁ,t 2 )-,t> in the simulation study and shrink the (i,j)-entry to zero if

~ N2
the spot correlation ;5 / (zﬁ,tzjj,t) < p(t).

The following theorem gives the uniform convergence property for the proposed spot volatility

matrix estimator X in the matrix spectral norm.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, {Z,: 0 <t < T} € 8(q,@(p), T) and
K > m + . Then we have

sup 22| = 0r (202 ). 2.7)

h<t<T—h

where @ (p) is defined in (2.3) and Ca p is defined in Assumption 2(iii).

Remark 2. The first term of (s is h™*Y, which is the bias rate due to application of the local

smoothing technique. It is smaller than the conventional h?-rate when m > 2 due to Assumption

Alog(pVA™)
h 4

the uniform asymptotic rate for the kernel estimation variance component. When p diverges at

2(i) on the higher-order kernel function. The second term of (4, is square root of

a polynomial rate of n, (s, reduces to the uniform convergence rate derived in Theorem 3 of
Kristensen (2010) for univariate spot volatility function estimation (see also Kanaya and Kristensen,
2016). The uniform convergence rate in (2.7) is also similar to those obtained by Chen and Leng
(2016) and Chen, Li and Linton (2019) in the low-frequency data setting. Note that the dimension
p affects the uniform convergence rate via @ (p) and log(p V A~!) and the estimation consistency
may be achieved in the ultra-high dimensional setting when p diverges at an exponential rate
of n = T/A. Treating (nh) as the “effective” sample size in the local estimation procedure and
disregarding the bias order h™*Y, the uniform convergence rate in (2.7) is comparable to the
optimal minimax rate in large covariance matrix estimation (e.g., Cai and Zhou, 2012).

Due to the kernel boundary effect, Theorem 1 only considers the uniform consistency property
for the spot volatility matrix estimate %, over the trimmed time interval [h, T — hJ. In practice, it is
often important to investigate the spot volatility structure near the boundary points. For example,
when we consider one trading day as a time interval, it is particularly interesting to estimate the
spot volatility matrix near the opening and closing times which are peak times in stock market
trading. Assume that the underlying spot volatility is driven by continuous semimartingales (e.g.,
Remark 1), Assumption 1(ii) is satisfied with m = 0 and y < 1/2. As recommended by Li and
Racine (2007), we may replace Ky, (tx — t) in (2.4) by a boundary kernel weight which is defined by

t)/ L, Kady, 0<t<h,
Kh(tk—t)/jT UM wdu, T— h T

7



With the boundary kernel in the proposed spot volatility matrix estimator, we may show that

Sup Hit — Zt

0<t<T

= O (@(p)Cs . ),

11/2
where Cap . =Y + [Ak’g(+m} withy < 1/2.

3 Estimation with contaminated high-frequency data

In practice, it is not uncommon that high-frequency financial data are contaminated by the market
microstructure noise. The kernel estimation method proposed in Section 2 would be biased if the
noise is ignored in the estimation procedure. In this section, we consider the following additive
noise structure:

Z, = th +& = xtk + w(tk)ai/ (3.1)

wherety = kA, k=1,--- ,n,Z; = (Zy4,-- -, Zp,t)T is a vector of observed asset prices at time t, and
& = (&, Ep,k)T is a p-dimensional vector of noises with nonlinear heteroskedasticity, w(-) =
[y (- )]p xPp
follows a p-variate identical distribution. The noise structure defined in (3.1) is similar to the

is a p X p matrix of deterministic functions, and &, = (E,fk, cee, E;k)T independently

setting considered in Kalnina and Linton (2008) which also contains a nonlinear mean function
and allows the existence of endogeneity for a single asset. Throughout this section, we assume that
(&1} is independent of the Brownian semimartingale {X}.

3.1 Estimation of the spot volatility matrix

To account for the microstructure noise and produce consistent volatility matrix estimation, we
apply a localised version of the pre-averaging technique as the realised kernel estimate (Barndorff-
Nielsen et al., 2008) can be seen as a member of the pre-averaging estimation class whereas the
two-scale estimate (Zhang, Mykland and Ait-Sahalia, 2005) can be re-written as the realised kernel
estimate with the Bartlett-type kernel (up to the first-order approximation). The pre-averaging
method has been studied by Jacod et al. (2009), Podolskij and Vetter (2009) and Christensen,
Kinnebrock and Podolskij (2010) in estimating the integrated volatility for a single asset and is
further extended by Kim, Wang and Zou (2016) and Dai, Lu and Xiu (2019) to the large high-
frequency data setting. Kanaya and Kristensen (2016) is among the first to introduce a localised
pre-averaging technique to estimate the spot volatility function for a single asset and derive the
uniform convergence rate for the developed estimate. A similar technique is also used by Xiao
and Linton (2002) to improve convergence of the nonparametric spectral density estimator for



time series with general autocorrelation for low-frequency data. The main aim of this section is to
extend the localised pre-averaging volatility estimation to the high-dimensional data setting with
more flexible noise structure.

We first pre-average the observed high-frequency data via a kernel filter, i.e.,

3-—|

== Lo(tk—T1)Zy,, 0<T<T, (3.2)
k=1

where L(-) is a kernel function and b is a bandwidth. Let A)N(u = )N(i,Tl — )N(im_l, where )N(i,Tl is the
i-th component of y(n and T, Ty, - - - , Tn are the pseudo- sampling time points in the ﬁxed interval
[0, T] with equal distance A, = T/N. Replacing AX; x by AX” in (2.4), foreach 1 < i,j < p, we
estimate the spot co-volatility ;¢ by

HI\/]z

Tl—t AX 1AX]1, O<t<T (33)

where the kernel weight Kj, (-) is defined as in Section 2. Furthermore, to obtain a non-degenerate
spot volatility matrix estimate in finite samples when the dimension p is large, as in (2.5), we apply
shrinkage to Zij,¢, 1 <1i#j < p, and subsequently construct

zt = (zf_)/t) 7 Zf_) t — sz( t) (zij,t) I(i # j) —|— iii,tl(i = j)’ (3.4)
PXPp

where p,(t) is another time-varying shrinkage parameter. We next give some conditions needed to
derive the uniform consistency property of X;.

Assumption 3. (i) Let {&, } be an independent and identically distributed (i.i.d.) sequence of p-dimensional
random vectors. Assume that E(£7, ) = 0 and

E [exp (slu’&;])] < Cg <00, 0<s < sy,

for any p-dimensional vector u satisfying |jul|2 = 1.

(ii) The deterministic functions wy;(-) are bounded uniformly over i,j € {1,-- - ,p}, and satisfy that

P
max sup Z w%j(t) < Cy < o0.

ISISPo<tsT i

Assumption 4. (i) The kernel function L(-) is Lipschitz continuous and has a compact support [—1,1]. In
addition, Jﬂil L(u)du = 1.



(ii) The bandwidth b and the dimension p satisfy that

AZL—lb B
b— 0, W — 00, pAexp{—sA }—> 0,

where 0 <1< 1/2and 0 < s < so.

(iii) Let vapn = /Nlog(p V A1) [bY/2 4+ (A7) "1/2] — 0 and the time-varying tuning param-
eter po(t) be chosen as p,(t) = M(t) (C"{\,/p + vA,p,N), where M(t) is defined as in Assumption 2(iii)
and (Y, ,, is defined as (a p, with N replacing A~

Remark 3. We allow nonlinear heteroskedasticity on the microstructure noise. The i.i.d. restriction
on &; may be weakened to some weak dependence conditions (e.g., Kim, Wang and Zou, 2016;
Dai, Lu and Xiu, 2019) at the cost of more lengthy proofs. The moment condition in Assumption
3(i) is weaker than the sub-Gaussian condition (e.g., Bickel and Levina, 2008; Tao, Wang and Zhou,
2013) which is commonly used in large covariance matrix estimation when the dimension p is ultra
large. The boundedness condition on wj;(-) in Assumption 3(ii) is similar to the local boundedness
restriction in Assumption 1(i). Assumption 4(ii) imposes some mild restrictions on b and p, which
also imply that there is a trade-off between them. When (s larger, p diverges at a faster exponential
rate of 1/A but the bandwidth condition becomes more restrictive. If p is divergent at a polynomial
rate of 1/A, we may let 1 be sufficiently close to zero, and then the bandwidth condition reduces
to the conventional one as in Assumption 2(ii). The condition v pn — 0 in Assumption 4(iii) is
crucial to show that the error of the kernel filter X, tends to zero asymptotically, whereas the form
of the time-varying shrinkage parameter p,(t) is relevant to the uniform convergence rate of im
(see Proposition A.2).

