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Abstract

A new approach is developed for improving the point estimation and predictions of para-

metric time-series models. The method targets performance criteria such as estimation

bias, root mean squared error, variance, or prediction error, and produces closed-form es-

timators focused towards these targets via a computational approximation method. This

is done for an autoregression coefficient, for the mean reversion parameter in Vasicek and

CIR diffusion models, for the Binomial thinning parameter in integer-valued autoregres-

sive (INAR) models, and for predictions from a CIR model. The success of the prediction

targeting approach is shown in Monte Carlo simulations and in out-of-sample forecasting

of the US Federal Funds rate.



1. Introduction

A number of papers have addressed in different ways the difficulty in, or impossibility of,

applying exact likelihood estimation to certain time-series models by providing approximate

likelihood methods, see for example Aı̈t-Sahalia (2002), likelihood-free methods based on

simulation including Indirect Inference, see Gourieroux et al. (1993), Efficient Method of

Moments, see Gallant and Tauchen (1996), and Approximate Bayesian Computation, see

for example Martin et al. (2019). Many of the models considered are small but widely

used and difficult to estimate. There is, moreover, a sizable literature on the correction

of estimation bias for parameters of time series models, and a s ubstantial part of this

has focused on methods involving asymptotic expansion and approximation of the true

bias. A number of papers have addressed the estimation of continuous-time interest rate

diffusion models recently, where the bias in estimation of the mean reversion parameter

can be particularly severe, and a review can be found in Iglesias and Phillips (2019).

The aim in what follows is to demonstrate the effectiveness of a new approach to

estimation and prediction improvement for parametric models, where simple closed-form

correction terms similar to those obtained by asymptotic approximation, power series in

1/n, are found computationally. The method relies on initial consistent estimates of the

parameters being available. For the purpose of comparison with other methods the focus

is mainly on the reduction of estimation bias, though it is illustrated how improvements in

RMSE or variance can be targeted, and with a small modification the prediction error as

well. The final section applies the approach to prediction improvement in a CIR model of

the Federal Funds rate. When targeting a reduction in estimation bias, the new approach

involves training a bias correction functional for a given model and estimator using Monte

Carlo generated data and moment computation, with the overall aim being to obtain a

closed-form correction to the initial estimator that can be applied subsequently to different

initial estimates and a range of sample sizes. The approach is not limited to addressing

estimation bias, and can be used to address more general risk objectives in relation to

estimation performance.

The methodology is presented in Section 2 using least squares estimation of a first-order

autoregressive model as an illustrative example. Sections 3 and 4 present further examples

of the methodology: to estimation of the mean-reversion parameter in Vasicek and CIR

diffusion models, where Maximum Likelihood (ML) methods can be severely biased, and

to integer autoregressive (INAR) models, where the estimation is also biased. A further

motivation for addressing estimation of diffusion models is that there are only a few cases
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where exact ML is possible, moreover we are able to compare the performance of the new

approach with results in Tang and Chen (2009) for estimation by Bootstrap, Jackknife and

Indirect Inference. A further motivation for addressing estimation of INAR models is that

the exact ML estimation of INARMA models more generally is difficult, which motivated

the Efficient Method of Moments (EMM) approach in Martin et al. (2014), and the new

approach is applicable whenever initial consistent estimates of the model parameters are

available. Section 5 applies the methodology to prediction of the Effective Federal Funds

Rate for overnight lending in the United States, and Section 6 concludes.

2. Methodology

The AR(1) with constant is used here to illustrate the methodology as it is widely fa-

miliar, and has received substantial attention in the literature on correction of estimation

bias. Kiviet and Phillips (2012, 2014) obtain theoretical results for asymptotic approxima-

tion of the estimation bias, of the variance and for analytically corrected estimation, while

Chambers (2013) develops an improved jackknife methodology for autoregressions, see also

Liu-Evans and Phillips (2012) who compare bootstrap, jackknife and analytical correc-

tion methods. Despite its relatively simple form, the AR(1) model continues to appear

abundantly in empirical work, a recent example being Baltussen et al. (2019) on return

predictability. The AR(1) also arises as a discrete-time counterpart to the Vasicek diffusion

model for short term interest rates. Some further discussion relating to interpretation and

generalisation of the methodology is in Section 2.3

2.1. Correcting OLS bias in estimation of an AR(1)

The following specification is considered:

yt = α+ λyt−1 + ut, (1)

t = 1, . . . , n, where ut
i.i.d.∼ N(0, σ2), σ2 <∞, and |λ| < 1. The bias in estimation of λ can

be substantial, see in particular the % bias entries in Table 1 for λ̂ at n = 35, which are

in the range -12.7% to -27.7%. A sample size of 35 is small, but is consistent with other

studies addressing the AR(1) estimation bias.1 The estimation biases for diffusion models

1See for example Chambers (2013), where Monte Carlo results are presented for n = 24, 48, 96 and 192,

and Kiviet and Phillips (2014) where n = 20 and 50.

3



in Section 3 are more severe at larger sample sizes, while the INAR models in Section 4

are designed for short series of count data.

Kendall (1954) and Marriott and Pope (1954) found that the bias in OLS estimation

of λ in (1) could be asymptotically approximated as

b(λ) = −1 + 3λ

n
+ o(n−1), (2)

and this can be used to form a Corrected OLS (COLS) estimator

λ̂COLS := λ̂OLS +
1

n
(1 + 3λ̂OLS), (3)

which is unbiased to order O(n−1) in the sense that E[λ̂COLS − λ] is o(n−1). Similar

bias-correction results have been obtained for other models and estimators, as noted in the

Introduction, and the analytical approach has worked well in simulation experiments, see

for example the early study by Orcutt and Winokur (1969).

Despite the success of the approach and its strong theoretical basis it might be possible

to choose, according to some overall bias criterion, an even better correction function than

the one in (3) implied by large-n asymptotic expansion. If attention is restricted to specific

values of n in a small interval, for example, or just to a single value, this may seem quite

plausible. There are, moreover, models and estimators where no asymptotic refinement

to the bias is available. The investigator’s primary interest may also not be in the bias,

but in improving some other property of the estimator, such as the RMSE or variance,

and analytical refinement towards one of these objectives may be challenging. Section 5

illustrates a case where a model used for prediction may be better served by an estimator

focused specifically towards reduced prediction error rather than reduced estimation bias.

Continuing with the theme of bias reduction, a basic requirement is that the estimation

bias be reduced from the original corresponding to ordinary least squares, and a comparison

can also be made with the analytically corrected estimator in (3). Initially, our question is

therefore whether it is possible to find a function g in (4) below, via a numerical optimi-

sation, without knowing the bias approximation in (2), such that λ̃ is less biased in some

overall sense than λ̂OLS :

λ̃ := λ̂OLS +
1

n
g(λ̂OLS). (4)

There are additional arguments besides λ̂OLS that may be useful to have in g, and this

issue is addressed in Section 2.3, but it is known that the bias in this case depends mainly
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on λ.2

The approach requires an overall performance measure to be decided for the new esti-

mator λ̃ in (4), which should capture some aspect of estimation performance across different

possible values of λ, α and σ2, then the performance of λ̃ can be adjusted by choice of g.

