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Abstract

We propose a new semiparametric approach for modelling nonlinear univariate di¤usions,

where the observed processes are nonparametric transformations of underlying parametric di¤u-

sions (UPDs). This modelling strategy yields a general class of semiparametric Markov di¤usion

models with parametric dynamic copulas and nonparametric marginal distributions. We provide

primitive conditions for the identi�cation of the UPD parameters together with the unknown

transformations from discrete samples. Semiparametric likelihood-based estimators of the UPD

parameters are developed and we show that under regularity conditions both the parametric

and nonparametric components converge with parametric rate towards Normal distributions.

Kernel-based drift and di¤usion estimators are also proposed and shown to be normally dis-

tributed in large samples. A simulation study investigates the �nite sample performance of our

estimators in the context of modelling US short-term interest rates.
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1 Introduction

Most �nancial time series have fat tails that standard parametric models are not able to gener-

ate. One forceful argument for this in the context of di¤usion models was provided by Aït-Sahalia

(1996b) who tested a range of parametric models against a nonparametric alternative and found

that most standard models were inconsistent with observed features in data. One popular semipara-

metric approach that allows for more �exibility in terms of marginal distributions, and so allowing

for fat tails, is to use the so-called copula models, where the copula is parametric and the marginal

distribution is left unspeci�ed (nonparametric).

In a dynamic setting, Joe (1997) showed how bivariate parametric copulas could be used to

model discrete-time Markov chains with �exible, nonparametric stationary marginal distributions.

The resulting class of models are semiparametric but are relatively simple to estimate; see, e.g. Chen

and Fan (2006). However, most parametric copulas known in the literature have been derived in

a cross-sectional setting where they have been used to describe the joint dependence between two

random variables with known joint distribution, e.g. a bivariate t-distribution. As such, existing

parametric copulas do not have a clear interpretation in terms of the dynamics they imply when

used to model Markov processes. One could have hoped that copulas with a clearer dynamic

interpretation could be developed by starting with an underlying parametric Markov model and

then deriving its implied copula. This approach is unfortunately hindered by the fact that the

stationary distributions of general Markov chains are not available on closed-form and so their

implied dynamic copulas are not available on closed form either. This complicates the theoretical

analysis (such as establishing identi�cation) and the practical implementation of such models.

We here propose a novel class of dynamic copulas that resolves these issues: We show how

copulas can easily be generated using di¤usion processes. The copulas have a clear interpretation in

terms of dynamics since they are constructed from an underlying dynamic continuous-time process.

Furthermore, conditions for identi�cation of the parameters can be derived despite the fact that the

copulas are implicit. Finally, the copulas can easily be computed using existing numerical methods

for computing marginal and transition densities of di¤usion processes.

The starting point of our analysis is to show that there is a one-to-one correspondence between

any given semiparametric Markov copula model and a model where we observe a nonparametric

transformation of an underlying parametric Markov process. We then restrict our attention to the

underlying process being a parametric Markov di¤usion process which we refer to as underlying

parametric di¤usion (UPD). Within this class of dynamic copulas, the parametric copula is implied

by the di¤usion dynamics of the UPD and so has a clear interpretation in terms of dynamic

properties. Moreover, a given parametric choice of the drift and di¤usion functions for the UPD

induces a copula for which we provide conditions for the parameters to be identi�ed. The advantage

of our modelling and identi�cation strategy is two-fold: First, the dynamics of the resulting copula

model are well-understood with the UPD tying down the dynamics of the observed process, while

the nonparametric transformation only a¤ects its marginal properties. In particular, standard

results from the literature on di¤usion models can be employed to establish mixing properties and
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existence of moments for a given model; see, e.g. Chen et al. (2010). Second, our identi�cation

results are transparent and provide simple-to-check conditions for the model parameters to be

identi�ed from data.

Once identi�cation has been established, estimation of our copula di¤usion models based on

a discretely sampled process proceeds as in the discrete-time case. One can either estimate the

model using a one-step or two-step procedure: In the one-step procedure, the marginal distribution

and the parameters of the UPD are estimated jointly by sieve-maximum likelihood methods as

advocated by Chen, Wu and Yi (2009). In the two-step approach, the marginal distribution is �rst

estimated by the empirical cdf, which in turn is plugged into the likelihood function of the model.

This is then maximized with respect to the parameters of the UPD. We provide an asymptotic

theory for both cases by importing results from Chen, Wu and Yi (2009) and Chen and Fan (2006),

respectively. In particular, we provide primitive conditions for their high-level assumptions to

hold in our di¤usion setting. The resulting asymptotic theory shows
p
n-asymptotic normality

of the parametric components. Given the estimates of parametric component, one can obtain

semiparametric estimates of the drift and di¤usion functions and we also provide an asymptotic

theory for these.

Our modelling strategy has parametric ascendants: Bu et al. (2011), Eraker and Wang (2015)

and Forman and Sørensen (2014) considered parametric transformations of UPDs for modelling

short-term interest rates, variance risk premia and molecular dynamics, respectively. We here pro-

vide a more �exible class of models relative to theirs since we leave the transformation unspeci�ed.