Theorem 2. Suppose that Assumptions 1(i)(ii), 2(i), 3 and 4 are satisfied, K > m + v and Assumption 2(ii)
holds with A~ replaced by N. When {X,: 0 <t < T} € 8(q, @(p), T), we have

sup Hit — % =0p (@(p) [C*N,p + ‘VA,p,N:|17q) , (3.5)

h<t<T—h

where CY, ,, and v ap N are defined in Assumption 4(iii).

Remark 4. The uniform convergence rate in (3.5) relies on @(p), N , and va pn. With the high-
frequency data collected at pseudo time points with sampling frequency A, = T/N, the rate ¢y, ,,
is comparable to (5, for the noise-free kernel estimator in Section 2. The rate v, N is due to
the error of the kernel filter X in the first step of the local pre-averaging estimation procedure.
In particular, when q = 0, @ (p) is bounded, b = A4 and h = N~z 9 with N = A_%,
the uniform convergence rate in (3.5) becomes AT V/Iog(p VV A-1). Furthermore, if m = 0
and y = 1/2, the rate is simplified to A'/'2,/log(p \V A1), comparable to those derived by Zu and

10



Boswijk (2014) and Kanaya and Kristensen (2016) in the univariate high-frequency data setting.
The boundary kernel defined in Section 2 is applicable to ii]-,t defined in (3.3) and the uniform
consistency result in (3.5) can be extended to cover the entire interval [0, T].

3.2 Estimation of the time-varying noise volatility matrix

In practice, it is often interesting to further explore the volatility structure of microstructure noise.
A recent paper by Chang et al. (2021) estimates the constant covariance matrix for high-dimensional
noise and derives the optimal convergence rates for the developed estimate. In the present paper,

we consider the time-varying noise covariance matrix defined by

Qt) = w(t)w' (t) = [Qy(t)] 0<t<T. (3.6)

pxp’

It is sensible to assume that {€2(t) : 0 < t < T} satisfies the uniform sparsity condition as in (2.3).
Foreach 1 <1,j < p, we estimate Q;;(t) by the kernel smoothing method:

ﬁi)’ (t) = K, (tk = t)AZi 1 AZj 4, (3.7)

N[ D>
M=

F
I

1

where h; is abandwidth and AZ; , = Z;, —Zi,_,. Asin (2.5) and (3.4), we again apply shrinkage
to ﬁij (t),1 <i#j < p,and construct

~

Q) = |00

)

~

; O5(8) = sp,00 (Qy(0) 16 #5) + Du (W1 =), (3:8)
PXP

where p;(t) is a time-varying shrinkage parameter. To derive the uniform consistency property of
Q(t), we need to impose stronger moment condition on &, and smoothness restriction on Q;(-).

Assumption 5. (i) For any p-dimensional vector u satisfying |lu|, =1,
E [exp (s(u'&})%)] < Cf < oo, 0<s< sy
(ii) The m-th derivative of Q;;(t), denoted by QEJT” ) (t), m > 0, exists and satisfies that
sup |0 (1) — 0V (s)| < Calt 5P,
1<ij<p

where Cq, is a positive constant.

11



(iii) The bandwidth hy and the dimension p satisfy that

AZL*_lhl

=0, log(p VA1)

— 00, pA~! exp{—sA™"/Cu} — 0,
where 0 < 1, < 1/2,0 < s < sgand Cy, is defined in Assumption 3(ii).

Remark 5. Assumption 5(i) strengthens the moment condition in Assumption 3(i) and is equivalent
to the sub-Gaussian condition, see Assumption Al in Tao, Wang and Zhou (2013). The smoothness
condition in Assumption 5(ii) is similar to (2.6), crucial to derive the asymptotic order of the
kernel estimation bias. The restrictions on h; and p in Assumption 5(iii) are similar to those in
Assumption 4(ii), allowing the dimension p to be divergent to infinity at an exponential rate of
1/A.

In the following theorem, we state the uniform consistency result for Q(t) with convergence
rate comparable to that in Theorem 1.

Theorem 3. Suppose that Assumptions 1, 2(i), 3 and 5 are satisfied, k > m + vy and Assumption 2(ii)
holds when p1(t), Ca,p and h are replaced by ps(t), da, and hy, respectively, where 65, = h Y+

_1,71/2
| 2LsYAD ] When {Q(1): 0< t < T € 8(q, @(p), T), we have

~

sup HQ(t) — Q(t)H — Op (a)(p)sgg) . (3.9)

h<t<T—hy

Remark 6. If the bandwidth parameter h; in (3.7) is the same as h in (2.4), we may find that the
uniform convergence rate Op (a) (p)élA}f‘) would be the same as that in Theorem 1. Treating (nh;)
as the “effective” sample size and disregarding the bias order, we may show that the uniform
convergence rate in (3.9) is comparable to the optimal minimax rate derived by Chang et al. (2021)
for the constant noise covariance matrix estimation. Meanwhile, the uniform consistency result in
Theorem 3 can be extended to cover the entire interval [0, T] by using the boundary kernel.

4 Discussion and extension

In this section, we discuss estimation of the spot precision matrix and address the asynchronicity

issue which is common when multiple asset returns are collected.
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4.1 Estimation of the spot precision matrix

The spot precision matrix of high-frequency data defined as inverse of the spot volatility matrix,
plays an important role in dynamic optimal portfolio choice. In the low-frequency data setting,
estimation of large precision matrices has been extensively studied in the literature and various
estimation techniques such as penalised likelihood (Lam and Fan, 2009), graphical Danzig selector
(Yuan, 2010) and CLIME (Cai, Liu and Luo, 2011) have been introduced. In the high-frequency data
setting, Cai et al (2020) estimate the precision matrix defined as inverse of the integrated volatility
matrix, derive the relevant asymptotic properties under various scenarios and apply the estimated
precision matrix to minimum variance portfolio estimation. In this section, we consider estimating
the large spot precision matrix under a uniform sparsity assumption. Specifically, assume that
model (3.1) holds and that the large spot precision matrix Ay = X Usatisfies {A;: 0 <t < T} e
8.(q, @.(p), T) which is defined by

{Atz[Aﬁ,thXp,te 0, T [ Ac =0, sup [Ali < Ca, sup [Adlog <a>*(p)}, (@.1)

0<t<T 0<t<T

where “A - 0” denotes that A is positive definite and C A is a positive constant.

We next apply Cai, Liu and Luo (2011)’s constrained {; minimisation or CLIME method to
estimate the spot precision matrix A. The estimate is defined as

< p4(t)/

max

/~\t =argmin|A|; subject to H}Et/\ — Ip)
A

where it = (zﬁ’t>po with fij,t defined in (3.3), I, is a p x p identity matrix, and p4(t) is a time-
varying tuning parameter. The final CLIME estimate of A, is obtained by further symmetrising
Av. Suppose that Assumptions 1, 2(i), 3 and 4(i)(ii) are satisfied and Assumption 4(iii) holds with
p2(t) replaced by p4(t). Using Proposition A.2 in Appendix A and following the proof of Theorem

6 in Cai, Liu and Luo (2011), we may show that

sup H/N\t — A

h<t<T—h

= Op (@.(p) [Gup +vapn] 7). (4.2)

4.2 The asynchronicity issue

In Sections 2 and 3, we consider a very special sampling scheme: the high-frequency data are
synchronised with equally spaced time points between 0 and T. Such a setting simplifies exposition
and facilitates proofs of the uniform consistency properties. However, in practice, it is often the
case that a large number of assets are traded at times that are not synchronised. This may induce
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volatility matrix estimation bias and possibly result in the so-called Epps effect (e.g., Epps, 1979). We
next deal with the asynchronicity problem and discuss modifications of the estimation techniques
and theory developed in the previous sections.