With a view toward reducing relative bias in estimation of λ, a loss of L(λ̃, λ) = | λ̃−λλ | is

defined for a given choice of λ, α and σ2, and for a given sample size. Risk values E[L(λ̃, λ)]

are then computed by Monte Carlo and collected at different points in the parameter space

and at different sample sizes, all in a vector R, and the objective is to minimise a norm

||R|| as a measure of overall performance. An ideal choice of g in (4) is then taken to be

g? := argmin
g∈G

||R|| (5)

where G is a chosen class of approximating functions. The measure of overall performance

can be viewed in terms of global risk, see for example Lehmann (1983), and this is outlined

in Section 2.3. Beyond the main objective in (5), it may be preferable that the choice

of g results in an estimator that performs no worse than the original in terms of bias

or root mean square error. This relative performance constraint can be imposed at the

parameterisations used for training g, and it is generally implemented in the examples that

follow including those in the present section.3

Provided the chosen approximating functions can be parameterised, say by a vector w,

then a numerical search can be used to minimise ||R||. A minimisation of ||R|| by choice

of g in a space of polynomials, for example, could potentially yield g?(λ̂OLS) = 1 + 3λ̂,

which would make (4) the same as the COLS estimator in (3). Instead of polynomials,

we mainly use univariate rational approximants in the Padé form, though a more general

neural network approach is detailed in Section 2.3 and used in Section 3 for the Vasicek

model. The idea of parameterising rational approximants in the Padé form computationally

has been used in Chen et al. (2018), see in particular their RationalNet.

If the class of [m1/m2] Pade approximants is used for g, then g as a mapping from λ̂ is

in the form

g(λ̂) =

∑m1
i=0 aiλ̂

i

1 +
∑m2

j=1 bj λ̂
j

(6)

2Note that the parameters α and σ2 do not enter (2), though they do enter the higher-order O(n−2)

bias approximation, see Bao (2007) and Kiviet and Phillips (2012).
3See Section 2.3 and the Appendix for details.
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where ai and bj , i = 0, . . . ,m1 and j = 1, . . . ,m2, are the parameters in w to be selected

by a numerical search. Analogous to a higher-order bias correction, see for example Bao

(2007) and Kiviet and Phillips (2012), a 1
n2 term can be added to (4), then there are two

mappings g1 and g2 to select as in (7). In this section we choose among estimators in the

form

λ̃ := λ̂OLS +
1

n
g1(λ̂OLS) +

1

n2
g2(λ̂OLS) (7)

where g1 and g2 are as in (6) with m1 = 4 and m2 = 5, so that there are 10 parameters

to specify in each case. The following version is also considered, where the first two terms

form the COLS estimator in (3), and the search is therefore for an improvement on the

COLS estimator:

λ̃COLS := λ̂OLS +
1

n
(1 + 3λ̂OLS) +

1

n
g1(λ̂OLS) +

1

n2
g2(λ̂OLS). (8)

The value for the overall performance ||R|| at given choices of g1 and g2 will depend

on the parameterisation and sample size choices used to obtain each element of R, and

therefore these choices will shape the resulting estimator obtained by minimising ||R||. The

collection of parameter and sample size combinations used for each element of R is, in what

follows, denoted by T . These are training points for choosing g1 and g2, whose performance

can later be assessed at other points in the parameter space and at other sample sizes. In

the current section, g1 and g2 are trained on the three values of λ in {0.1, 0.5, 0.97} with

α = 0 and σ2 = 1, and on the two sample sizes in {20, 50}, then assessed at various other

positive values of λ, at two choices of α, with σ2 at 9 rather than 1, and at a sample

size midway between the two sample sizes used for the training. Estimators in the form

(7) and (8) are found for alternative objectives in Section 2.2, namely RMSE reduction

and variance reduction, and for this reason the bias-reducing versions of λ̃ and λ̃COLS are

denoted by λ̃bias and λ̃biasCOLS .

It can be seen from the left panel in Figure 1 that the new estimator λ̃bias is highly

effective at bias reduction across all the sample sizes and λ values considered. The right

panel plots the relative RMSE values for the new estimator compared with the initial

estimator, and it can be seen that these are either around 1 or substantially lower than 1.

There also does not appear to be any over-training at the three values of λ used in T or at

the two specific sample sizes used in the training. By searching for single choices of g1 and

g2 that work well at both n = 20 and n = 50 and at several different parameterisations,

the numerical search has found a correction functional that works well for any n between
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the two values used in T and for a fine grid of positive values of λ between 0 and 1. These

cases also use α = 10 rather than the training value of 0, and σ2 = 9 rather than the

training value of 1.4 Throughout the paper, a minimum of 20,000 replications are used for

results in tables and figures.

<Figure 1 here>

Table 1 presents the bias and RMSE values for the initial estimator λ̂, for the new

reduced bias estimators λ̃bias and λ̃biasCOLS , and for λ̂COLS . It can be seen that λ̃biasCOLS ,

making use of the asymptotic approximation in addition to the methodology here, tends

to do a little better than λ̃bias, and that both seem marginally better than λ̂COLS in terms

of bias when λ ≥ 0.65. There are only six training points in T in the current section, and

better results could potentially be obtained by using more. This is tried in Section 3 for

the mean reversion parameter in the Vasicek model.

4It may be unsurprising that these alternative values of α and σ2 have a limited effect on the performance

of the estimator, as they only enter asymptotic bias approximations for λ̂ at order O(n−2).
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Table 1: Percentage bias and RMSE in estimation of λ with σ2 = 9, n = 35

α λ λ̂ λ̃bias λ̂COLS λ̃biasCOLS λ̃RMSE
COLS

% Bias 0 0.15 -27.7 -2.30 -2.15 -2.04 7.05

0.25 -19.3 -2.59 -1.77 -2.79 -2.89

0.35 -16.5 -2.98 -1.20 -2.82 -4.71

0.45 -14.8 -2.71 -1.26 -2.76 -5.10

0.55 -13.7 -2.05 -1.26 -2.03 -4.93

0.65 -13.0 -1.17 -1.21 -1.20 -4.56

0.75 -12.8 -0.370 -1.50 -0.319 -4.57

0.85 -12.7 0.622 -1.90 0.383 -5.14

0.95 -13.5 1.23 -2.93 0.853 -6.87

10 0.15 -27.7 -2.32 -1.98 -1.45 7.05

0.25 -19.4 -2.64 -1.45 -2.72 -2.80

0.35 -16.0 -2.50 -1.21 -2.92 -4.97

0.45 -14.8 -2.69 -1.31 -2.67 -5.11

0.55 -13.7 -1.99 -1.22 -1.89 -4.76

0.65 -13.0 -1.23 -1.26 -1.19 -4.63

0.75 -12.9 -0.521 -1.50 -0.493 -4.59

0.85 -12.8 0.611 -1.92 0.442 -5.18

0.95 -13.3 1.36 -2.92 0.843 -6.87

RMSE 0 0.15 0.170 0.170 0.179 0.170 0.143

0.25 0.169 0.170 0.177 0.171 0.153

0.35 0.170 0.171 0.174 0.171 0.160

0.45 0.170 0.170 0.170 0.170 0.164

0.55 0.169 0.169 0.164 0.169 0.163

0.65 0.167 0.165 0.157 0.165 0.158

0.75 0.166 0.161 0.149 0.160 0.150

0.85 0.166 0.157 0.138 0.155 0.138

0.95 0.173 0.154 0.131 0.151 0.130

10 0.15 0.169 0.170 0.178 0.170 0.143

0.25 0.170 0.170 0.176 0.171 0.154

0.35 0.169 0.171 0.174 0.171 0.160

0.45 0.170 0.170 0.170 0.170 0.164

0.55 0.169 0.169 0.165 0.168 0.163

0.65 0.167 0.165 0.157 0.165 0.158

0.75 0.168 0.162 0.148 0.161 0.150

0.85 0.167 0.157 0.139 0.155 0.138

0.95 0.172 0.153 0.130 0.149 0.130
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2.2. Reducing RMSE and Variance

