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Abstract

This study explores the evolution of income inequality in an economy featuring an
endogenous transition from stagnation to growth. We incorporate heterogenous house-
holds into a Schumpeterian model of endogenous takeoff. In the pre-industrial era, the
economy is in stagnation, and income inequality is determined by an unequal distri-
bution of land ownership and remains stationary. When takeoff occurs, the economy
experiences innovation and economic growth. In this industrial era, income inequal-
ity gradually rises until the economy reaches the balanced growth path. Finally, we
calibrate the model for a quantitative analysis and compare the simulation results to
historical data in the UK.
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1 Introduction

In his seminal work, Kuznets (1955) hypothesizes that industrialization increases income
inequality. Analyzing historical data in Britain, Williamson (1980, 1985) provides evidence
for this hypothesis that income inequality increases after the Industrial Revolution and keeps
rising until the mid-19th century.1 To explore this issue, we incorporate heterogenous house-
holds into the Schumpeterian model with endogenous takeoff in Peretto (2015). Then, we
derive the evolution of income inequality when the economy experiences an endogenous
transition from stagnation to growth. Our findings can be summarized as follows.
The model initially features a pre-industrial era, in which the economy is in stagnation

with very slow economic growth. In this pre-industrial era, income inequality is determined
by an unequal distribution of land ownership and remains stationary. When the market
size becomes suffi ciently large due to population growth, the economy begins to experience
innovation, and the output growth rate becomes gradually rising over time until it converges
to the steady state. In this industrial era, income inequality also gradually rises until the
economy reaches the balanced growth path.
The intuition of the above results can be explained as follows. Our model features hetero-

geneous households in the form of an unequal distribution of assets. This wealth inequality
gives rise to income inequality.2 In the pre-industrial era, income inequality is caused by an
unequal distribution of land ownership, which is stationary over time and leads to a con-
stant degree of income inequality. In the industrial era, the economy experiences innovation
and a gradually rising growth rate, which in turn leads to a gradually rising interest rate
through the households’Euler equation. As a result, the importance of asset income, which
is unequally distributed, increases over time and gives rise to increasing inequality until the
economy reaches the balanced growth path.
We also calibrate the model to current data in the UK to perform a quantitative analysis.

Simulating the transitional paths of the output growth rate and the real interest rate, we find
that the increase in the simulated growth rate and the simulated interest rate is consistent
with historical data in the UK. Finally, we simulate the transitional path of income inequality
and find that income inequality increases sharply when the takeoffoccurs. When the economy
reaches the balanced growth path, income inequality is almost twice as high as the level
prior to the takeoff, and the steady-state level of income inequality is in line with the Gini
coeffi cient of income in the UK in recent time.
This study relates to the literature on innovation and economic growth. The seminal

R&D-based growth model in Romer (1990) features the invention of new products (i.e.,
horizontal innovation) as the engine of growth. Aghion and Howitt (1992) develop the
Schumpeterian model, in which economic growth is driven by the development of higher-
quality products (i.e., vertical innovation).3 Subsequent studies, such as Smulders and van
de Klundert (1995), Peretto (1998, 1999) and Howitt (1999), combine vertical and horizontal
innovation that gives rise to the second-generation Schumpeterian model.4 This study con-

1Lindert (2000a, b) also finds a rise in income inequality in Britain in as early as the late 18th century.
2Piketty (2014) provides evidence for the importance of wealth inequality on income inequality.
3See also Grossman and Helpman (1991) and Segerstrom et al. (1990).
4Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)

provide supportive empirical evidence for the second-generation Schumpeterian model.
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tributes to the literature by introducing heterogeneous households into a second-generation
Schumpeterian model with endogenous takeoff to explore the effects of innovation on income
inequality.5

This study also relates to the literature on inequality and economic growth. Early studies
in this literature explore how inequality affects economic growth via capital accumulation;
see for example Galor and Zeira (1993) and Aghion and Bolton (1997). An interesting
study by Galor and Moav (2004) shows that in the early (later) stage of development in
which the accumulation of physical (human) capital is the main engine of growth, inequality
stimulates (stifles) economic growth. Subsequent studies consider how inequality affects
the demand and supply of R&D in the innovation-driven growth model. On the demand
side, Zweimuller (2000) and Foellmi and Zweimuller (2006) find that inequality has both
a positive price effect and a negative market-size effect on the demand for innovation due
to households’non-homothetic preferences. On the supply side, Garcia-Penalosa and Wen
(2008) explore the insurance effect of redistribution, which increases innovation by providing
more incentives for risk-averse agents to become R&D entrepreneurs.6 Recent studies by
Jones and Kim (2018) and Aghion et al. (2019) focus on the relationship between innovation
and top-income inequality. Other studies, such as Chu (2010), Chu and Cozzi (2018) and
Chu et al. (2019), analyze the effects of patent policy and monetary policy on innovation and
income inequality. This study differs from previous studies by considering a Schumpeterian
model with endogenous takeoff and analyzing the historical evolution of income inequality
from stagnation to growth.
Finally, this study relates to the literature on endogenous takeoff and economic growth.