Assume that the i-th asset price is collected at th ., t}li, which are non-equidistant time points
over [0, T]. To address this asynchronicity issue, we may adopt a synchronisation scheme before
implementing the large spot volatility matrix estimation method proposed in Sections 2 and 3.
Commonly-used synchronisation schemes include the generalised sampling time (Ait-Sahalia, Fan
and Xiu, 2010), refresh time (Barndorff-Nielsen et al., 2011) and previous tick (Zhang, 2011). We
next propose an alternative technique by slightly amending the localised pre-averaging estimation
in (3.2) to jointly tackle the asynchronicity and noise contamination issues. Replace the kernel filter

in (3.2) by

X = (Xio oo X)) with Xi = ; Lo(th —T)Z; (th—th ), (4.3)

and then use X* in the kernel smoothing (3.3). It is easy to verify that the uniform consistency result
(3.5) still holds by slightly modifying the proofs of Lemma B.1 and Proposition A.2 in Appendix B
and imposing mild restrictions on the time points t} .

The time-varying noise covariance matrix estimation also needs to be modified when large
high-frequency data are non-synchronised. As in Chang et al. (2021), we let T; = {t},t},-- -, tili}
be the set of time points at which we observe the contaminated asset prices, and denote

T\.i]'

where ny; is the cardinality of T;;. Then, we modify the kernel estimate in (3.7) as follows,

T‘Li]'

_ 1 g T
Qi(t) =5 ) K, (8 —t) AZ 5AZ; 5 (1 —t,),
k=1

.4 and
1,t}2

where téj = 0. In contrast to ﬁij(t), tx, Ziy, and A in (3.7) are now replaced by t]ij, Z
t) —tJ |, respectively. We subsequently apply the shrinkage to Qy;(t) when i # j and obtain
the final estimate of Q(t). Assuming maxi¢ij<p MaXici<n,, (t}j — tLLl) — 0 and letting n, =
min;¢; j<p Nij, we may similarly derive the uniform consistency property as in (3.9) but with A

replaced by n_ .
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5 Monte-Carlo simulation studies

In this section, we report the Monte-Carlo simulation studies to assess the numerical performance
of the proposed large spot volatility matrix and time-varying noise volatility matrix estimation
methods. Both synchronous and asynchronous high-frequency data are simulated in the studies.

5.1 The simulation setup

We generate the noise-contaminated high-frequency data according to model (3.1), where w(t)

* —_—
; -p)(-pl Evk -
(& E;;’k) is an independent p-dimensional random vector of cross-sectionally independent

is taken as the Cholesky decomposition of the noise covariance matrix Q(t) = [Qj;(t)]

standard normal random variables, the latent return process X; of p assets is generated from the
following zero-drift model:
dX; = o dWY, t€[0,T], (5.1)

as in Wang and Zou (2010), Wy = (Wfft, cee, Wff/t) " is a standard p-dimensional Brownian motion,
and o is chosen as the Cholesky decomposition of the spot covariance matrix Zy = (Zij¢),,,,- In
the simulation, we consider the volatility matrix estimation over the time interval of a full trading
day, and set the sampling interval to be 15 seconds, i.e., A = 1/(252 x 6.5 x 60 x 4), to generate
synchronous data. We consider three structures in £; and €(t): “banding”, “block-diagonal”, and
“exponentially decaying”. Following Wang and Zou (2010), we generate the diagonal elements
of £ from the following geometric Ornstein-Uhlenbeck model (see also Barndorff-Nielsen and
Shephard, 2002):

dlog Liic = —0.6 (0.157 + log Ly 1) dt + 0.25dWi, Wi, = uWiy +4/1— 2W;y,

where Wy = (W;,, -+, ws ¢) " is a standard p-dimensional Brownian motion independent of WY,
and (; is a random number generated uniformly between —0.62 and —0.30, reflecting the leverage
effects. The diagonal elements of €(t) are defined as daily cyclical deterministic functions of time,

1
Qi (t) =ci {5 [cos (2mtt/T) + 1] x (W — w) +Q} p
where W = 1 and w = 0.1 reflect the observation by Kalnina and Linton (2008) that the noise level
is high at both the opening and the closing times of a trading day and is low in the middle of the
day, and the scalar c; controls the noise ratio for each asset which is chosen to match the highest
noise ratio considered by Wang and Zou (2010). As in Barndorff-Nielsen and Shephard (2002,
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2004), we define a continuous-time stochastic process ki by

e?<t —1
<E = G dke =003 (064 — k) dt + 0118k, AW,

P
wr = V0.96W; - 02 WX/vp
i=1

where WY is a standard univariate Brownian motion independent of Wy and W;. Let

K2 = < ;E [cos (27tt/T) + 1] + K,

where K = 0.5 and k = —0.5. We will use kI and k£ to define the off-diagonal elements in £, and
€ (t), respectively, which are specified as follows.

e Banding structure for £ and €(t): The off-diagonal elements are defined by
li—jl ..
o= (k) VI L3I <2),

and o
Qyt) = (x2)"7 JQut)0;) - T(i—il < 2),

for1 <i#j<p.
e Block-diagonal structure for X; and €(t): The off-diagonal elements are defined by

i .
Ty = (x0) " VEZuaZje - 1((1)) € B),

Qyt) = (k)7 /Qu0)Q;5) - 1((,5) € B),

for 1 <1i#j < p,where B is a collection of row and column indices (1i,j) located within our
randomly generated diagonal blocks '.

e Exponentially decaying structure for £; and €(t): The off-diagonal elements are defined by
il ] o
Lijr = (Kf) ] ZiieLiien Qy(t) = (K?) : Qi (1)Qy5(t), 1<1#7<p. (5.2)

It is clear that the sparsity condition is not satisfied when the off-diagonal elements of £, and

1As in Dai, Lu and Xiu (2019), to generate blocks with random sizes, we fix the largest block size at 20 when p = 200
and randomly generate the sizes of the remaining blocks from a random integer uniformly picked between 5 and
20, such that the total size of all blocks is p = 200. When p = 500, the largest size is 40, and the random integer is
uniformly picked between 10 and 40. Block sizes are randomly generated but fixed across all Monte Carlo repetitions.
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€ (t) are exponentially decaying as in (5.2). To generate the asynchronous data, we follow Wang
and Zou (2010) by randomly deleting 2 observations from every consecutive block of 3 synchronous
15-second observations. Consequently, the average number of asynchronous observations for each
asset is equal to one third of the number of synchronous observations. The number of assets p is
set as p = 200 and 500 and the replication number is R = 200

5.2 Volatility matrix estimation

In the simulation studies, we consider the following volatility matrix estimates.

o Noise-free spot volatility matrix estimate %, (for synchronous data). This infeasible estimate
serves as a benchmark in comparing the numerical performance of various estimation
methods. As in Section 2, we apply the kernel smoothing method to estimate Xi; by
directly using the latent return process X, where the bandwidth is determined by the
leave-one-out cross validation. We apply four shrinkage methods to iij,t for i # j: hard
thresholding (Hard), soft thresholding (Soft), adaptive LASSO (AL) and smoothly clipped
absolute deviation (SCAD). For comparison, we also compute the naive estimate without
applying any regularisation technique.