It has been seen from Figure 1 and Table 1 that the reduced bias estimators tend to

have better RMSE performance than the original estimator. It is possible, however, to

target a reduction in RMSE directly, by changing the loss function L specified earlier to

L(λ, λ̃) = (λ̃ − λ)2 and filling R with RMSE values (E[L(λ, λ̃)])
1
2 , while keeping the rest

of the setup unchanged. As the original reduced-bias estimator available from asymptotic

expansion of the bias, λ̂COLS , already performs well in terms of bias correction, it seems

interesting to ask whether some of this bias correction behaviour will remain after adding

additional terms to improve the RMSE performance. The resulting estimator in the form

(8) is denoted by λ̃RMSE
COLS , and it can be seen in Table 1 and Figure 2 that the RMSE

performance of this estimator is superior to the others while, in Table 1, the bias is still

substantially reduced from the original OLS estimator.

<Figure 2 here>

It is possible to target a reduction in variance in the same way, still with the relative

performance constraint controlling the bias performance at points in T , and the resulting

estimator is denoted by λ̃V arCOLS . Variance results for all of the estimators are given in Table

2, and it can be seen that λ̃V arCOLS has substantially lower values. The left panel in Figure

3 depicts the variance of λ̃V arCOLS verses the OLS estimator, and it can be seen that the

variance is almost halved for lower values of λ. The right panel presents a comparison of

the absolute biases, and the reduced-variance estimator performs better in this respect as

well for λ ≤ 0.6, while being about the same (marginally worse) for 0.6 < λ < 1.

<Figure 3 here>
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Table 2: Variance in estimation of λ with σ2 = 9, n = 35

α λ λ̂ λ̃bias λ̂biasCOLS λ̃biasCOLS λ̃RMSE
COLS λ̃V ar

COLS

Variance × 102 0 0.15 2.71 2.88 3.21 2.88 2.04 1.59

0.25 2.63 2.88 3.13 2.92 2.34 1.79

0.35 2.57 2.92 3.02 2.91 2.54 1.97

0.45 2.44 2.89 2.87 2.88 2.63 2.05

0.55 2.29 2.83 2.69 2.83 2.58 2.04

0.65 2.07 2.71 2.47 2.70 2.40 1.95

0.75 1.85 2.60 2.21 2.57 2.12 1.78

0.85 1.60 2.45 1.88 2.39 1.71 1.54

0.95 1.39 2.37 1.63 2.27 1.28 1.33

10 0.15 2.70 2.87 3.17 2.88 2.04 1.58

0.25 2.64 2.90 3.11 2.92 2.36 1.79

0.35 2.57 2.92 3.01 2.93 2.54 1.97

0.45 2.44 2.88 2.90 2.88 2.62 2.05

0.55 2.29 2.83 2.71 2.81 2.58 2.03

0.65 2.06 2.70 2.46 2.72 2.41 1.96

0.75 1.87 2.63 2.19 2.58 2.13 1.77

0.85 1.60 2.46 1.90 2.40 1.70 1.56

0.95 1.36 2.34 1.61 2.22 1.27 1.33

2.3. Further methodological notes

A neural network approach

The AR(1) model is relatively simple, and the bias in estimation of λ mainly depends

on one parameter, namely λ itself. This enables the use of univariate approximants for

the bias reduction or other estimation improvement, but a more general approach is de-

sirable. Given the problem of estimating a parameter θ whose estimation bias depends on

parameters in a vector Θ, the general proposal is an estimator of θ in the following form

θ̃ = θ̂ +G(Θ̂, r) (9)

where

G(Θ̂, r) =
r∑
j=1

1

nj
gj(Θ̂), (10)

Θ̂ is an initial estimator of Θ, and r is a small number. The choice of G in (9) may depend

on the interval of sample sizes considered, therefore the mappings G and gj are implicitly
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indexed by n. In a typical situation where the initial estimator Θ̂ is
√
n-consistent, θ̃ will

have the same property under mild conditions on the sequences {gj,n}n. At large sample

sizes it may even be reasonable to assume that zero mappings gj,n = 0 are chosen for

j = 1, . . . , r.

Feedforward neural networks with one or more hidden layers can, for a sufficiently

large number of hidden units, approximate any continuous function on a compact domain

arbirarily closely and are therefore universal approximants, see for example Hornik (1991).

Mappings of the following form with a single hidden layer for gj are used in the Vasicek

diffusion model application in Section 3.1:

gj(Θ̂) =
m′∑
i=1

ajiF (bji · Θ̂ + cji) (11)

where F is the sigmoid activation function F (v) = (1 + e−v)−1 and m′ is, in the neural

networks terminology, the number of hidden units. The parameters aji, bji and cji, for

j = 1, . . . , r and i = 1, . . . ,m′, can be collected in a vector w in the same way as for Pade

approximants earlier, with the numerical minimisation of ||R|| again performed over w.

Interpretation in terms of point estimation theory

The methodology can be interpreted in terms of the theoretical framework in Lehmann

(1983) relating to minimisation of global risk. We are interested in estimating θ, an element

of Θ ∈ C ⊂ Rd, and, in the notation of Lehmann, are seeking to choose among candidate

estimators δ(X) that yield estimates δ(x) when given data x. In the same way as earlier, the

cost associated with δ(x) for a given point Θ is denoted by L(Θ, δ(x)), and the average loss

for a given Θ is measured by a risk function R(Θ, δ) = EΘ[L{Θ, δ(X)}]. If no restriction is

put on the functional form of δ, as we have done by requiring it to be an initial estimator

plus a power series in 1/n, then the δ that minimises the average risk,∫
C
R(Θ, δ)w(Θ)dΘ, (12)

is by definition a Bayes estimator, provided the weight function w is specified as a prior for

Θ, and it is otherwise a generalised Bayes estimator. Under a quadratic loss assumption

L(Θ, δ(x)) = (δ(x)− θ)2, for example, its estimate given observations x is known to be the

posterior mean δ(x) =
∫
C θp(Θ|x)dΘ, though this may be difficult or impossible to compute

in practice.
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The solution estimator to (12) under the quadratic loss assumption,