Galor and Weil (2000) and Galor and Moav (2002) provide the seminal studies and develop
unified growth theory.7 Unified growth theory explores how the quality-quantity tradeoff in
childrearing and human capital accumulation allow an economy to escape from the Malthu-
sian trap and experience economic growth.8 Although the Schumpeterian model in Peretto
(2015) features exogenous population growth and does not capture the Malthusian trap, the
innovation-driven takeoff in the model relates to the Industrial Revolution, which is arguably
the most important economic takeoff in human history.9 Furthermore, this growth-theoretic
framework allows us to explore how innovation affects the rate of return on assets and the
evolution of income inequality upon incorporating heterogeneous households into the model.
The rest of this study is organized as follows. Section 2 presents the model. Section 3

analyzes the dynamics and derives the evolution of income inequality. Section 4 performs a
quantitative analysis. Section 5 concludes.

5Aghion et al. (2019) and Madsen et al. (2018) provide empirical evidence that innovation and inequality
have a positive relationship.

6Chou and Talmain (1996) also explore how redistribution affects the supply of labor for R&D.
7See also Jones (2001) and Hansen and Prescott (2002) for other early studies on endogenous takeoff.
8See Galor and Mountford (2008) and Ashraf and Galor (2011) for recent studies and empirical evidence

that supports unified growth theory. Galor (2011) provides an excellent review of unified growth theory.
9Mokry (2016) writes that "innovations in Europe triggered the Industrial Revolution and the sustained

economic progress that spread across the globe."
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2 A Schumpeterian growth model with heterogeneous
households and endogenous takeoff

The Schumpeterian model with endogenous takeoff is based on Peretto (2015). We introduce
heterogeneous households into the Peretto model.10 Our analysis provides a complete closed-
form solution for economic growth and income inequality from stagnation to takeoff and
eventually to the balanced growth path.

2.1 Heterogeneous households

There is a unit continuum of households, which are indexed by h ∈ [0, 1]. They have identical
homothetic preferences over consumption. However, households are heterogeneous in their
levels of wealth. Household h’s utility function is given by

U(h) =

∞∫
0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 is the rate of subjective discounting and ct(h) is household h’s
consumption of final good (numeraire). Household h maximizes (1) subject to

ȧt(h) = rtat(h) + wtLt − ct(h). (2)

at(h) is the real value of assets owned by household h, and rt is the real interest rate. These
assets include the ownership of land Rt(h) and monopolistic firms. Household h supplies
Lt units of labor to earn a real wage rate wt, where Lt increases at the rate λ > 0. From
standard dynamic optimization, the familiar Euler equation is

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct = rt − ρ, where ct ≡

∫ 1
0
ct(h)dh is aggregate consumption.

2.2 Final good

Competitive firms produce final good Yt using the following production function:

Yt =

∫ Nt

0

Xθ
t (i)[Zα

t (i)Z1−αt Lγt (i)R
1−γ
t ]1−θdi,

where {θ, γ, α} ∈ (0, 1). Xt(i) denotes the quantity of non-durable intermediate good i ∈
[0, Nt], and Nt is the mass of available intermediate goods at time t. The productivity of

10We use the approach in Chu (2010), Chu and Cozzi (2018) and Chu et al. (2019) to model heterogeneous
households in the Schumpeterian model.
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intermediate good Xt(i) depends on its own quality Zt(i) and also on the average quality
Zt ≡ 1

Nt

∫ Nt
0
Zt(i)di of all intermediate goods capturing technology spillovers. The private

return to quality is determined by α, and the degree of technology spillovers is determined
by 1− α. Final-good firms also rent land Rt and recruit labor Lt(i) for i ∈ [0, Nt].
Profit maximization yields the following conditional demand functions {Rd

t , L
d
t (i), X

d
t (i)}:

Rd
t = (1− γ)(1− θ)Yt/ωt, (4)

Ldt (i) =

{
γ(1− θ)
wt

Xθ
t (i)[Zα

t (i)Z1−αt R1−γt ]1−θ
}1/[1−γ(1−θ)]

, (5)

Xd
t (i) =

(
θ

pt(i)

)1/(1−θ)
Zα
t (i)Z1−αt Lγt (i)R

1−γ
t , (6)

where pt(i) is the price of Xt(i) and ωt is the rental price of Rt = R, which is in fixed supply.
Lt(i) in (6) is the equilibrium level of labor in industry i ∈ [0, Nt]. Competitive producers of
final good pay θYt =

∫ Nt
0
pt(i)Xt(i)di for intermediate goods and γ(1− θ)Yt = wt

∫ Nt
0
Lt(i)di

for labor.

2.3 Intermediate goods and in-house R&D

Monopolistic firms produce differentiated intermediate goods with a linear technology that
requires Xt(i) units of final good to produce Xt(i) units of intermediate good i ∈ [0, Nt];
therefore, the marginal cost of production for the monopolistic firm is one. The firm in
industry i also incurs φZα

t (i)Z1−αt units of final good as a fixed operating cost. To improve
the quality of its product, the firm devotes It(i) units of final good to R&D. The innovation
specification is given by

Żt(i) = It(i). (7)

In industry i, the monopolistic firm’s (before-R&D) profit flow at time t is

Πt(i) = [pt(i)− 1]Xt(i)− φZα
t (i)Z1−αt . (8)

The value of the monopolistic firm in industry i is

Vt(i) =

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
[Πs(i)− Is(i)] ds. (9)

The monopolistic firm in industry i maximizes (9) subject to (6)-(8) taking the equilibrium
level of labor in the industry as given. The current-value Hamiltonian for this optimization
problem is