¢ Noise-contaminated spot volatility matrix estimate 5, (for synchronous data). We combine
the kernel smoothing with pre-averaging in Section 3.1 to estimate Z;; ¢ by using the noise-
contaminated process Z;. As in the noise-free estimation, we apply four shrinkage methods
to ii]',t for i # j and also compute the naive estimate without applying the shrinkage.

e Noise-contaminated spot volatility matrix estimate £, (for asynchronous data). This is an
extension of X defined above to the asynchronous high-frequency data with the modification
technique introduced in Section 4.2.

e Time-varying noise volatility matrix estimate Q(t) (for synchronous data). We combine the
kernel smoothing with four shrinkage techniques in the estimation as in Section 3.2 and also
the naive estimate without shrinkage.

e Time-varying noise volatility matrix estimate O (t) (for asynchronous data). This is an
extension of €)(t) to the asynchronous high-frequency data with the modification technique
introduced in Section 4.2.

The choice of tuning parameter in shrinkage is similar to that in Dai, Lu and Xiu (2019).
For example, in the noise-free spot volatility estimate, we set the tuning parameter as p;;(t) =

~ o~ 1/2
p(t) <Zﬁ,t Z; j,t> where p(t) is chosen as the minimum value among the grid of values on [0, 1]
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such that the shrinkage estimate of the spot volatility matrix is positive definite. To evaluate the
estimation performance of %, we consider 21 equidistant time points on [0, T] and compute the
following Mean Frobenius Loss (MFL) and Mean Spectral Loss (MSL) over 200 repetitions:

MFL — 2(1)0 (212((& —ZET)HF)
MSL = 1 (21ZHZ Z H)

where tj,j =1,2,---,21 are the 21 equal-distant time points on the interval [0, T], and }Ei]m) and

Zg“) are respectively the estimated and true spot volatility matrices at t; for the m-th repetition.
The “MFL” and “MSL” can be similarly defined for X, ii , ﬁ(t) and Q" (t).

5.3 Simulation results

Table 1 reports the simulation results when the dimension is p = 200. The three panels in the table
(from top to bottom) report the results where the true volatility matrix structures are banding,
block-diagonal, and exponentially decaying, respectively. In each panel, the MFL results are
reported on the left, whereas the MSL results are reported on the right. The first three rows of each
panel contain the MFL and MSL results for the spot volatility matrix estimation (the first two rows
are for synchronous data and the third row is for asynchronous data). The fourth and fifth rows
contain the results for the time-varying noise volatility matrix estimation for synchronous and
asynchronous data, respectively.

For the noise-free estimate Z, when the volatility matrix structure is banding, the performance
of the four shrinkage estimators are substantially better than that of the naive estimate (without any
shrinkage). In particular, the results of the soft thresholding, adaptive LASSO and SCAD are very
similar and their MFL and MSL values are approximately one third of those of the naive estimator.
Meanwhile, the performance of the hard thresholding is less accurate (despite the much stronger
level of shrinking used), but is still much better than the naive estimate. These results suggest
that the shrinkage technique is an effective tool in estimating the sparse volatility matrix. Similar
results are obtained for the noise-contaminated estimates £, and £, for both the synchronous and
asynchronous data. Unsurprisingly, due to the microstructure noise, the MFL and MSL values
of the local pre-averaging estimates are noticeably higher than the corresponding values of the
noise-free estimates. The finite-sample convergence is slowed down when the high-frequency
data are not synchronised. We next turn the attention to the time-varying noise volatility matrix
estimates ﬁ(t) and Q°(t). As in the spot volatility matrix estimation, the naive method again
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produces the highest MFL and MSL values. The performance of the four shrinkage estimators
are similar with the adaptive LASSO and SCAD being slightly better than the hard and soft
thresholding. The simulation results for the block-diagonal and exponentially decaying covariance
matrix settings, reported in the middle and bottom panels of Table 1, are fairly close to those for the
banding setting. Overall, the results in Table 1 show that the shrinkage methods perform well not
only in the sparse covariance matrix settings but also in the non-sparse one (i.e., the exponentially
decaying setting).

The simulation results when the dimension is p = 500 are reported in Table 2. In general, the
results are very similar to those in Table 1, so we omit the detailed discussion and comparison to
save the space.

Table 1: Estimation results for the spot volatility and time-varying noise covariance matrices when p = 200

“Banding”
Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
t MFL 14.396 11407 5490 4.038 4830 MSL 3963 1799 1.073 0867  0.987

MFL 18497 12899 12196 12.064 12177 MSL 4796 2347 2260 2255  2.262

MFL 21.180 13.234 13.723 13.392 13768 MSL  6.174 2375 2458 2385 2474

ﬁ(t) MFL 11.714 4226 4740 3.237 3.960 MSL 3281 0.682 1.039 0.571 0.753

Q°(t) MFL 38072 4640 4.647 4640 4646 MSL 6624 0.663 0666 0.663  0.665
“Block-diagonal”

Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
t MFL 14.398 11277 5818 4786 5424 MSL  4.000 2293 1310 1.233  1.386

MFL 18475 12811 12192 12.059 12158 MSL 4915 2777 2663 2669  2.662

MFL 21.143 13.141 13.648 13310 13.693 MSL  6.275 2805 2.821 2804  2.827

Q(t) MFL 11713 4076 4875 3240 3964 MSL 3274 0741 1.098 0.606 0.816

Q'(t) MFL 38066 4520 4528 4520 4526 MSL 6634 0736 0738 0736 0737
“Exponentially decaying”

Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
t MFL 14402 12033 6.091 5287 5976 MSL  4.078 2456 1410 1.348 1510

MFL 18.738 13464 12.748 12.655 12.739 MSL 4977 2934 2810 2819 2.815
MFL 21454 13.772 14.217 13914 14.258 MSL 6.313 2961 2968 2958 2972
ﬁ(t) MFL 11.715 4330 4.860  3.355 4.077 MSL 3297 0774 1.085 0.626 0.833
Q°(t) MFL 38098 4716 4723 4717 4722 MSL 6.672 0.762 0.764 0.762 0.764

The selected bandwidths are h* = 90 for }Et, h* =90 and b* = 4 for }Et and 5::, hi =90 for ﬁ(t), and hi = 250 for
Q7 (t), where h* = h/A, b* = b/A, and hi = hy /A.
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Table 2: Estimation results for the spot volatility and time-varying noise covariance matrices when p = 500

“Banding”
Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
t MFL 21971 4067 5167 4916 3954 MSL 3907 0621 0.715 0.698 0.568

MFL 28.479 19.193 18.617 17930 18.466 MSL 4767 2339 2281 2228 2.281

MFL 32.710 20.656 20.445 20.600 20.445 MSL 6.212 2440 2427 2430 2.427

ﬁ(t) MFL 18.269 4.045 4.826  5.532 4547 MSL 3.307 0461 0.540 0.675 0.519

O°(t) MFL 93263 7.348 7.348  7.348 7348 MSL 10.724 0.681 0.681 0.681 0.681
“Block-diagonal”

Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
I MFL 21973 5703 6429 5928 5480 MSL 3999 0.855 1.134 0.895  0.886
I, MFL 28.682 19.685 19.155 18539 19.029 MSL 4917 2.854 2782 2736  2.798
b MFL 32928 21.080 20.873 21.026 20.873 MSL 6330 2962 2951 2948 2950
Q(t) MFL 18271 4208 4935 5686 4684 MSL 3312 0522 0603 0.751 0.572
Q' (t) MFL 93281 7331 7331 7331 7331 MSL 10759 0773 0.773 0773  0.773

“Exponentially decaying”

Frobenius Norm Spectral Norm
Naive Hard  Soft AL SCAD Naive Hard Soft AL SCAD
ft MFL 21973 6.069 6.697  6.120 5739 MSL 4035 0.894 1173 0927 0.921
I, MFL 28.867 20.195 19.561 18950 19454 MSL 4938 2914 2836 2788  2.850
b MFL 33.153 21.524 21371 21459 21317 MSL 6341 3.015 3.003 3.001 3.003

ﬁ(t) MFL 18275 4335 5.001 5.763 4745 MSL 3322  0.533 0.610 0.757 0.578
Q(t) MFL 93287 7469 7.469  7.469 7469 MSL 10.783 0.781 0.781 0.781 0.781

The selected bandwidths are h* = 240 for ft, h* =240, b* =4 for ft, h* =240, b* = 6 for i:, h} = 240 for ﬁ(t), and
h} =260 for o) (t), where h* = h/A, b* =b/A, and h] = h;/A.