δ(X) =

∫
C
θp(Θ|X)dΘ, (13)

is in the same form for each sample size, and therefore choosing δ(X) as in (13) for each

sample size is the solution to minimisation of the following, where the risk values at different

sample sizes in N are added together:∫
C

(∑
n∈N

Rn(Θ, δ)

)
w(Θ)dΘ. (14)

If C in (14) is replaced by a training set of parameterisations C̃ ⊂ C and we set w(Θ) = 1,

this can be expressed as in (5) where R is the vector of risk values corresponding to points

in T = C̃ × N :

||R||1 =
∑
Θ∈C̃

∑
n∈N

Rn(Θ, δ) (15)

The method subsequently constrains δ(X) to be in the form δ(X) = θ̂(X) + G(Θ̂, r)(X)

and searches numerically for the minimising choices of g1, g2, . . . , gr. While (13) is unlikely

to be recovered for any given n, the result of minimising (15) with δ in its constrained form,

where the loss and risk functions are defined as above, can be viewed for each n as a rough

closed-form approximation of the posterior mean estimator in (13). It is not expected that

this approach will yield accurate approximations of posterior moments, but the method

avoids any significant computation having to be done for each given set of observations,

and the resulting closed-form estimators can be assessed according to frequentist criteria.

Moreover, the method makes it straightforward to compute estimators focused towards

different choices of the global risk, e.g. via different choices of the loss function, without

additional analytical derivation or posterior sampling. Constraints on the performance

relative to a reference estimator can be imposed, along with constraints on the distribution

of the resulting estimator.

The relative performance constraint

It was noted in Section 2.1 that a relative performance constraint can be placed on the

choice of correction function when minimising ||R||, and that we do this in most cases here.

Similarly to the choice of loss function, the choice whether to include a relative performance

constraint can be interpreted in terms of risk preferences. If particular solutions to (5) are
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avoided because the resulting estimator does not strictly outperform a reference set of

performances by another estimator, this can be understood in terms of behavioural theory

for decision making under risk where gains or losses are relative to a reference point, and

where the decision maker is more sensitive to losses from a reference point than to gains,

see for example Tversky and Kahneman (1992). For details about the implementation, see

the Appendix.

3. Univariate interest rate diffusion models

We consider two special cases of the following univariate diffusion model:

dX(t) = µ(X(t), t; Θ)dt+ σ(X(t), t; Θ)dB(t) (16)

where B(t) is standard Brownian Motion, µ and σ are drift and diffusion functions, respec-

tively, and Θ is an unknown parameter vector. In particular, we address the estimation

of the Vasicek and the CIR models, which are relatively simple but widely used specifi-

cations for interest rates and other financial time series following Vasicek (1977) and Cox

et al. (1985). Doing this allows a comparison with the Monte Carlo results in Tang and

Chen (2009) for the parametric bootstrap estimator, Indirect Inference, and the (m = 4)

Quenouille jackknife.

The two models are as follows:

dX(t) = κ(α−X(t))dt+ σdB(t) (Vasicek)

dX(t) = κ(α−X(t))dt+ σ
√
X(t)dB(t) (CIR)

where 2κα/σ2 > 1 for the CIR model, see Cox et al. (1985). As in the preceding literature,

the focus is on estimation of the mean reversion parameter κ, particularly the estimation

performance at the small positive values of κ typical of short-term interest rate series.

For the Vasicek model we only consider this situation, and only consider new estimators

trained for a particular sample size - following some success with this, the CIR model is

addressed more ambitiously in Section 3.2. In order to compare directly with the existing

Monte Carlo results in Tang and Chen (2009), the Conditional ML estimator and Nowman

pseudo-ML estimator, see Nowman (1997), are used as the initial estimators of κ when

addressing the Vasicek and CIR models, respectively, and both are denoted by κ̂ in the

following. Details about the data generation can be found in Tang and Chen (2009).
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3.1. Vasicek model

The Vasicek model has an exact Gaussian discretisation, and a Conditional ML esti-

mation results in

κ̂ = −h−1ln(β̂1)

with

β̂1 =
n−1

∑n
i=1XiXi−1 − n−2

∑n
i=1Xi

∑n
i=1Xi−1

n−1
∑n

i=1X
2
i−1 − n−2(

∑n
i=1Xi−1)2

,

being an estimate of the autoregressive coefficient in the corresponding discrete model.

Here n is the number of observations, h is the sampling interval, and nh the length of time

over which the equally spaced observations are taken.5 The new estimators take the form

described in (9), (10) and (11) using the neural network approach with r = 1, m′ = 10,

but with Θ̂ replaced by κ̂ by itself.

Since the Vasicek and CIR models are used mainly for modelling financial time-series

with low mean reversion, it may be reasonable to search initially for an estimation im-

provement that works well just at relatively low values of κ. We do this in the present

section with the Vasicek model, then consider the estimation of a wider range of κ values

for the CIR model in Section 3.2. Three training schemes are considered for the Vasicek

model, and the first two have this in mind. In all cases, we set h = 1/12. Case (1)

uses just the two values of κ in {0.01, 0.3}, Case (2) uses a finer grid of low κ values

in {0.001, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3} while Case (3)

uses the three values of κ in {0.1, 0.5, 0.97}, which were the values used for λ in Section 2

(though we note the lower values now correspond to lower rather than higher speed of mean

reversion, and stationarity requires k > 0, moreover κ can be far larger in principle than

these values but this would be unusual within financial applications of the model). In all

three cases, the training points in T use α = σ = 0.05. Moreover, the estimator is trained

to work at just a specific sample size n = 500. Section 3.2 on the CIR diffusion model will

consider bias and RMSE reductions designed to work within an interval of sample sizes.

Table 3 presents results for the reduced-bias and reduced-RMSE estimators, κ̃biasn and

κ̃RMSE
n respectively, obtained using the Case (1) training setup. It can be seen that the

initial bias values are much larger than for OLS estimation of the AR(1) autoregressive

5A case with n = 60 and h = 1/12 would correspond to 5 years of monthly observations.
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coefficient in Section 2, yet the new reduced-bias estimator has relatively low absolute

bias values in the range 0-7% and substantially lower RMSE. The new reduced-RMSE

estimator has even lower RMSE, less than half of the original in some cases. The results in

Table 2 demonstrate that the new methodology can substantially improve the estimation

performance of the mean reversion parameter in the Vasicek diffusion model, at a given

sample size, with just a small number of training parameterisations.

Table 4 presents similar results using the training setups in Cases (1)-(3) for the two

Vasicek models in Tang and Chen (2009) that have relatively low values of κ.6 The values in

Tang and Chen (2009) for the parametric bootstrap, the Quenouille jackknife and indirect

inference, are included for comparison, the table also presents their values for the original

estimator - ours were very similar. It can be seen that the new estimators compare well with

the jackknife, the parametric bootstrap and indirect inference. The RMSE values of the

two reduced-RMSE estimators are particularly good, being less than half the original and

substantially lower than the bootstrap and indirect inference values. Curiously, despite

the generally good reduction in bias among the new reduced-bias estimators, the best

performance is obtained using the training setup in Case (3), where a wider interval for κ

was considered, and where there were only 3 points in T .