Ht(i) = Πt(i)− It(i) + ηt(i)Żt(i), (10)

where ηt(i) is the co-state variable on (7). We solve this optimization problem in the Ap-
pendix and derive the unconstrained profit-maximizing markup ratio given by 1/θ.
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Competitive firms can also produce Xt(i) with the same quality Zt(i) as the monopolistic
firm.11 However, they have a higher unit cost of production given by µ > 1. Therefore, the
equilibrium price chosen by the monopolistic firm becomes

pt(i) = min {µ, 1/θ} . (11)

We assume µ < 1/θ implying that pt(i) = µ.
We follow previous studies to consider a symmetric equilibrium in which Zt(i) = Zt for

i ∈ [0, Nt]. In this case, the market-clearing condition for labor implies Lt(i) = Lt/Nt, and the
size of intermediate-good firms is also identical across all industries, such that Xt(i) = Xt.12

From (6) and pt(i) = µ, the quality-adjusted firm size is

Xt

Zt
=

(
θ

µ

)1/(1−θ)(
Lt
Nt

)γ
R1−γ. (12)

We define the following transformed variable:

xt ≡ µ1/(1−θ)
Xt

Zt
= θ1/(1−θ)

(
Lt
Nt

)γ
R1−γ. (13)

xt is a state variable that is determined by the quality-adjusted firm size, which in turn
depends on Lt/Nt.13 Lemma 1 derives the rate of return on quality-improving R&D, which
is increasing in the firm size xt.

Lemma 1 The rate of return to in-house R&D is given by

rqt = α
Πt

Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
. (14)

Proof. See the Appendix.

2.4 Entrants

Following previous studies, we assume that entrants have access to aggregate technology Zt
to ensure symmetric equilibrium at any time t. A new firm pays βXt units of final good to set
up its operation and enter the market with a new variety of differentiated products. β > 0
is a cost parameter, and the cost function βXt captures the case in which the setup cost is
increasing in the initial output volume of the firm. The asset-pricing equation determines
the rate of return on assets as

rt =
Πt − It
Vt

+
V̇t
Vt
. (15)

11Here we assume diffusion of technologies from the monopolistic firm to competitive firms in each industry.
12Symmetry also implies Πt(i) = Πt, It(i) = It and Vt(i) = Vt.
13See Laincz and Peretto (2006) for empirical evidence on Nt being proportional to Lt.
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When entry is positive, the entry condition is given by

Vt = βXt. (16)

Substituting (7), (8), (13), (16) and pt(i) = µ into (15) yields the return on entry as

ret =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
+
ẋt
xt

+ zt, (17)

where zt ≡ Żt/Zt is the growth rate of aggregate quality.

2.5 Value of land

Let vt denote the unit value of land. Then, the asset-pricing equation for vt is rtvt = ωt + v̇t.
This asset-pricing equation states that the return on land is determined by the rental price
of land and the capital gain in land value.

2.6 General equilibrium

The equilibrium is a time path of allocations {at, ct, Yt, Lt, Rt, Xt(i), It(i)} and a time path
of prices {rt, wt, ωt, vt, pt(i), Vt (i)} such that the following conditions are satisfied:

• households maximize utility taking {rt, wt, ωt} as given;

• final-good firms produce Yt and maximize profit taking {pt(i), wt, ωt} as given;

• intermediate-good firms produce Xt(i) and choose {pt(i), It(i)} to maximize Vt(i) tak-
ing rt as given;

• entrants make entry decisions taking Vt as given;

• the value of land and monopolistic firms adds up to the value of the households’assets
such that vtR + VtNt =

∫ 1
0
at(h)dh ≡ at;

• the market-clearing condition of land holds such that
∫ 1
0
Rt(h)dh = R;

• the market-clearing condition of labor holds such that
∫ Nt
0
Lt(i)di = NtLt(i) = Lt;

• the following market-clearing condition of final good also holds:

Yt = ct +Nt(Xt + φZt + It) + ṄtβXt. (18)
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2.7 Aggregation

Substituting (6) into the production function and imposing symmetry yield

Yt = (θ/µ)θ/(1−θ)N1−γ
t ZtL

γ
tR

1−γ, (19)

which also uses markup pricing pt(i) = µ. Therefore, the growth rate of output is

Ẏt
Yt

= (1− γ)nt + zt + γλ, (20)

which is determined by the variety growth rate nt ≡ Ṅt/Nt and the quality growth rate zt.

3 Dynamics

This section analyzes the dynamics of the model. See Section 3.1 for the dynamics of the
aggregate economy. See Section 3.2 for the dynamics of the wealth distribution. See Section
3.3 for the dynamics of the income distribution.

3.1 Dynamics of the aggregate economy

We analyze the dynamics of the economy across three eras. In the pre-industrial era, neither
variety innovation nor quality innovation is activated. In the first industrial era, variety
innovation is activated. In the second industrial era, quality innovation is also activated.
In the pre-industrial era, the firm size xt is so small (i.e., xt < φµ1/(1−θ)/(µ − 1)) that

monopolistic firms cannot earn a positive profit. Therefore, all intermediate goods N0 are
produced by competitive firms at pt(i) = µ given that they do not incur the operating cost.
In this case, the intermediate-good sector generates zero profit, and the value of monopolistic
firms is zero. Therefore, consumption is given by the rental income from land and the wage
income from labor such that ct = ωtR + wtLt, so the consumption-output ratio is simply
ct/Yt = 1− θ in the pre-industrial era.
In the first industrial era, variety innovation is activated. In this case, the consumption-

output ratio ct/Yt jumps to the steady-state value in Lemma 2 and remains at this value
also in the second industrial era.