6 Conclusion

In this paper, we have explored the nonparametric estimation methods for large spot volatility
matrices under the uniform sparsity assumption. The kernel smoothing combined with the gen-
eralised shrinkage technique is proposed to estimate the spot volatility matrix for the noise-free
high-frequency data and the uniform convergence rate of the proposed estimate is comparable
to the minimax one. This nonparametric estimation method is further combined with the kernel
pre-averaging to tackle the noise-contaminated high-frequency data. We also develop the nonpara-
metric estimation methodology and uniform convergence theory for the large time-varying noise
volatility matrix. Furthermore, we discuss the spot precision matrix estimation and modify the
developed estimation methods to address the asynchronicity issue which is very common when a
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large number of asset returns are collected. The estimation methodology and theory developed in
this paper are applicable to X which is the residual process from regressing returns on observed
low-dimensional factors with constant regression coefficients, as the residual estimation error
would be dominated by the uniform convergence rates derived in Theorems 1 and 2. The simula-
tion results show that the proposed estimation methods and their modification work well in finite
samples for both the synchronous and asynchronous data when the underlying spot volatility
matrices are either sparse or non-sparse (with exponentially decaying off-diagonal elements).

Several issues can be further explored. For example, the sparsity assumption imposed on
the spot volatility matrix may be too restrictive when assets are highly correlated. There often
exist co-movements between these highly-correlated asset returns, which may be modelled by a
time-varying factor model (e.g., Kong, 2018; Chen, Mykland and Zhang, 2020). It would be an
interesting future topic to extend the nonparametric shrinkage methods developed in this paper to
estimate the large spot volatility structure of the high-frequency data satisfying the latent factor
structure. It is also worthwhile to further study the spot precision matrix estimation which is
briefly discussed in Section 4.1 and explore its application to optimal portfolio choice.

Appendix A: Proofs of the main results

In this appendix, we give the proofs of Theorems 1-3. We start with three propositions on the
uniform convergence rates for iij,t/ ii]—,t and (Alij (t). Their proofs are available in Appendix B.

Proposition A.1. Suppose that Assumptions 1 and 2(i)(ii) are satisfied and let k > m + vy, where m and y
are defined in Assumption 1(ii) and « is defined in Assumption 2(ii). Then, we have

~

max sup |y — Zije

ISUISP hgt<T—h

= 0Op (CA,p) 7 (Al)

q1/2
where (pp = h™TY + [%} )

Proposition A.2. Suppose that Assumptions 1, 2(i), 3 and 4(i)(ii) are satisfied, k > m+y and Assumption
2(ii) holds with A~ replaced by N.

max  sup L — Zije
ISUISP hgt<T—h

=Op (CNp +VapnN), (A.2)

where €Y, , and v a,p N are defined in Assumption 4(iii).
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Proposition A.3. Suppose that Assumptions 1, 2(i), 3 and 5 are satisfied and k > m +y. Then, we have

max sup [Qi(t) — Q45(t)] = Op (0ap), (A.3)

ISUISP hgt<T—h

‘ ~

S\ 1/2
_ pymty Alog(pva™)
where b4, =h 7 + ( o > :

Proof of Theorem 1. By the definition of }Ei and the property of s,(-), we readily have that

sup HZ — X
h<t<T—h
p ~
< su max 2P — Xy
h h<t<IT) nisisp i ot o
p A~ ~
= max S <Z~ > I ( (t)> — Xy
h<t<T nISisp ; AT v
P N . ~
= max S Z-->I< t>—2~~l< t)—
h<t<T h1<l<p; m ( o Y o .
Lijl ( Lije| < Pl(ﬂ)‘
< sup max ) sy <Zij,t) — Zija|l ( Tije| > Pl(t)) +
h<t<T—h ISiSP i1
sup max Tij0— Zije| | ( Liji| > Pl(ﬂ) +
h<t<T-R ISISP T
p ~
sup max | Xl 1 ( Lije| < pl(ﬂ)
h<t<T—h ISISP i1
= ﬂ1 + ﬂz + ﬂg. (A4:)
Define the event
G(M) =< max sup |Zit— Ziji| < Mlap
ISUISP hgt<T—h

where M is a positive constant. For any small € > 0, by (A.1), we may find a sufficiently large

constant M. > 0 such that
P(G(Mc))>1—e€ (A.5)
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By property (iii) of the shrinkage function and (A.5), we have

and

conditional on the event §(M

on §(M

I +T1,

T

”2 < MeCA,p [

<

<

~

sup  pi(t)

h<t<T—h

sup

it

CA,’p (EM + Me )

CA,’p (EM + Me )

OP (CA,p)

sup
h<t<T—

Or (A@(p)isy) =

h<t<T—

)
max I (
1<i<p 4
j=1
P
max I (
1<i<
hASISP AT

¢). Letting Cy, = 2M, in Assumption 2(iii), as {Z: :

sup  max

h<t<T-R ISISP I

sup  max

h<t<T-R ISISP 4T

P

max
h 1<1<p

~

~

<l +Melap

P

I
I

P

|zl) t|

(M CAp)

P (@(P)CA_,p ) .

0<t

(t))]
(t))]

¢). By the reverse triangle inequality and Proposition A.1,

on the event §(M.), where Cp, is defined in Assumption 2(iii). Note that the events {

and (M

IT3

¢) jointly imply that {|Z;| <

<

sup
h<t<T—h ISISp £

(GM + Me)l_q ClA,

O (A@(P)Ths) =

max Z |Z‘L] t|I |le t|

P

sup  max

h<t<T—h ISISP i”

. (@(p)cg;) .

(Cm + M¢) Cap }- Then, we may show that

<T}e8(q,@(p), T), we have
iij,t > QMCA,p)
iij,t > M CA,p)
(A.6)
iij,t < Dl(t)}
(CM + Me) CA:P)
|Zij,t|q
(A.7)
[ |

By (A.6) and (A.7), and letting € — 0 in (A.5), we complete the proof of Theorem 1.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 with Proposition A.2 replacing

Proposition A.1. Details are omitted to save the space.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 with Proposition A.3 replacing
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Proposition A.1. Details are omitted to save the space.

Appendix B: Proofs of technical results

We next provide the detailed proofs of the propositions stated in Appendix A. As in Remark 1,

the local boundedness condition in Assumption 1(i) can be strengthened to the following uniform

boundedness condition:

max sup |uis| < Cy <oo, max sup i < Cx < oo,

ISISP ogsgT

(B.1)

ISISP ogsgT

with probability one. Throughout this appendix, we let C denote a generic positive constant whose

value may change from line to line.

it . x| Alog(pva—) 1/2
Proof of Proposition A.1. Throughout this proof, we let ¢ Ap = | — . By (2.1), we have

(AXi1) (AX i)

:<d

r.tk

P oty
wads + ) |
—1 1=1

tr tk—1

rtx

Jty—

tx

<
.

My i (1) + My i (2) + My i (3) + My i (4).