6”Model 1” in Tang and Chen (2009) uses κ = 0.858.
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Table 3: Percentage bias and RMSE in estimation of κ, Case (1) results, n = 500

κ = 0.05

% Bias RMSE

α σ κ̂ κ̃biasn κ̃RMSE
n κ̂ κ̃biasn κ̃RMSE

n

0.01 0.01 259 -2.01 112 0.177 0.131 0.0997

0.05 261 -0.185 114 0.178 0.133 0.101

0.1 260 -0.487 112 0.178 0.133 0.0999

0.05 0.01 260 -0.774 112 0.177 0.132 0.0999

0.05 259 -2.18 113 0.177 0.132 0.100

0.1 260 -0.547 112 0.178 0.132 0.0996

0.1 0.01 258 -3.38 113 0.176 0.131 0.0999

0.05 258 -2.42 114 0.177 0.132 0.100

0.1 257 -4.01 114 0.176 0.131 0.100

κ = 0.15

% Bias RMSE

α σ κ̂ κ̃biasn κ̃RMSE
n κ̂ κ̃biasn κ̃RMSE

n

0.01 0.01 77.8 -3.68 10.9 0.182 0.152 0.0831

0.05 77.7 -3.78 11.1 0.181 0.151 0.0833

0.1 78.3 -3.20 11.5 0.182 0.152 0.0836

0.05 0.01 78.3 -3.15 11.3 0.182 0.152 0.0829

0.05 77.0 -4.54 11.3 0.180 0.150 0.0837

0.1 77.6 -3.96 10.7 0.181 0.151 0.0835

0.1 0.01 78.0 -3.51 11.0 0.182 0.152 0.0828

0.05 77.8 -3.74 11.1 0.181 0.152 0.0824

0.1 78.2 -3.26 11.1 0.181 0.150 0.0827

κ = 0.25

% Bias RMSE

α σ κ̂ κ̃biasn κ̃RMSE
n κ̂ κ̃biasn κ̃RMSE

n

0.01 0.01 44.6 -0.786 -11.3 0.191 0.168 0.0851

0.05 44.6 -0.792 -11.6 0.191 0.168 0.0847

0.1 44.6 -0.863 -11.7 0.191 0.169 0.0841

0.05 0.01 44.7 -0.712 -11.5 0.191 0.169 0.0850

0.05 44.1 -1.40 -11.5 0.189 0.167 0.0854

0.1 44.2 -1.25 -11.7 0.191 0.170 0.0851

0.1 0.01 44.2 -1.24 -11.6 0.190 0.168 0.0838

0.05 44.7 -0.735 -11.3 0.192 0.169 0.0854

0.1 44.2 -1.23 -11.7 0.191 0.169 0.0847
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Table 4 Comparison with Tang and Chen (2009), Vasicek models, n = 500

Tang and Chen (2009) κ̃biasn κ̃RMSE
n

(Bias reducing) (RMSE reducing)

κ̂ J B I (1) (2) (3) (1) (2)

Model 2

% bias 53.0 -5.23 0.861 -7.61 -2.40 -2.91 -1.95 -5.68 -19.5

RMSE 0.189 0.171 0.147 0.14 0.162 0.147 0.154 0.080 0.065

Model 3

% bias 76.6 -7.7 2 -10.6 -4.91 -1.81 -0.640 13.9 7.42

RMSE 0.17 0.159 0.147 0.116 0.148 0.164 0.142 0.084 0.049

Models 2 and 3 in Tang and Chen (2009) use (κ, α, σ2) = (0.215, 0.0891, 0.0005) and

(0.140, 0.0891, 0.0003), respectively. Columns B, J and I are Monte Carlo results obtained by

Tang and Chen (2009) for the parametric bootstrap method (ibid.) the Quenouille jackknife

proposed for diffusion models in Phillips and Yu (2005), and the Indirect Inference method-

ology due to Gourieroux et al. (1993).

3.2. CIR model

The Nowman pseudo-ML method, which has been extended to Constant Elasticity

of Variance (CEV) models in Iglesias and Phillips (2019), starts by making a discrete

approximation to the diffusion function in the CIR model, setting X(t) = Xmh for each h

units of time while keeping X(t) continuous in the drift term:

dXt = κ(α−Xt)dt+ σ
√
XmhdB(t)

for t ∈ [mh,mh + h). The approximate process then has an exact discretisation in a

convenient form for quasi maximum likelihood estimation, the result of which is a closed-

form pseudo ML estimation of the CIR parameters:

κ̂ = −h−1ln(β̂1)

where

β̂1 =
n−2

∑n
i=1Xi

∑n
i=1X

−1
i−1 − n−1

∑n
i=1XiX

−1
i−1

n−2
∑n

i=1Xi−1
∑n

i=1X
−1
i−1 − 1

.

Following the success in Section 3.1 of finding improved estimators of κ for the relatively

simple Vasicek model, designed to work at low values of κ and particular sample sizes, the
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objective for the CIR model is to find estimators that improve bias or RMSE performance

across a wide range of κ values and sample sizes. A Pade approximant approach is used

this time, with the new estimators taking the form in (9) and (10) but with gj defined

as in (6) for j = 1, . . . , r, moreover we set m1 = m2 = 10 and r = 2. Two training

schemes are considered, based on the Case (3) parameterisation in the previous section.

The first case, Case (1), is particularly similar and is designed for bias reduction over the

same region of the parameter space at a specific sample size (n = 500 in Figure 4, and

sample sizes 120, 300 and 500 in Table 5), but it uses the finer selection of κ training values

in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.97}, while the second, Case (2), is an identical

repeat of the previous section case but including the two sample sizes in {120, 500} rather

than just a sample size 500. Reduced-bias estimators are obained using the two different

training setups, and the new estimator resulting from Case (2) is intended to be usable

across sample sizes in the interval [120, 500]. A reduced-RMSE estimator is obtained using

the Case (2) training setup aswell, where this time the relative performance constraint is

not imposed, and this is denoted by κ̃RMSE,? in Table 5.

Figure 4 plots the % bias of the Case (1) reduced-bias estimator and the original

estimator across a range of different κ and σ values at n = 500, and plots the relative

RMSE. It can be seen that the reduced-bias estimator has substantially lower bias, and

the RMSE performance is also substantially better overall, there also does not appear to

be any overtraining towards the particular parameterisations used in the training.

<Figure 4 here>

Table 5 compares Monte Carlo results for the new estimators with Tang and Chen

(2009) again. The values of (κ, α, σ2) in Models 1, 2 and 3 are, respectively, (0.892, 0.09, 0.033),

(0.223, 0.09, 0.008) and (0.148, 0.09, 0.005). While the remaining bias after bootstrap esti-

mation in the three Tang and Chen (2009) models is as high as 39.6%, and the Indirect

Inference bias is as high as 43.5%, the highest absolute biases for κ̃bias and κ̃biasn are 5.99%

and 3.10%, respectively. The new estimator κ̃bias, which is trained to work at sample sizes

in the interval [120, 500], has lower bias than Indirect Inference for all three models, and

lower bias than the bootstrap except in Model 2. The new estimator κ̃biasn , which is spe-

cialised for each sample size, has lower bias than the bootstrap and Indirect Inference in

all three models. The RMSE values for the new reduced-bias estimators are marginally

larger in most cases, but still typically lower than for the original estimator κ̂. The RMSE

of κ̃RMSE is half the original in two cases, where it also substantially lower than Bootstrap
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and Indirect Inference values, and is lower in all but one case than the original estimator,

where the RMSE of the original is at its lowest. The setup could perhaps be adjusted, to

make the improvement more uniform over different values of n.