Lemma 2 Once variety innovation is activated, the consumption-output ratio jumps to

ct
Yt

=
ρβθ

µ
+ 1− θ. (21)

Proof. See the Appendix.

The above analysis implies that consumption and output grow at the same rate given by

gt ≡
Ẏt
Yt

=
ċt
ct

= rt − ρ, (22)
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where the last equality uses (3). In the pre-industrial era, the growth rate of output is simply
gt = γλ; therefore, the real interest rate is given by rt = ρ + γλ. In the first industrial era,
the growth rate of output becomes gt = γλ + (1 − γ)nt due to variety innovation; in this
case, the real interest rate is given by rt = ρ+ γλ+ (1− γ)nt. In the second industrial era,
we can substitute (14) into (22) to derive the growth rate of output as

gt = γλ+ (1− γ)nt + zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (23)

and the real interest rate is rt = ρ+ gt. Then, (23) implies that the quality growth rate is

zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ− γλ− (1− γ)nt. (24)

The quality growth rate zt is positive if and only if xt > xZ , where xZ is a threshold for the
firm size xt above which quality innovation starts to occur.14 Intuitively, innovation requires
the firm size xt to be large enough so that it is profitable for firms to do in-house R&D.
From (13), the growth rate of the firm size xt is given by

ẋt
xt

= γ(λ− nt). (25)

In the pre-industrial era, the growth rate of xt is ẋt/xt = γλ because nt = 0. In the first
industrial era, the growth rate of variety is given by

nt =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ

xt

]
− ρ, (26a)

which is obtained from substituting (20), (22) and (25) into (17). The variety growth rate
nt is positive if and only if xt > φµ1/(1−θ)/(µ− 1−βρ) ≡ xN , where xN is a threshold for the
firm size xt above which variety innovation starts to occur.15 Substituting (26a) into (25)
yields an one-dimensional differential equation in xt in the first industrial era. In the second
industrial era, the growth rate of variety becomes

nt =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
− ρ, (26b)

where zt is given in (24). Substituting (24) and (26b) into (25) also yields an one-dimensional
differential equation in xt in the second industrial era. Therefore, the dynamics of xt in (25)
is autonomous in all three eras. Proposition 1 summarizes the dynamics of xt.

14We provide the definition of xZ in the proof of Proposition 1.
15We assume xN < xZ (i.e., variety innovation occurs before quality innovation). When φµ1/(1−θ)/(µ−1) <

xt < xN , monopolistic firms in N0 are able to earn positive profits, but we assume that intermediate goods
are produced by competitive firms until xt reaches xN because it takes time for the sector to be monopolized.
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Proposition 1 In the pre-industrial era (i.e., xt < xN), the dynamics of xt is given by ẋt =
γλxt. In the first industrial era (i.e., xt ∈ [xN , xZ ]), the dynamics of xt is given by

ẋt = γ

[
µ1/(1−θ)

β
φ−

(
µ− 1

β
− λ− ρ

)
xt

]
.

In the second industrial era (i.e., xt > xZ), the linearized dynamics of xt is given by

ẋt = γ

{
µ1/(1−θ)

β
[(1− α)φ− λ− ρ]−

[
(1− α)

µ− 1

β
− λ− ρ

]
xt

}
.

Therefore, given ρ+λ < min {(1− α)φ, (1− α)(µ− 1)/β}, the dynamics of xt is stable, and
xt converges to a unique steady state. The steady-state values {x∗, g∗} are

x∗ = µ1/(1−θ)
(1− α)φ− (ρ+ λ)

(1− α)(µ− 1)− β(ρ+ λ)
> xZ, (27)

g∗ = α

[
µ− 1

µ1/(1−θ)
x∗ − φ

]
− ρ > 0. (28)

Proof. See the Appendix.

The dynamics of xt in (25) and (26) shows that given an initial value x0, the state variable
xt grows over time. When the firm size xt becomes suffi ciently large, variety innovation
occurs, and then quality innovation also occurs. Eventually, xt converges to its steady-state
value x∗ in (27), which also determines N∗t = [θ1/(1−θ)R1−γ/x∗]1/γLt that grows at the rate
λ on the balanced growth path. Figure 1 illustrates the dynamics of xt.16

Figure 1: Transition path of the firm size

16TN (TZ) denotes the time when variety (quality) innovation is activated.
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Figure 2: Transition path of the growth rate

Figure 2 presents the dynamics of economic growth. In the pre-industrial era, the growth
rate of output is simply gt = γλ due to the absence of innovation. In the first industrial
era, the firm size xt determines the variety growth rate according to (26a) and the output
growth rate according to gt = γλ + (1 − γ)nt. In the second industrial era, the firm size xt
determines the quality growth rate and the output growth rate gt according to (23). When
xt converges to x∗ in (27), gt also converges to its steady-state value g∗ in (28). This gradual
acceleration in economic growth in Figure 2 is consistent with historical data in the UK.
Figure 3 plots the log level of real GDP,17 in which the slope shows the growth rate. The
average growth rates in the UK were 0.71% in the first half of the 18th century, 1.24% in
the second half of the 18th century, 1.86% in the first half of the 19th century, 2.23% in the
second half of the 19th century, 1.50% in the first half of the 20th century and 2.55% from
the second half of the 20th century onwards. Except for the wartime periods in the first half
of the 20th century, the UK economy experiences a gradually rising growth rate as in our
Schumpeterian model of endogenous takeoff.