At the same time, all the attractive properties of their models remain valid: The transition density

of the observed process is induced by the UPD and so the estimation of copula-based di¤usion

models is computationally simple. Moreover, copula di¤usion models can furthermore be easily

employed in asset pricing applications since (conditional) moments are easily computed using the

speci�cation of the UPD. Finally, none of these papers fully addresses the identi�cation issue and

so our identi�cation results are also helpful in their setting.

There are also similarities between our approach and the one pursued in Aït-Sahalia (1996a) and

Kristensen (2010). They developed two classes of semiparametric di¤usion models where either the

drift or the di¤usion term is speci�ed parametrically and the remaining term is left unspeci�ed. The

remaining term is then recovered by using the triangular link between the marginal distribution,

the drift and the di¤usion terms that exist for stationary di¤usions. In this way, the marginal

distribution implicitly ties down the dynamics of the observed di¤usion process. As a consequence,

it is very di¢ cult to interpret the dynamic properties of the resulting semiparametric di¤usion

model. In contrast, in our setting, the UPD alone ties down the dynamics of the observed di¤usion

and so these are much better understood. This also spills over to computation and estimation

with the Pseudo Maximum Likelihood Estimator (PMLE) proposed in Kristensen (2010) being

computationally burdensome to implement.

The remainder of this paper is organized as follows. Section 2 outlines our semiparametric

modelling strategy. Section 3 investigates the identi�cation issue of our model. In Section 4, we

discuss the estimators of our model and investigate their asymptotic properties. Section 6 presents
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a simulation study to examine the �nite sample performance of our estimators. Some concluding

remarks are given in Section 7. All the proofs are collected in Appendices.

2 Copula-Based Di¤usion Models

2.1 Model and Its Properties

Consider a continuous-time process Y = fYt : t � 0g with domain Y = (yl; yr), where �1 � yl <

yr � +1. We assume that Y satis�es

Yt = V (Xt) ; (2.1)

where V : X 7!Y is a smooth monotonic univariate function and X = fXt : t � 0g is an underlying
parametric di¤usion (UPD) de�ned on X = (xl; xr), with �1 � xl < xr � +1, which solves the
following parametric SDE:

dXt = �X (Xt; �) dt+ �X (Xt; �) dWt: (2.2)

Here, �X (x; �) and �
2
X (x; �) are scalar functions that are known up to some unknown parameter

vector � 2 �, where � is the parameter space, while W is a standard Brownian motion. In

most applications, � is a �nite-dimensional parameter but our identi�cation results allows � to be

in�nite-dimensional; for example, � =
�
�X ; �

2
X

�
in which case our model is fully nonparametric.

Our proposed estimators and their asymptotic theories, however, restrict � to be �nite-dimensional.

We call Y a copula-based di¤usion since its dynamics are determined by the implied (dynamic)

copula of the UPD X, as we will explain below. Given a discrete sample of Y observed at time

points ti = i�, i = 0; 1; : : : ; n, where � > 0 denotes the time distance between observations, we

are then interested in drawing inference regarding the parameter � and the function V . Note here

that we only observe Y while X remains unobserved since we do not know V . For convenience, we

collect the unknown component in the structure S � (�; V ).
In our analysis, we will require that the underlying Markov processX sampled at i�, i = 1; 2; :::,

possesses a transition density pX (xjx0; �),

Pr (X� 2 AjX0 = x0) =

Z
A
pX (xjx0; �) dx; A � X :

Moreover, we shall, as a minimum, require X to be recurrent. To formally impose this property,

we introduce

s (x; �) := exp

�
�2
Z x

x�

�X (z; �)

�2X (z; �)
dz

�
and S (x; �) :=

Z x

x�
s (z; �) dz (2.3)

denoting the so-called scale density and scale measure, respectively, where x� 2 X is some constant.

We then impose the following:

Assumption 2.1. For all � 2 �: (i) �X (�; �) and �2X (�; �) > 0 are twice continuously dif-

ferentiable; (ii) the scale measure satis�es S (x; �) ! �1 (+1) as x ! xl (xr); (iii)R xr
xl
��2X (x; �) s (x; �) dx <1.
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Assumption 2.2. The transformation function V is strictly increasing with inverse function U =

V �1, i.e., y = V (x), x = U (y), and is twice continuously di¤erentiable.

Assumption 2.1(i) provides primitive conditions for a solution to eq. (2.2) to exist and for the

transition density pX (xjx0; �) to be well-de�ned, while Assumption 2.1(ii) implies that this solution
is positive recurrent; see Bandi and Phillips (2003), Karatzas and Shreve (1991) and McKean (1969,

Section 5) for more details. Assumption 2.1(iii) strengthens the recurrence property to stationarity

and ergodicity in which case the stationary marginal density of X takes the form

fX (x; �) =
� (�)

�2X (x; �) s (x; �)
; (2.4)

where � (�) is a normalization constant ensuring that fX (x; �) integrates to one. This last part

of Assumption 2.1 will not be required for all our results; in particular, some of our identi�cation

results and proposed estimators do not rely on stationarity. This is in contrast to the existing

literature on dynamic copula models where stationarity is a standard assumption.