Table 5: Comparison with Tang and Chen (2009), CIR models

Tang and Chen (2009) κ̃biasn , κ̃bias κ̃RMSE,?

(Bias reducing) (RMSE reducing)

n κ̂ B I (1) (2) (2)

Model 1 120 % bias 52.0 0.178 2.68 -0.104 -0.0783 -30.5

RMSE 0.780 0.651 0.603 0.806 0.814 0.303

300 % bias 20.1 -0.447 -3.79 0.0891 -0.120 -2.49

RMSE 0.380 0.326 0.328 0.337 0.362 0.241

500 % bias 12.0 0.826 0.258 0.183 -0.489 -0.188

RMSE 0.269 0.245 0.248 0.255 0.259 0.204

Model 2 120 % bias 228 13.6 43.5 -1.22 -1.22 23.0

RMSE 0.719 0.502 0.495 0.596 0.586 0.275

300 % bias 82.8 3.461 -14.92 0.495 -5.99 16.2

RMSE 0.289 0.226 0.208 0.242 0.235 0.235

500 % bias 48.6 1.325 -6.728 -0.0329 -4.23 9.90

RMSE 0.183 0.15 0.14 0.156 0.142 0.161

Model 3 120 % bias 350 39.597 19.17 3.10 0.067 28.4

RMSE 0.719 0.507 0.484 0.577 0.595 0.314

300 % bias 129 4.459 17.67 1.21 -3.45 18.4

RMSE 0.289 0.214 0.209 0.237 0.202 0.240

500 % bias 74.5 1.83 -8.45 -1.09 -2.14 11.4

RMSE 0.135 0.133 0.122 0.148 0.116 0.160

4. Integer Autoregressive (INAR) models

The Integer Autoregressive (INAR) class of models was originally proposed in Al-Osh

and Alzaid (1987) as a method of modeling dependent series of low counts, and there

has been a growing interest in the area. Some recent contributions include Martin et al.
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(2014), Sant‘Anna (2017) and Harris and McCabe (2018). As noted in the latter, INAR

models have been used for applications in economics, medicine, environmental studies, and

commerce. We address the estimation of the Binomial thinning parameter α in INAR(1)

models with Poisson and Negative Binomial (NB) innovations. The INAR(1) model takes

the following form:

Xt = α ◦Xt−1 + εt,

where

α ◦X =
X∑
i=1

Yi

counts the number of successes from X i.i.d. Bernoulli trials, each indendent of X. The

sequence of Bernoulli random variables {Yi}X1 has P (Yi = 1) = 1 − P (Yi = 0) = α

and α◦ is known as the thinning operator, while εt is a Poisson(µ) or NB(µ, π) distributed

innovations term where the latter allows ”overdispersed” cases with a variance greater than

µ. There is therefore dependence between the current count and the number ‘surviving’

from the previous period. INAR models are particularly natural when the count has the

interpretation of being a stock variable, as noted for example in Harris and McCabe (2018),

but they also have a more general applicability by providing a way to model dependence

between current and past observations of an integer-valued variable. Gourieroux and Jasiak

(2004), for example, use the approach to model insurance claim arrivals.

We address the estimation of α by starting with the Conditional Least Squares (CLS)

estimator in Al-Osh and Alzaid (1987) and searching for improvements, first at a specific

sample size n = 30 and then for any sample size in the interval [20, 40]. The new estimators

use, as in Section 3.2, the Pade form of gj defined in (6) with r = 2 and m1 = m2 = 10,

this time with the CLS estimator α̂ as the initial estimator. Two training schemes are

considered, and, in both, the same three-point training set of parameterisations is used for

α as it was for κ in the diffusion models and λ in the AR(1). In both, each value of α is

combined with the two different values of the disturbance parameter µ in {0.5, 4}, so that

there are six training parameterisations in total, where the unconditional mean count for

these, given by E[Xt] = µ/(1 − α), ranges from 0.56 to 133. The Case (1) training setup

uses just one sample size n = 30, and two estimators are obtained for this specific sample

size: a reduced-bias estimator α̃biasn , and a reduced-RMSE estimator α̃RMSE
n . The Case

(2) training setup includes the two sample sizes in {20, 40}, making twelve training points
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in total, with the aim of finding a reduced-bias estimator α̃bias that works well over all

sample sizes in [20, 40].

Table 6: Percentage bias and RMSE comparison, INAR(1), Poisson innovations, n = 30

% Bias RMSE

α α̂ α̃bias
n α̃RMSE

n α̃bias α̂ α̃bias
n α̃RMSE

n α̃bias

0.2 -28.6 -3.34 4.88 -3.82 0.193 0.191 0.143 0.192

0.4 -19.5 -4.12 -8.33 -4.36 0.196 0.194 0.179 0.195

0.6 -16.7 -3.04 -6.16 -2.62 0.196 0.195 0.204 0.197

0.8 -15.9 -1.28 -2.29 0.0183 0.197 0.187 0.193 0.195

Table 6 compares the three estimators with the original for various α with µ set at 1 and

n = 30. These are relatively low-count cases where the unconditional mean ranges from

1.25 in the case where α = 0.2 to 5 where α = 0.8. It can be seen that the reduced-bias

estimators perform particularly well and the remaining biases are all less than 5%. There is

a large reduction in RMSE at smaller values of α by using α̃RMSE
n . The Case (2) reduced-

bias estimator α̃bias was asked to work well at sample sizes 20 and 40 during the training,

and seems to be working well at n = 30. Figure 5 confirms the performance of α̃bias by

plotting the percentage bias and RMSE results for α̃bias and α̂ over a grid of α values and

sample sizes. It can be seen that there is a large reduction in bias and, in most cases, a

small improvement in RMSE performance. As was found in earlier sections, there does not

appear to be any noticeable over-training at the particular parameterisations and sample

sizes used in the training. The new estimator α̃bias is a working closed-form estimator of

α for the Poisson model at sample sizes in [20, 40].

<Figure 5 here>

Overdispersed models have received substantial attention in the INAR literature re-

cently, as the Poisson assumption has sometimes been found unrealistic in applications,

see for example Pavlopoulos and Karlis (2008). INAR models with Negative Binomial

innovations allow for overdispersion, see for example Martin et al. (2014), in particular the

variance of NB(µ,π) innovations is given by V ar(εt) = µ/(1−π). Figure 6 presents results

for a Negative Binomial version of the estimator α̃bias. It is trained as earlier, but now also

at two values of π in {0, 0.5}. The case π = 0 is the limiting Poisson model, while π = 0.5

allows the variance of the innovations to be twice the mean. The results are plotted for
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various sample sizes and α values at π = 0.4 with µ = 2.5, and also for various π and α

values at n = 30 with µ = 3.5.