17Data source: Federal Reserve Bank of St. Louis.
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Figure 3: Log of real GDP in the UK from 1700 to 2016

3.2 Dynamics of the wealth distribution

In the pre-industrial era, the value of monopolistic firms is zero; therefore, the wealth distri-
bution is determined solely by the distribution of land. The initial share of land owned by
household h is sR(h) ≡ R0(h)/R, which is exogenously given at time 0. We find that during
the pre-industrial era, the distribution of land is stationary. When the economy reaches the
first industrial era at time τ > 0, the value of monopolistic firms becomes positive. Then,
for any given xt at any time t ≥ τ , we find that the distribution of assets, which consist of
land and intangible capital, continues to be stationary and determined by the initial distrib-
ution of land at time 0. It is useful to recall that the aggregate economy features transition
dynamics determined by the evolution of xt. However, the wealth distribution is stationary
despite the transition dynamics in the aggregate economy because the consumption-output
ratio is stationary as shown in Lemma 2, which in turn implies that the consumption-wealth
ratio is also stationary.
Aggregating (2) across all households yields the following asset-accumulation equation:

ȧt = rtat + wtLt − ct. (29)

We substitute (3) and γ(1−θ)Yt = wtLt into (29) to derive the following differential equation
for ct/at:

ċt
ct
− ȧt
at

=

[
1− γ(1− θ)Yt

ct

]
ct
at
− ρ, (30)

where ct/Yt is simply 1− θ in the pre-industrial era and given by (21) in the industrial era.
Therefore, the coeffi cient on ct/at is always positive implying that the consumption-wealth

12



ratio must jump to
ct
at

=
ρ

1− γ(1− θ)Yt/ct
, (31)

whenever the consumption-output ratio ct/Yt changes.
Let sa,t(h) ≡ at(h)/at denote the share of assets owned by household h. Then, the growth

rate of sa,t(h) is given by

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
− ȧt
at

=
ct − wtLt

at
− sc,t(h)ct − wtLt

at(h)
, (32)

where sc,t(h) ≡ ct(h)/ct is the share of consumption by household h at time t. Substituting
γ(1− θ)Yt = wtLt and (31) into (32) yields

ṡa,t(h) = ρsa,t(h)− ct
at

[sc,t(h)− 1]− ρ. (33)

To achieve stability of sa,t(h), ṡa,t(h) = 0 must hold for any t ≥ 0 because sa,t(h) is a
pre-determined variable and its coeffi cient is positive. Therefore, we have sa,t(h) = sa,0(h),
which is achieved by sc,t(h) jumping to the steady-state values at t = 0 and t = τ . Imposing
ṡa,t(h) = 0 on (33) yields

sc,t(h) =
ρ

ct/at
[sa,0(h)− 1] + 1, (34)

where ct/at is given in (31), in which ct/Yt is simply 1−θ in the pre-industrial era (i.e., t < τ)
and given by (21) in the two industrial eras (i.e., t ≥ τ). Therefore, we have sc,t(h) = sc,0(h)
for t < τ and sc,t(h) = sc,τ (h) for t ≥ τ . At time 0, the share of assets owned by household
h is determined by its share of land such that sa,0(h) = a0(h)/a0 = R0(h)/R ≡ sR(h). We
summarize the dynamics of sa,t(h) in Proposition 2.

Proposition 2 The dynamics of sa,t(h) is given by an one-dimensional differential equation:

ṡa,t(h) = ρ[sa,t(h)− sR(h)]. (35)

Also, the wealth distribution is stationary and determined by the initial distribution of land.

Proof. Proven in text.

Finally, we derive the Gini coeffi cient of wealth and show that it is also stationary. at(h)
is the share of wealth owned by household h, where the identity index h ∈ [0, 1] is ordered in
an ascending order of wealth. Let σa,t denote the Gini coeffi cient of wealth at time t, which
is defined as

σa,t ≡ 1− 2

∫ 1

0

La,t(h)dh,

where the Lorenz curve of wealth is given by

La,t(h) ≡
∫ h
0
at(χ)dχ∫ 1

0
at(χ)dχ

=

∫ h
0
at(χ)dχ

at
=

∫ h

0

sa,t(χ)dχ =

∫ h

0

sa,0(χ)dχ =

∫ h

0

sR(χ)dχ.

Therefore, the Gini coeffi cient of wealth is stationary, such that σa,t = σa,0 = σR for all t,
where σR is the Gini coeffi cient of land ownership at time 0.
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3.3 Dynamics of the income distribution

The income distribution is endogenous and nonstationary but analytically tractable. Al-
though the wealth distribution is stationary, the transition dynamics in the aggregate econ-
omy gives rise to an endogenous evolution of the income distribution. However, once we
derive the transitional path of the real interest rate, we can also derive the transitional path
of income inequality.
Income received by household h is given by

yt(h) = rtat(h) + wtLt. (36)

Aggregating (36) yields the aggregate level of income as

yt = rtat + wtLt. (37)

Let sy,t(h) ≡ yt(h)/yt denote the share of income received by household h. Then, we have

sy,t(h) =
rtat(h) + wtLt
rtat + wtLt

=
rtat

rtat + wtLt
sR(h) +

wtLt
rtat + wtLt

, (38)

where we have used sa,t(h) = sR(h). Therefore, the evolution of the share of income received
by household h is determined by the evolution of the asset-wage income ratio rtat/(wtLt).
An increase in the asset-wage income ratio rtat/(wtLt) would increase (decrease) the income
share of household h if its wealth share sR(h) is larger (smaller) than one, which is the
average wealth share.18 In other words, an increase in the asset-wage income ratio enlarges
the dispersion of income because wealth inequality drives income inequality in our model.
Lemma 3 derives the Gini coeffi cient of income as our measure of income inequality σy,t,
which is increasing in the asset-wage income ratio rtat/(wtLt).19

Lemma 3 The Gini coeffi cient of income is given by20

σy,t =
rtat

rtat + wtLt
σR. (39)

Proof. See the Appendix.