Wi, s ds J

tx
Wi, s ds J

tx

tr1

te-1 14

tx
0i1,s AW s J
tk—1

te P
Hj,udU) + (J Z Oils dWl,s
P ty P
Z Ujl,udWL,u) + (J Z Oi1,sdWi s

tx
adut Y |

1 Ytk—1
tx

J Wudu | +
tr1

te P
J E 0']' Lu dW[/u
b1 11

P
(02 iLu dW[/u
1=

Bl 1=1

te-1 14

This leads to the following decomposition for fij,t:

M=

=~
I

1

n

k=1

n n

Kh(tk_t)Mij,k(1)+Z Kh(tk_t)Mij,k(2)+Z Kh(tk_t)Mij,k(3)+Z Kh (tik—t)My; « (4).

k=1 k=1

By (B.1) and Assumptions 2(i)(ii), we readily have that

n

max  sup
ISUISP hgt<T—h 1

Z K (tx

— )M (1)

<

n

max max [My;(1)] K (te — t)

sup
1<ij<p 1<k<n

h<t<T-h
n
sup A E

h<t<T-h 1

O (A) = 0r (Cap).

CA Kp (te — t)

(B.2)
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as AY _, Ku(tx — t) is bounded uniformly over h < t < T —h.

We next show that
n n 1 9%
max sup Z Kh(tk — t)Mij,k(él:) - Z Kh(tk — t) J Zij,s ds| = Op (C*A,p) . (B3)
ISUSP h<t<T-h | 3 — tes

tk

Let dXi, = Y |4 o, edWie, AXS, =
filtration (J)¢>o. Note that

1_1 0i1,sdWy s and X} be adapted to the underlying

1
My (4) = AX*kAX]kZZ
1

= 5 [ij k (AX;k)Z o (AX;“)Z] '

[(BXo+ AXG ) (AX .+ AX5) — (AX;,)" = (8,

Hence, to show (B.3), it is sufficient to prove that

n

n ty
2
max su Kn(tk —t) (AXI )" — Kn(t —t)J Yiisds| = Op (C (B.4)
1<i<p h<t<ITD h ; ik ( 'k) ; e ti P( A'p)
and
n n tx
max su Kn(tk —t)ML (4) — ) Ky(t —tJ 25 .ds| =0p (Chyp) s B.5
i hgtgll?fh ; n(tk ) J,k( ) ; n(tk ) . i, P( A,p) (B.5)

where X}  is defined in Assumption 1(ii).

ij,s
We next only prove (B.4) as the proof of (B.5) is analogous. Consider covering the interval
[h, T — h] by some disjoint intervals 7T, with centre 1} and length d = hZC*A,p, v=12---,V.
Observe that

n n th
2
max sup Z Kn(tie —t) (AX], )" — Z Kn(tx —t) Tiieds
ISISP hgt<T—h | — Jie
o , & rti
< Kn(ty — ) (AXY L) — Kn(ty — T y...d
S g‘%’; 131)(\/ Z Rtk v)( 1,k) ; R (tx V)utk,l iy,sds| +
2
max max su Kn(te —t) — Ky (te — )] (AXF
1<i<p1<vgvt€£ [Kn (tk ) n(t V)]( 1,k) +

te

[Kn(tk —t) — Kn(tie — 73] J 2isds|.

tk—1

max max sup
1<i<p ISvgV teT,

(B.6)

T I

=
L
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As the kernel function has the compact support [—1, 1], we have, forany t € [h, T —h],

n R L(t+h)/A] R
> Knlti—1) {(Axg‘,k) — J Tiis ds] = ) Knltk—t) {(AX;ﬁk) — J Tiis ds} .
k=1 fet k=[(t—h)/A] tet

Letting N be a standard normal random variable, by Lemma 1 in Fan, Li and Yu (2012), we have

E (exp{ll)(N2 — 1)}) <exp {21])2} for | < 1/4. (B.7)

Following the argument in the proof of Lemma 3 in Fan, Li and Yu (2012) and using (B.7), for
k= [(tg=N)/AL---, [[TT+R)/A]

tx
E (exp {6 (A’lh)l/2 Kn(te — ) {(AXik)Z — J Ziilsd5:| } Ifftkl)
tk
2A ty — T
< “Lozceie [ x v
exp{ n 0-Cs (—h )},

where 0 satisfies that ’6C s (Ah—1)1/2K (tk_TT“) ‘ < 1/4 and Cs is defined in (B.1). Consequently, we

have
/2 = 2 b
E (exp { Z Kh tk — T |: AXT,k) — J Ziils dS:| })
) tk—1
- [(t+h)/A] , t
= Elexp{0(a"R)" > Knlt—1t) [(Ax;k) —J zﬁ,sds]
k 1

=[(t—h)/A] e
< exp {20°Civo}, (B.8)

log(pVvA—1)

where vy = f K?(u)du. By (B.8), using the Markov inequality and choosing 6 = we

can prove that

|

where C(M) is positive and becomes sufficiently large if we choose M to be large enough. Then,

n n tx
> Knltie— ) (AX5) = Y Knlt — 1)) J Tiisds
k=1 k=1

tk—1

> MCZ,p> < 2exp{—C(M) log(p\/A_l)},

by the Bonferroni inequality, we have

n

n tr
Z Kh(tk — T:) (szk)z — Z Kh(tk — T;k)) J Zii,s ds
k=1

tia

P <max max

1<i<p 1<vEV

> MCZ,p)
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p VvV

< ) ) 2exp{—C(M)(log(pV A ")} —0,

i=1 v=1

where the convergence is due to the fact pV = o (exp{C m log(p V Afl)}) as Vis divergent at a
polynomial rate of 1/A and C(M) is sufficiently large, which implies that

n ty

Z Kh(tk — T:) (szk)z — Z Kh(tk — TT,) J Zii,s ds
k=1

k=1 t—1

max max
1<i<p 1<vEV

= 0p(Chy)  (BI)

By the smoothness condition on the kernel function in Assumption 2(i), we have

n

max max sup E
ISP 1vsV 7, |45

[Kn(tk —t) — Kp(te — T3] (AX?,k)z

n

< max sup [Kp(tx —t) — Ky (tx — 7)) max Z (Axf,k)z

1SV (e, 1<i<p 4=

n

— 0(dh?) max ¥ (AX:,)".

1Si<p =

Similar to the proof of (B.9), we may show that

n T
max (AX?k)Z < max J Ziisds+op(1) = 0p(1)

1Si<p £ 1<i<p Jo

as T is fixed and X; ¢ is uniformly bounded by Cs. Hence, by the choice of d, we have

= * x \2| _ *
121%); max, ts;g é [Kn(tk —t) = Kn(t = )] (AX{ )| = Op(CAp)- (B.10)
Analogously, we also have
n te
maxX max sup [Kh(tk - t) — Kh(tk - T:)] J Zii,s ds| = OP(C*A,p)‘ (Bll)
1<ig<p ISvgV teTy |1 te_1

By (B.6) and (B.9)—(B.11), we complete the proof of (B.4).
By (B.2), (B.3) and the Holder inequality, we have

n 2

Z K (tk — )Mk (2)
K—1

max  sup
ISUISP hgt<T—h
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n n

ty 2
< max sup Z Kh(te — 1) (Aka)z max sup Z Kn(ty —t) (J uj,udu)

ISISP pgt<T-h 65 T ISISP T 5 tro1

= Op(A)-Op(1) =0p (4),

indicating that
max  su K (tk — )M (2)| = Op (AY?) = 0p (T4 ), B.12
1<1j<p hétgl'l?fh ; it = )My (2) P (A7) ’ (CA’p) (B.12)
and similarly,
max  sup Z Kn(tk — t)Myj(3)| = Op (AY?) = 0p (C*A,p) . (B.13)
ISUSP h<t<T-h | 5

With (B.2), (B.3), (B.12) and (B.13), we prove that

max  sup
ISUISP hgt<T—h

~ n ty
Zie— ) Knlti—t) J Zij,sds| = Op (Ca,p) - (B.14)

k=1 tk—1

On the other hand, by Assumption 1(ii), we may use the m-th order Taylor expansion for ;; ;.
Then, using Assumption 2(i) and Lemma 7 in Kristensen (2010), we may show that

n tr
max su Kn(tx — t)J Yisds —Xi¢| = Op (R™HY). (B.15)
1<1,j<p hgtglj?fh ; K te 1 ) o F
Then we prove (A.1) by virtue of (B.14) and (B.15). |

We next turn to the proof of Proposition A.2, in which a crucial step is to derive a uniform
consistency for X; .. The latter is stated in Lemma B.1 below.