<Figure 6 here>

It can be seen from Figure 6 that the remaining biases at the various values of n, α

and π are small, and that the RMSE is marginally lower in the majority of cases. In

particular, the new estimator performs well across the different levels of overdispersion

π. The largest bias at n = 30 across all of the (α, π) cases considered in Figure 6 is

−5.10%. A comparison can be made with Table II in Martin et al. (2014), which presents

mean and RMSE results for CLS, Efficient Method of Moments (EMM) and Maximum

Likelihood (ML) under a Poisson assumption (corresponding to π = 0) at n = 50 for

α = 0.3 where µ = 3.5, in particular the smallest bias was found to be via the Maximum

Likelihood estimator, which had a mean value of 0.281, a bias of -6.33%. The case µ = 3.5

is admittedly close to our training value of µ = 4, but the bias results for µ = 2.5 in the

left-hand panel are comparable, and so are those for the specialised Poisson version of the

estimator in Figure 5 where µ = 1. As with the EMM estimation advanced in Martin

et al. (2014), the computational approximation approach does not require specification of

a likelihood function, which becomes difficult when the more general INARMA class of

models is considered.

5. Application: forecasting the US Federal Funds rate

Given an initial estimator, it has been possible to find closed-form adjustments com-

putationally that target specific aspects of estimation performance and which are reusable

across an interval of sample sizes. The same general approach can also be used to tar-

get an improvement in point prediction, and we consider in particular predictions of the

Federal Funds overnight lending rate using the CIR model considered in Section 3.2. A

monthly-sampled series is used, as in Aı̈t-Sahalia (1999), to avoid market microstructure

effects, and this was obtained from the Federal Reserve Bank of St. Louis website for the

period July 1st 1954 to January 1st 2020. The series is depicted in Figure 7.

<Figure 7 here>

Given estimates of the parameters in a CIR model for r(t), forecasts s steps ahead can

be obtained from the conditional mean,

E[r(t+ s)|r(t)] = α+ {r(t)− α}e−κs, (17)
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see e.g. Orlando et al. (2020). Somewhat surprisingly, the use of reduced-bias estimates of

κ was found to result in relatively poor out-of-sample forecast performance, whether via

the computational approximation method in Section 3.2 or via two other bias-correction

methods that were tried. The poor forecast performance was accompanied by an increased

prevalance and magnitude of negative estimates of κ, particularly in the case of the Que-

nouille jackknife bias correction, which can potentially be explained by overcorrection of

the bias or by increased variance at small values of κ. The κ̃bias estimator was seen to over-

correct the bias by relatively small amounts in Table 5, while Tables 2 and 3 of Tang and

Chen (2009) show that the Quenouille jackknife over-corrects the bias more substantially.

It can be seen from (17) that large negative estimates of κ may lead to poor predictions

if the underlying d.g.p. is stationary, particularly in periods of high volatility where r(t)

deviates substantially from its mean α.

Table 7 illustrates the prediction performance resulting from bias-corrected estimation

of κ over rolling windows of 300 and 500 monthly observations starting on July 1st, 1954.7

Regardless of the method of bias correction, the performance in terms of Root Mean Square

Prediction Error (RMSPE) is made worse overall. Besides the new approach in Section

3.2, the Quenouille Jackknife method suggested in Phillips and Yu (2005) was tried, along

with a corrected estimator based on the asymptotic bias approximation for the Nowman

estimator in Tang and Chen (2009)8. These are denoted in what follows by κ̃bias, κ̂QJ ,

and κ̂TC , respectively. It can be seen that much of the addition to the RMSPE occured

during the 1973-75 oil crisis, which indeed appears to be a period of high volatility in the

Federal Funds rate - the adverse effect of over-correction of the bias on forecasting would

be amplified during this period via the term r(t)− α in (17).

7As the Nowman estimator of α is unbiased to order O(n−1), corrections are only made to estimation

of κ.
8Tang and Chen (2009) found, see Theorem 3.2.3, that E[κ̂] = κ+ 4T−1 + o(T−1) where T = nh is the

length of time over which the n observations are taken. We define κ̂TC = κ̂−4T−1 where T = 300/12 = 25.
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Table 7: CIR prediction performance by estimation method

n = 300 n = 500

RMSPE κmin κmax RMSPE κmin κmax

Nowman (κ̂) 0.0065 -0.021 0.28 0.0027 -0.025 0.27

Bias target (κ̃bias) 0.057 -0.10 0.027 0.045 -0.074 0.12

Bias corrected, TC (κ̂TC) 0.10 -0.18 0.12 0.078 -0.12 0.18

QJ (κ̂QJ) 0.69 -0.80 -0.038 0.27 -0.30 0.019

ML (κ̂ML) 0.0069 -0.00089 0.32 0.0033 -0.0056 0.27

Root Mean Squared Prediction Error for rolling window one-step forecasts, n = 300 and

n = 500 monthly observations. The κmin and κmax columns record the smallest and largest

estimates of κ yielded by each estimation method over the different time windows, respectively.

κ̂
(2)
ML used Nelder-Mead with the grid search used in cases where convergence failed or where

there was no movement from the starting value, and was used along with ML estimates α̂ML

and σ̂2
ML.

Figure 8 presents Monte Carlo simulations of the RMSPE using the original and bias

corrected estimators on data generated from CIR models with various values of the mean

reversion parameter κ, and this further illustrates the issue. Reduced bias estimation

of κ in a correctly specified CIR model, whether via the computational approximation

approach in Section 3.2, the analytical approximation in Tang and Chen (2009) or the

(m = 4) Quenouille jackknife, tends to reduce prediction performance at low levels of

mean reversion, while use of the Quenouille jackknife bias correction also reduces prediction

performance at higher levels of κ. The figure also shows the prediction performance using

a new estimator, κ̃pred, introduced in the next subsection, which adjusts the Nowman

estimator specifically for the purpose of prediction performance - this prediction targeting

estimator performs best throughout.

<Figure 8 here>

5.1. Prediction targeting

Some attempts were made at modifiying the correction term computed in Section 3.2

by placing a constraint on the (Monte Carlo estimated) probability of κ̃ being negative

when generating the bias corrected estimator. The bias correction was then relatively

conservative at lower values of κ, and this also affected the forecast performance adversely.

To target the prediction performance directly, it is possible simply to modify the loss

function L in the general procedure so that R in (5) is filled with the RMSPE values at

24



different training parameterisations Θ = (α, κ, σ2), rather than with, as in Section 3.2, the

relative bias or RMSE values.

Specifically, the vectorR is comprised of the Monte Carlo computed values (E[L(κ̃; Θ)])
1
2

at different training parameter points Θ, with the loss function now defined as

L(κ̃; Θ) = (yf − y)2 (18)

where yf is the predicted value of y using a candidate estimator at the parameter point

Θ. The estimator κ̃pred is then selected in the same way as in Section 3.2, by choosing the

parameterisation for rational approximants g1 and g2 in Padé form that minimise ||R||,
possibly subject to constraints on performance relative to the original estimator or other

estimators though this is not done here. To reflect the relatively small range of Nowman

estimates of κ found at windows sizes n = 300 and n = 500 for the US Federal Funds

rate, as seen by the minimum and maximum values in Table 7, the prediction targeting

estimator was trained using the values κ ∈ {0.01, 0.1, 0.2}, while α and σ2 were set as in

Section 3.2 at 0.05.