In the pre-industrial era, the value of intangible assets is zero, and hence we have

rtat = (ρ+ gt)at =

(
1 +

γλ

ρ

)
ρat =

(
1 +

γλ

ρ

)
ωtR. (40)

18Recall that there is a unit continuum of households.
19Madsen (2017) provides evidence that asset returns are an important determinant of income inequality.
20The coeffi cient of variation of income is also given by σy,t = rtat

rtat+wtLt
σR if we instead define σy,t ≡√∫ 1

0
[sy,t(h)− 1]2dh and σR ≡

√∫ 1
0

[sR(h)− 1]2dh as the coeffi cients of variation of income and wealth.
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Therefore, income inequality in the pre-industrial era (i.e., t < τ) is simply

σy,t =

(
1 +

ρ

ρ+ γλ

wtLt
ωtR

)−1
σR =

(
1 +

ρ

ρ+ γλ

γ

1− γ

)−1
σR. (41)

Proposition 3 derives σy,t in the industrial eras. We define a parameter Θ ≡ βθ/(1− θ).

Proposition 3 After variety innovation occurs, the degree of income inequality for t ≥ τ is

σy,t =

(
1 +

ρ

ρ+ gt

γ

1− γ + ρΘ/µ

)−1
σR. (42)

Proof. See the Appendix.

We summarize the evolution of income inequality as follows. In the pre-industrial era,
income inequality is given in (41). In the first industrial era, the value of intangible assets
becomes positive, and income inequality jumps to

σy,t =

(
1 +

ρ

ρ+ γλ+ (1− γ)nt

γ

1− γ + ρΘ/µ

)−1
σR, (43)

where the term ρΘ/µ captures the effect of the emergence of intangible assets. Then, income
inequality increases over time due to the rising variety growth rate nt in (26a). In the second
industrial era, income inequality further increases to

σy,t =

(
1 +

ρ

ρ+ γλ+ (1− γ)nt + zt

γ

1− γ + ρΘ/µ

)−1
σR, (44)

where gt = γλ+ (1−γ)nt + zt in (23) increases over time until reaching the balanced growth
path. On the balanced growth path, income inequality σ∗y is determined by the steady-state
growth rate g∗ in (28). Figure 4 summarizes the dynamics of σy,t from stagnation to takeoff
and eventually to the steady state.
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Figure 4: Transition path of income inequality

4 Quantitative analysis

In this section, we calibrate the model to UK data in order to perform a quantitative analysis.
The model features the following parameters: {ρ, α, λ, θ, β, γ, µ, φ}. We set the discount rate
ρ to 0.04. We follow Iacopetta et al. (2019) to set the degree of technology spillovers 1−α to
0.833. In the UK, the long-run population growth rate λ is 0.6%.21 Then, we calibrate the
remaining parameters {θ, β, γ, µ, φ} by matching the following moments for the UK economy:
52.6% for labor income as a share of output,22 74.4% for consumption as a share of output,23

12.3% for housing rents as a share of output,24 2.5% for the growth rate of output,25 and
18.4% for investment as a share of output.26 Table 1 summarizes the calibrated parameter
values.27 These parameter values imply a rate of asset returns of 6.5% and R&D as a share
of output of 2.0%, which are in line with UK data.

Table 1: Calibrated parameter values
ρ α λ θ β γ µ φ

0.040 0.167 0.006 0.351 14.468 0.810 2.138 0.245

21Data source: Maddison Project Database.
22Data source: Offi ce for National Statistics.
23Data source: Offi ce for National Statistics.
24Data source: New Economics Foundation.
25Data source: Federal Reserve Bank of St. Louis.
26Data source: Offi ce for National Statistics. To compute this moment from the model, we add up expenses

on intermediate goods and horizontal/vertical R&D. One can think of the intermediate goods in our model
as investment in capital that depreciates rapidly.
27The calibrated value of µ seems high but implies a reasonable profit share of output of 11.5%.
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Figure 5 presents the simulated paths of the output growth rate and the real interest
rate along with the HP-filter trends of the GDP growth rate and the rate of return on non-
residential fixed capital in the UK.28 We choose an initial value x0 such that the takeoff
occurs in the late 18th century.29 This figure shows that the output growth rate increases
from about 0.5% in the late 18th century to 2.5% in recent time. This gradual increase in
the growth rate and the magnitude of the increase are in line with historical data in the UK.
Figure 5 also shows that the real interest rate increases from 4.5% in the late 18th century to
an average of 5.9% in the 19th century and reaches an average of 6.4% in the 20th century.
The average rates of return on non-residential fixed capital in the UK were 5.1% in the 18th
century, 6.0% in the 19th century, and 7.0% from the 20th century onwards.30 Therefore,
the increase in the rate of return on assets and the magnitude of the increase in asset returns
predicted by our model are also in line with historical data.