Lemma B.1. Suppose that Assumptions 1(i), 3 and 4(i)(ii) are satisfied. Then we have

max max (Xir, — Xir,
1<i<p 0KIKN

— Op < log(p V A1) [bm +(a) 7Y ZD : (B.16)

Proof of Lemma B.1. By the definition of X, in (3.2), we write

n

- T
Xio — Xy, = = Z Lo (tk = T)Zie — Xy = Tt (1) + T (2) + TT0(3) 4 TTi 1 (4), (B.17)
n

k=1
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where

T mn
M (1) = o Z Ly (tk — )&k,
k=1
n kA
Ma@ = 3 Ly(te—7) j (Xoxy — Xo)ds,
— (k—=1)A
n kA
M (3) = Z [Ly (tk — ™) — Lo (s — )] X sds,
A
N
M (4) = J Ly (s — 1) Xisds — Xir,-
0
% Alog(‘p\/Afl) 172 T
Letvy, = T] , Wite) = [wir(ti), -+, wip ()], and i . (t) = wi(te)/ [Jwi(te)].
We first consider IT; | (1). Define
Te=wi(t)EL (Jwl, (t)EL < ATY), &5 = wi(ti) &L (Jwi, (t)ELl > AT, (B.18)

where ( is defined in Assumption 4(ii). Note that

T ¢ T vgs
Mia(1) = - ; Ly (tk — T w; (t) &
T - * * T . < <
= = Z Lo (te —m) [E —E(&5,)] + a Z Ly (t — 1) [E5, — E(E9))]
k=1 k=1
as E(&f,) + E(&7,) = 0. By the noise moment condition in Assumption 3(i) and the uniform

boundedness condition on ||w; (ty)| in Assumption 3(ii), we have

E (J&5x]) <

where Mg > 0 is arbitrarily large. Then, by Assumptions 3(i), 4(ii) and the Bonferroni and Markov

E [|w:,(t)&r] I (lw], (t)ELl>AY)] =0 (A™ME) =0 (Va,),

inequalities, we have, for any € > 0,

T n
EZI—b(tk_Tl) (&5
k=1
T n
_ZLb(tk_Tl)‘(—:zk >
n
k=1

P (max max ]Elk] > 0)
1<ig<p I<ksn

P [ max max
1<i<p 0KLEN

< P | max max
1<i<p 0KLEN

<
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< P<max max ]w (te) &
1<i<p Ik

P n
< D ) P(lwi(tgr|>Aa™)

i=1 k=1
< pnexp{—sAC; = o(1)

for 0 < s < sg, where Cg is defined in Assumption 3(i). Hence, we have

T n
max max |— Z Lo (t — ) wi(ti) [E5 —E(&5)] | = op (VA,) - (B.19)
K—1

1<igp 0KIKN [N

On the other hand, by Assumptions 3 and 4(i)(ii) as well as the Bernstein inequality for the
independent sequence (e.g., Proposition 2.14 in Wainwright, 2019), we may show that

T o . N .
i (m N [ 25 ol 0 [ ECE] > M)
P N
] (LS WRISSAIEREER( N
i=1 1=1

= O(pNexp{—C* M)log(pVA™)}) =o0(1),

where N diverges to infinity at a polynomial rate of n, C,(M) is positive and could be sufficiently
large by letting M be large enough. Therefore, we have

T - * * *
I | 2 ot =) [~ BUEL]) = Or (). .20
By (B.19) and (B.20), we readily have that
max max [IT;1(1)] = Op (V4 ) - (B.21)

1<ig<p 0KIKN

For TT; 1 (2), we write it as

n KA kA n KA KA P
M (2) = Z tk—T J (J Lli,udu) ds + Z Ly (tx —T) J (J Z 04j,udW; u) ds
= A k=1

(k—1 s (k=1)A \Js 5

= T1i1(2,1) +TT;1(2,2).
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By (B.1) and Assumption 4(i), we have

max max [[T;1(2,1)] = Op(A) = 0p (VA ,) - (B.22)

1<i<p 0KIKN
*
> evAlp>

*
o)

P s P
1
< E P( sup J E 045, dWij | > —ev*A,p). (B.23)
1 (k—1

i— JASs<KA [J(k=1)A 5 2

By the Bonferroni inequality, we may show that, for any € > 0

kA P
J Z Gij,udwj,u

S ):1

p KA P
< Z P ( sup J Z 035, dW;
~ (k—1

i—1 JA<s<ka s 4

P (max sup

ISISP (k-1)A<s<kA

s p
P o AW, }
LHJAZH GuCWinlf A

By the conditional Jensen inequality, we may verify that both {
S P . .
and {exp (1]) f(k_l) A ijl O-i]',ude,u‘> }s>(k1m are sub-martingales, where 1 > 0. Using the

moment generating function for the folded normal random variable and (B.1), we have

kA P 2AC
E [exp (1]) J Z 04, dWj )] < exp (11) > Z) ,

(k=1 57
where Cy is defined in (B.1). Combining the above arguments and using Doob’s inequality for

sub-martingales, we may show that

s P
J N Z O-ij,udwj,u

P sup
(k—1)Aa<s<kaA |[J(k=1)A 53
S P 1
= P sup exp 1|)J chj,ude,u >exp{—ll)ev*Ap}
(k—1)A<s<kA (k—=DA 3 2 ’
j
bevy KA P
< exp (— 5 p)E exp IJ)J' Zcij,udwj,u

(k=14 {3
2A eV
< exp (ll) S A’p) : (B.24)

1 *

2 2

Then, choosing ) = ev} ,/(2ACs), by (B.23) and(B.24), we have

*
> evA,p>

P (max sup

ISISP (k-1)A<s<kA

kA P
J Z Gij,udwj,u

S ]:1
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(evih,)? e log(p VAl
) peXp{_ BACs }:O(peXp{_scz' S )}>:°(”

for any € > 0, which indicates that

max max [T1;,(2,2)| = op (V*A/p) ) (B.25)

1<ig<p 0KIKN

By (B.22) and (B.25), we readily have that

max max M (2)] = op (Vi) (B.26)
For TT; 1 (3), we note that
MM (3)] < sup [Xil- ZJ L (tk — ™) — Lo (s —T)l ds.
0<ugT
By Assumption 4(i), we have
noookA
—1
Orgnli)l(\l Lkl)A |Lb(tk — Tl) — Lb(S — T1)| ds =0 (Ab ) . (827)
k=1
On the other hand, by (B.1),
u u P
sup [Xiu| = sup J IWiuldu+ sup J Z 0ij,udWj| = sup J Z 04, dWj | + Op(1).
0<u<T 0<u<TJo o<u<T [Jo i o<u<T [Jo {3
Following the proof of (B.25), we may show that
u P
sup J Z Gij,ude,u = OP ( log(p\/A—l)) ,
0<u<T [Jo 5T
indicating that
sup [Xiu| = Op ( log(p V A—l)) . (B.28)
0<uxgT
By virtue of (B.27) and (B.28), we prove that
o —1 . *
max max ;1 (3)] = Op (Ab log(p V A~ )> op (Vayp) - (B.29)
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Finally, for TT; 1 (4), we write it as

T
M (4) = {J Ly(s —m J HludUdS—J Mi,udu}+

0

P T P
{J S — T J Z 1]ude,udS —J 1 Z Gij,udwj,u}

=1 0 =1

= T1;i1(4,1) +T1; (4, 2).
By Assumptions 1(i) and 4(i), we readily have that

max max [IT;(4,1)] = Op (b). (B.30)