The Monte Carlo performance of the prediction-targeting approach can be seen in

Figure 8 alongside the prediction performance using other estimators of κ. As noted

earlier, κ̃pred compares well in terms of RMSPE - it outperforms the other estimators at all

values of κ considered, and even performs well at very low values of κ. Across the values

of κ tried, the smallest percentage reduction in RMSPE using κ̃pred was found to be 22%,

while the largest reduction in RMSPE was 36%.

Figure 9 illustrates the rolling-window out-of-sample forecast performance of the ap-

proach using the US Federal Funds rate series. The estimated root mean squared prediction

errors based on κ̃pred are compared with those based on the Nowman estimator across a

series of window sizes between 120 and 500. As in the Monte Carlo simulation, using the

prediction targeting estimator κ̃pred results in superior out-of-sample forecasts from the

CIR model. The performance is improved substantially at every window size.

<Figure 9 here>

5.2. Further investigation of κ̃pred

The remaining analysis explores κ̃pred further, in order to understand its properties

better. Figure 10 illustrates how the individual out-of-sample forecast errors for the Fed-

eral Funds rate relate to the initial Nowman estimates κ̂, and provides the mapping of κ̂
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estimates to κ̃pred estimates and box plots for κ̃pred. The plot of prediction error vs ˆkappa

appears to show a ’fanning’ effect either side of estimates of κ slightly above zero, where

there is also a relatively dense concentration of estimates - at n = 150 this happens at

around κ = 0.1, while at n = 450 it is at around κ = 0.02. Meanwhile, it can be seen

from the mapping of κ̂ to κ̃pred that the estimates from the new methodology are far more

concentrated near zero and, when they are negative, they are often much less negative. As

noted, this seems important for making forecasts in volatile periods more reliable.

<Figure 10 here>

Figure 11 illustrates the performance of the prediction-targeting estimator in terms of

bias, RMSE and variance, while Figure 12 plots the frequency distribution of the Nowman

estimator, the reduced bias estimator and the prediction-targeting estimator at κ = 0.02

and κ = 0.2. The prediction targeting estimator is less biased, far less so at small values

of κ, though it over-corrects the Nowman estimator on average, and is more biased than

the reduced bias estimator κ̃bias. It seems possible that the bias and distribution of κ̃pred

itself could be improved by putting constraints on the minimal bias performance of κ̃pred

at parameter points in the training set when computing the estimator. A wider training

set than κ ∈ {0.01, 0.3} could also be used, though the estimated values of κ are typically

within this range in applications.

<Figure 11 here>

6. Conclusion

A simple computational approximation approach has been shown to work well for the

reduction of estimation bias in small parametric time series models, inspired by existing

correction methods based on asymptotic approximation. The methodology aims to find,

via Monte Carlo and numerical search, a small-order adjustment to an initial estimator in

a similar form to what might be found theoretically. The restriction on the form of the

added terms seems to limit issues of overtraining at particular parameterisations or sample

sizes. The approach has been found effective at removing estimation bias and reducing

RMSE in small parametric time-series models that have received substantial attention in

the bias-correction literature, and may be especially useful where no asymptotic expansion

of the bias exists, or as a second layer of bias reduction after correcting to some asymptotic

order via an existing asymptotic approximation. The new estimators share with corrected

26



estimators based on asymptotic expansion the characteristic of being closed-form and fast

to compute once found.

The approach has also been shown to work well when targeting a reduction in forecast

error, in particular it has been possible to improve the one-step-ahead prediction from a

CIR model both in Monte Carlo simulations and in out-of-sample forecasts of the Federal

Funds rate over a wide range of window lengths. The presentation and examples here

have focused on point estimation and point prediction, but it seems possible to extend the

approach to interval estimation and prediction, mirroring the type of asymptotic corrections

that can be obtained theoretically by methods such as Edgeworth expansion9. The adjusted

coefficient estimates are also computationally simple and could potentially be bootstrapped.

Regularised optimisation methods commonly used within the deep learning literature may

offer a means to extend the methodology to substantially larger models, and this is being

investigated in related work.

9See for example Rothenberg (1984) and Hausman and Palmer (2012).
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Figures

Figure 1: Bias targeting ( λ̃bias ), percentage bias and relative RMSE comparison
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RMSE(λ̃bias)/RMSE(λ̂) are shaded when less than 1.

Figure 2: RMSE targeting ( λ̃RMSE
COLS ), n = 35.

RMSE Relative RMSE

0.0 0.2 0.4 0.6 0.8 1.0

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

λ

λ̂
λ~

bias

λ̂COLS

λ~COLS
RMSE

0.0 0.2 0.4 0.6 0.8 1.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

λ

λ~
bias

λ̂COLS

λ~COLS
RMSE

31



Figure 3: Variance targeting with bias constraint ( λ̃V arCOLS ), n = 35
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Figure 4: Bias targeting ( κ̃bias ), percentage bias and relative RMSE comparison, n = 500
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Figure 5: Bias targeting ( α̃bias ), percentage bias and relative RMSE comparison.

Poisson innovations, µ = 1
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Figure 6: Bias targeting ( α̃bias ), percentage bias and relative RMSE comparison.

Negative Binomial innovations.

(π = 0.4, µ = 2.5) (n = 30, µ = 3.5)
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Figure 7: US Federal Funds rate, July 1st 1954 to January 1st 2020
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method, n = 500, α = σ = 0.05.
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Figure 9: Out-of-sample prediction performance by window size.
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Figure 10: Out-of-sample prediction error vs κ estimates, the κ̂ to κ̃pred mapping, and

κ̃pred box plots. Window sizes n = 150 (left) and n = 450 (right).
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Figure 11: Further Monte Carlo investigation of κ̃pred - Bias and RMSE, n = 200.
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Figure 12: Further Monte Carlo investigation of κ̃pred - frequency distribution, n = 200.
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Appendix

Implementation of the relative performance constraint

The implementation in the examples of Sections 2-4 requires that the bias and RMSE

values of the new estimator be no greater than those of the original at each point in the

training set T . Let abo and RMSEo denote the vectors of absolute bias and RMSE values

for the original estimator corresponding to points in T , while ab and RMSE are similar

vectors for the new estimator. Let dab and dRMSE then denote the maximal (signed)

elements of the vectors ab − abo and RMSE − RMSEo, respectively. It is required that

dab ≤ 0 and dRMSE ≤ 0, and to achieve this the parameter vector w, which defines G in

(9) once G is chosen, is selected to minimise the value of the penalised objective function:

L = ||E||+ λ{max(dab, 0)2 +max(dRMSE , 0)2}

where λ > 0 is large. This simple penalty function method was sufficient for the applica-

tions that were considered, using the subplex global optimisation algorithm.

The data and code for the application and methods used in Section 5 are available at the

author’s GitHub page. There is no conflict of interest relating to the author and this paper.
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