Figure 5: Simulated paths of the growth rate and the interest rate

The increase in the real interest rate in Figure 5 implies an increase in income inequality
in our model. Figure 6 presents the simulated path of income inequality in terms of percent
changes from its initial value prior to the takeoff. This figure shows that income inequality
increases sharply by about 50% when the takeoff occurs. When the economy reaches the
balanced growth path, income inequality would have almost doubled. Our model takes the
degree of wealth inequality as given. If we consider a Gini coeffi cient of wealth of 0.732 in
recent time,31 then we can also simulate the Gini coeffi cient of income. Figure 7 reports the
simulated path of income inequality along with the Gini coeffi cient of income in the UK from
1961 to 2017.32 It shows that the simulated Gini coeffi cient of income increases from 0.15
before the takeoff to 0.29 in the steady state.

28Here we use a smoothing parameter of 1000 on the annual data in order to extract a smoother trend.
29According to Ashton (1998), the Industrial Revolution started in as early as 1760.
30See Madsen (2017). The authors are grateful to Jakob Madsen for sharing this data series.
31Data source: Credit Suisse Global Wealth Databook.
32Data source: Institute for Fiscal Studies. Data available from 1961.
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Figure 6: Simulated path of income inequality (percent change)

Figure 7: Simulated path of income inequality (Gini coeffi cient)

Williamson (1980, 1985) and Lindert (2000a, 2000b) examine historical data in Britain
and document that income inequality, based on different measures, increases in the late
18th century/early 19th century and levels off after the mid-19th century. Then, income
inequality, measured by the top 1% income share, decreases from the early 20th century to
the late 1970’s.33 As for the Gini coeffi cient of income, it decreases from 0.27 in the early

33World Inequality Database documents a decrease in the top 1% income share from 20% in the early 20th
century to 5% in the late 1970’s.
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1960’s to 0.24 in the late 1970’s before rising again to as high as 0.36 in recent time with an
average value of 0.30 from 1961 to 2017 in the UK. Therefore, the long-run level of income
inequality predicted by our model is in line with recent data in the UK. Furthermore, our
model is able to deliver the pattern of rising income inequality in the late 18th century/early
19th century and its leveling off in the late 19th century. However, our model is unable to
explain the decrease in income inequality from the early 20th century to the late 1970’s. The
reason is that this decrease in income equality is driven by a decrease in wealth inequality,34

whereas our model takes wealth inequality as given.
To address this issue, we consider historical data on the income and wealth shares owned

by the top households, which have longer time series than the Gini coeffi cient. In our model,
the share of income owned by the top ε households is given by∫ 1

1−ε
sy,t(h)dh =

rtat
rtat + wtLt

∫ 1

1−ε
sR(h)dh+

wtLt
rtat + wtLt

ε, (45)

where
∫ 1
1−ε sR(h)dh is the share of wealth owned by the top ε households. We use histor-

ical data on the top 10% wealth share in the UK along with the asset-wage income ratio
rtat/(wtLt) computed from our model to simulate the top 10% income share. Figure 8
presents the simulated path of the top 10% income share along with data in the UK from
1900 to 2010.35 Given the data on wealth inequality, our model now predicts that income
inequality rises in the 19th century and falls from the early 20th century to the 1970’s. After
that, income inequality becomes rising again. This pattern matches the data. Furthermore,
the average value of the top 10% income share in the UK from 1900 to 2010 is 0.37, whereas
our model predicts an average value of 0.36 in this period.

Figure 8: Simulated path of the top 10% income share

34World Inequality Database documents a decrease in the top 1% wealth share from 70% in the early 20th
century to less than 20% in the early 1980’s.
35Data source: Piketty (2014). Data on the top 10% wealth (income) share is available from 1810 (1900).
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5 Conclusion

This study explores the historical origins of income inequality from stagnation to growth in
a Schumpeterian model with endogenous takeoff and heterogeneous households. Our results
can be summarized as follows. In the pre-industrial era, the economy is in stagnation, and
income inequality is determined by an unequal distribution of land ownership and remains
stationary. In the industrial era, income inequality rises sharply, and the gradually rising
growth rate in the economy causes income inequality to increase further over time until
the economy reaches the balanced growth path. We also calibrate the model to perform a
quantitative analysis and find that the simulation results are roughly in line with historical
data in the UK.
To keep the dynamics analytically tractable, we do not consider the accumulation of

physical capital in our model. In the presence of physical capital, a no-arbitrage condition
would imply that the rental price of capital is determined by the real interest rate, which in
turn is the driving force for the evolution of income inequality in our model. Furthermore,
we assume that households have homothetic preferences under which the income distribution
does not affect the aggregate economy; in other words, changes in inequality have no direct
effect on economic growth in our model. Given that previous studies have already explored in
details how inequality could affect economic growth (see the discussion in the introduction),
this study focuses on how the innovation-driven takeoff during the Industrial Revolution
influences the evolution of income inequality. We leave to future research the interesting
question of how inequality affects the takeoff of an economy.36

36An interesting study by Voigtlander and Voth (2006) shows that "redistributive institutions [in Britain]
were not decisive in fostering industrialization."
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Appendix A

Proof of Lemma 1. The current-value Hamiltonian for monopolistic firm i is given by
(10). To introduce the upper bound µ on price pt (i), we modify (10) as follows:37

Ht (i) = Πt (i)− It (i) + ηt (i) Żt (i) + ξt (i) [µ− pt (i)] , (10’)

where ξt (i) is the multiplier on pt (i) ≤ µ. Substituting (6)-(8) into (10’), we can derive

∂Ht (i)

∂pt (i)
= 0⇒ ∂Πt (i)

∂pt (i)
= ξt (i) , (A1)

∂Ht (i)

∂It (i)
= 0⇒ ηt (i) = 1, (A2)

∂Ht (i)

∂Zt (i)
= α

{
[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lγt (i)R

1−γ − φ
}

Z1−αt

Z1−αt (i)
= rtηt (i)− η̇t (i) . (A3)

If pt (i) < µ, then ξt (i) = 0; in this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the
constraint on pt (i) is binding, then ξt (i) > 0; in this case, pt (i) = µ. Given µ < 1/θ, we
have pt (i) = µ. We use (A2), (13) and pt (i) = µ in (A3) and impose symmetry for (14).