1<i<p 0KIKN

Following the proof of (B.25), we may show that

s P
P (max max  sup J Z 0 dWj | > M\/b log(p \/A1)> -0

ISISPISISN ¢ CGs<r+o Lj=1

and

T P
P (max max  sup J Z 0ij,udWj| > M\/b log(p \/A—1)> —0

1<i<p1<l<N117b<s<n s j=1

when M > 0 is sufficiently large. Consequently, we have

max max [IT;(4,2)] = Op (\/b log(p \/A—1)> . (B.31)

1<i<p 0KIKN

Combining (B.30) and (B.31),

max max [IT;(4)] = Op (\/b log(p\/Al)) . (B.32)

1<ig<p 0KIKN

The proof of (B.16) in Lemma B.1 is completed with (B.21), (B.26), (B.29) and (B.32). |

Proof of Proposition A.2. By (3.3), we have

N
Tii—Ziye = ) Kn(m —t)AXi1AX1 — Zij,
1=1

= Z Kn(ty — t)AXi1AX 1 — Ly Z =y,

1=1 k=1
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where

M 2

Zyell) = Kn (T —t)AX <A>N<j,1 — AXj,t) ,
1=1
N ~
Ziye(2) = Z Kn(ti —1) (AXi,l - AXu) AX;p,
1=1
N ~ ~
Eij,t (3) = Z Kh(Tl — t) (AXi,l — AXi,l) (AX)’J — AX)‘,]') .

1

1
By Proposition A.1, we have

N
max  sup Z Kn (T — 1) AXi 1AX 1 — Zije

ISUISP hgt<T—h =1

1/2
— 0y (hm” + {W} ) . (B.33)

By Lemma B.1 and Assumption 2(i), we have

2
max sup |Z4:(3) = Op (N log(p\VA™) [bl/z + (A‘lb)l/z] > ) (B.34)

ISUISP hgt<T—h

By Proposition A.1, (B.34) and the Holder inequality, we have

max  sup ([ (1)]+ [E.(2)]) = Op WNlog(pVAl) [b1/2+(A‘1b>”2])- (B.35)

ISUISP hgt<T—h

The proof of (A.2) in Proposition A.2 is completed by virtue of (B.33)—(B.35). [
Proof of Proposition A.3. By (3.1) and (3.7), we write

~ A & A &
Qy(t) = 5 Z K, (tk — t)AX;  AX  + H Z K, (tk — t)AX i (& — & —1) +
k=1 k=1
A S Kot — (B — Eue DA+ 23 Ko — (B — Eae) (e — B )
2 — hy Ltk i,k i,k—1 j k 7 — h Ltk i,k i,k—1 i,k j, k—1

~ ~

=: ﬁij,l(t) + ﬁij,z(t) + Qi53(t) + Qi5,4(1).
By Proposition A.1, we have

max sup ‘ﬁi]—,l(t)‘ =0p (A). (B.36)

ISUISP h, <t<T—hy
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To complete the proof of (A.3), it is sufficient to show

max  sup QﬁA(t)—Qﬁ(t)]:op (Sap). (B.37)

ISUISP h, <t<T—hy

In fact, combining (B.36) and (B.37), and using the Holder inequality, we

max  sup Hﬁijl(t)‘ + ‘ﬁim(t)ﬂ = Op (A?). (B.38)

ISUISP <ty

By virtue of (B.36)—(B.38), we readily have (A.3).

It remains to prove (B.37). We aim to show that

— Or (Bap), (B.39)

max sup |A Z K, (te = t) & &0 — Qi5(t)
k=1

ISUISP h, <t<T— 1y

=0p (0a,p), (B.40)

max sup |A Z K, (tk = t) & c—1&5 -1 — Qi5(1)
K—1

ISUISP by <t<T- 1y

=0p (84,),  (BAl)

max sup |A Z Kp, (tk — 1) (k& -1 + & x—1&5,1)
k=1

ISUISP by <t<T- 1y

« __ | Alog(pva™) 1/2 . .
where 8, , = |=——=——| . Tosave the space, we only provide the detailed proof of (B.39) as

the proofs of (B.40) and (B.41) are similar (with minor modifications).

Note that
AD) Ky, (te —t) & &0 — Qy5(t)
k=1
= {A Z Kn, (tk —t) [Ei k& — Qi (tk)]} + {A Z K, (tk — 1) Q45 (i) — Qy (t)}
k=1 k=1

= Yl] 1 t) + Yij,Z(t) (B42)

Let xijx = & k& x — Qy5(tx),
Xi*j,k = Xij I (Xl <A™™)  and X%,k = Xij,k _Xi*j,k/
where (, is defined in Assumption 5(ii). Observe that
Yiat) =AY Ki(te—t) [ —EOG)] +AD K (e —1) X5 —ExG)] - (B43)
k=1 k=1
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By Assumptions 3(ii) and 5(i), we have E [|x3; |] = O (A*Mx) with M, > 0 being arbitrarily large.
Then, by Assumptions 5(i)(ii) and the Markov inequality, we have that, for any € > 0,

P | max su A) K — E(x% > €d),
<1<1)<p hy <t<$ hy Z hl XU ko (Xl)/k)} A,p>
1
< P max su A) K Tkl > =€d
<1<1)<P h <t<IT) hy Z hl X e 2 Alp)
< P<max max [x l]k‘>0) P(max max [xijxl > A" >
1<) <p ISkn 1<1,j<p I<kn
< P max max [§x&xl > A" — Mg | <P | max max (&, +&) >2(A™" —Maq)
1<1,j<p 1<k<n 1<1,j<p 1<k<n 7 i,
P n
< Le —le
< %%ﬁﬁé£§§§k>A ) 22;1 2 > A Mo)
< anexp{—sC; (A7 — Mgn)}Ci =o0(1) (B.44)

for 0 < s < sp, where Mo = maxicij<p SUPgc (<7 Q45 (t)] < Cy, Cy is defined in Assumption 3(ii)
and C; is defined in Assumption 5(i).

Cover the closed interval [h;, T —h;] by some disjoint intervals T, 1 =1, - - - , V,, with the center
t{ and length d, = hi5} ,A". By the Lipschitz continuity of K(-) in Assumption 2(i), we have

max su A K — E(v>
1<i,j<p hy <t<1'l? h Z hl Xl) k (Xl]/k):| ‘
< A K E(v*
aX | My, Z (b= 10) [0 — EOG ]| +
mn
(K —t)—K * _E(v*
12?2(19 122)\(& f;l‘JP Zl hl b )= hl( )] [X”rk (Xllfk” ‘

max max
1<i,j<p 1K1KV,

N

+

A Z K, (tk XU K E(Xi*j,k)]
k=1

O(A™") max supA [Kn, (tk —t) — Kp, (te — t7)]

1<KV teTt oy

A Z K, (tx XU K E(Xi*j,k)]

N

maxX maxX
ISLisp IS Vs

+ O0p (85,) - (B.45)
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On the other hand, by the Bernstein inequality, we may show that

P (@ﬁ‘gplgg AZKm 1) [Xg — EOG)] | > MS*AIP)
P P V.

Z Z Z P < A Z Khl [Xl] k E(X){j,k)] > Mé*A,p)
i=1 j=1 1=1 k=1

= O (p*Viexp {—Cos(M)log(pV A }) =0(1),

where C,(M) is positive and becomes sufficiently large by choosing M to be large enough, and V,

diverges at a polynomial rate of n. Therefore, we have

maxX maxX
ISLISp ISIS Vs

AZ Kn, (t [Xl) k E(Xi*j,k)]| = Op( *A,p)'

With (B.43)—(B.46), we can prove that

max  sup [Yi.(t) = Op(84,)-
1<ll<ph1<t<T hy Rk P

Finally, by the m-th order Taylor expansion of );;(-) and Assumption 2(i), we have

max sup [Yip(t) =0 (™).

ISTISP hy<t<T—y

By virtue of (B.42), (B.47) and (B.48), we complete the proof of (B.39).
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