Proof of Lemma 2. Substituting (16) into at = NtVt + vtR yields

at = NtβXt + vtR = (θ/µ)βYt + vtR, (A4)

where the second equality uses θYt = Nt(µXt).38 Differentiating (A4) with respect to t yields

(θ/µ)βẎt + v̇tR = ȧt = rt[(θ/µ)βYt + vtR] + wtLt − ct, (A5)

where the second equality uses (29) and (A4). Using (3) for rt, (4) for ωt, rtvt = ωt + v̇t and
γ(1− θ)Yt = wtLt, we can rearrange (A5) to obtain

ċt
ct
− Ẏt
Yt

=
µ

θβ

ct
Yt
−
[
ρ+

µ (1− θ)
θβ

]
, (A6)

where the right-hand side is increasing in ct/Yt with a strictly negative y-intercept. Therefore,
ct/Yt must jump to the steady-state value in (21).

Proof of Proposition 1. In the pre-industrial era, the variety growth rate nt is zero; in
this case, the dynamics of xt in (25) is given by ẋt = γλxt. Equation (26a) shows that when
xt > xN , variety innovation occurs (i.e., nt > 0); in this case, we substitute (26a) into (25)
to derive the dynamics of xt in the first industrial era. In the second industrial era (i.e.,
xt > xZ), quality innovation also occurs (i.e., zt > 0); in this case, we can substitute (26b)
into (24) and set zt = 0 to derive the following threshold:

xZ ≡ arg
x

solve

{[
µ− 1

µ1/(1−θ)
x− φ

] [
α− µ1/(1−θ)(1− γ)

βx

]
= γ(ρ+ λ)

}
.

37Note that Lt(i) is not chosen by the monopolistic firm i, which takes its equilibrium level in (6) as given.
38We derive this by using pt(i) = µ and Xt(i) = Xt for θYt =

∫ Nt

0
pt(i)Xt(i)di.
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We can also substitute (24) into (26b) to derive

nt =
[(1− α)(µ− 1)− ρβ]xt/µ

1/(1−θ) − (1− α)φ+ ρ+ γλ

βxt/µ1/(1−θ) − (1− γ)
. (A7)

Substituting (A7) into (25) yields

ẋt =
γ

β − (1− γ)µ1/(1−θ)/xt
(d1 − d2xt) , (A8)

where we define

d1 ≡ µ1/(1−θ) [(1− α)φ− λ− ρ] , (A9a)

d2 ≡ β

[
(1− α)(µ− 1)

β
− λ− ρ

]
. (A9b)

We approximate (1− γ)µ1/(1−θ)/xt ≈ 0 in (A8). The resulting linearized dynamics of xt has
a unique steady state that is stable if d1 > 0 and d2 > 0 from which we obtain ρ + λ <
min {(1− α)φ, (1− α)(µ− 1)/β}. Then, ẋt = 0 yields x∗ = d1/d2 in (27), and we impose
parameter restrictions to ensure x∗ > xZ . Finally, substituting (27) into (23) yields (28).

Proof of Lemma 3. Income received by household h is given by

yt(h) = rtat(h) + wtLt = rtatsa,t(h) + wtLt = rtatsR(h) + wtLt, (A10)

where the identity index h ∈ [0, 1] is uniformly distributed and ordered in an ascending order
of income. The Gini coeffi cient of income is defined as

σy,t = 1− 2

∫ 1

0

Ly,t(h)dh, (A11)

where Ly,t(h) is the Lorenz curve of income. Ly,t(h) is given by

Ly,t(h) ≡
∫ h
0
yt(χ)dχ∫ 1

0
yt(χ)dχ

=
rtat

∫ h
0
sR(χ)dχ+ wtLt

∫ h
0

1dχ

rtat + wtLt
, (A12)

where
∫ h
0

1dχ = h and
∫ h
0
sR(χ)dχ is the Lorenz curve La(h) of wealth. Substituting (A12)

into (A11) yields

σy,t = 1− 2rtat
rtat + wtLt

[∫ 1

0

La(h)dh+
wtLt
rtat

∫ 1

0

hdh

]
, (A13)

where
∫ 1
0
hdh = 0.5. Substituting the Gini coeffi cient of wealth σa ≡ 1 − 2

∫ 1
0
La(h)dh into

(A13) yields the Gini coeffi cient of income in (39).

Proof of Proposition 3. Using (3) and γ(1− θ)Yt = wtLt, we obtain
rtat
wtLt

=
ρ+ gt
γ(1− θ)

at
Yt

=
ρ+ gt
γ(1− θ)

at
ct

ct
Yt
. (A14)

Substituting (21) and (31) into (A14) yields

rtat
wtLt

=
ρ+ gt
γρ

(
ρ

µ

βθ

1− θ + 1− γ
)
. (A15)

Finally, we substitute (A15) into (39) to derive (42).
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