Assumption 2.2 requires V to be strictly increasing; this is a testable assumption under the

remaining assumptions introduced below which ensures identi�cation: Suppose that indeed V is

strictly decreasing; we then have Yt = �V
�
�Xt
�
, where �V (x) = V (�x) is increasing and �Xt =

�Xt has dynamics pX (�xj � x0; �). Assuming pX (�xj � x0; �) 6= pX(xjx0; ~�) for � 6= ~�, existing

(mis)speci�cation tests (see Section 4.3) can then be used to detect whether V is increasing or not.

The smoothness condition on V is imposed so that we can employ Ito�s Lemma on the trans-

formation to obtain that the continuous-time dynamics of Y can be written in terms of S as

dYt = �Y (Yt;S) dt+ �Y (Yt;S) dWt;

with

�Y (y;S) =
�X (U (y) ; �)

U 0 (y)
� 1
2
�2X (U (y) ; �)

U 00 (y)

U 0 (y)3
; (2.5)

�2Y (y;S) =
�2X (U (y) ; �)

U 0 (y)2
; (2.6)

where U 0 (y) and U 00 (y) are the �rst two derivatives of U (y). In particular, Y is a Markov di¤usion

process. As can be seen from the above expressions, the dynamics of Y , as characterized by �Y
and �2Y , may appear quite complex with U potentially generating nonlinearities in both the drift

and di¤usion terms even if �X and �2X are linear. At the same time, once we transform Y by U ,

we recover the dynamics of the UPD. In particular, the transition density of the discretely sampled

process Yi�, i = 0; 1; 2; :::, can be expressed in terms of the one of X as

pY (yjy0;S) = U 0 (y) pX (U (y) jU (y0) ; �) ; (2.7)

using standard results for densities of invertible transformations. Finally, by similar arguments,

the stationary density of Y satis�es

fY (y;S) = U 0 (y) fX (U (y) ; �) :

5



and so is also available on closed form. From a modelling and computational perspective, this simple

link between the transition dynamics of Y and X is highly useful since the dynamics of parametric

di¤usion models are well-understood and the computation of parametric transition densities is

in general straightforward, even if they are not available on closed form. Formally, we have the

following results adopted from Forman and Sørensen (2014):

Theorem 2.1 Suppose that Assumptions 2.1(i)�(ii) and 2.2 hold. Then the following results hold
for the model (2.1)-(2.2):

1. If Assumption 2.1(iii) hold, so that X is stationary and ergodic, then so is Y .

2. The mixing coe¢ cients of X and Y coincide.

3. If E [jXtjq1 ] <1 and jV (x)j � B (1 + jxjq2) for some B <1 and q1; q2 � 0, then E[jYtjq1=q2 ] <
1.

4. If ' is an eigenfunction of X with corresponding eigenvalue � in the sense that E [' (X1) jX0] =
�' (X0) then ' � U is an eigenfunction of Y with corresponding eigenvalue �.

The above theorem shows that, given knowledge (or estimates) of S, the properties of Y in

terms of mixing coe¢ cients, moments, and eigenfunctions are well-understood since they are in-

herited from the speci�cation of X. In addition, computations of conditional moments of Y can be

done straightforwardly utilizing knowledge of the UPD. For example, for a given function G, the

corresponding conditional moment can be computed as

E [G (Yt+s) jYt = y] = E
�
�G (Xt+s) jXt = U (y)

�
; where �G (x) := G (V (x)) :

The right-hand side moment only involves X and so standard methods for computing moments

of parametric di¤usion models (e.g., Monte Carlo methods, solving partial di¤erential equations,

Fourier transforms) can be employed. This facilitates the use of our di¤usion models in asset pricing

where the price often takes the form of a conditional moment. We refer to Eraker and Wang (2015)

for more details on asset pricing applications for our class of models; they take a fully parametric

approach but all their arguments carry over to our setting.

The last result of the above theorem will prove useful for our identi�cation arguments since

these will rely on the fundamental nonparametric identi�cation results derived in Hansen et al.

(1998). Their results involve the spectrum of the observed di¤usion process, and the last result of

the theorem implies that the spectrum of Y is fully characterized by the spectrum of X together

with the transformation. The eigenfunctions and their eigenvalues are also useful for evaluating

long-run properties of Y . In our semiparametric approach, the eigenfunctions and corresponding

eigenvalues of Y are easily computed from X and so we circumvent the problem of estimating these

nonparametrically as done in, for example, Chen, Hansen and Scheinkman (2009) and Gobet et al.

(2004).

6



2.2 Examples of UPDs

Our framework is quite �exible since it only requires the researcher to choose some parametric

speci�cation for X. Many parametric di¤usion models are available for that purpose and any

of these can in principle be employed. We here present three examples from the literature on

continuous-time interest rate modelling.

Example 1: Ornstein-Uhlenbeck (OU) model. The OU model (c.f. Vasicek, 1977) is given
by

dXt = � (��Xt) dt+ �dWt; (2.8)

de�ned on the domain X = (�1;+1). The process is stationary if and only if � > 0, in which case
X mean-reverts to its unconditional mean �. The scale of X is controlled by �. Its stationary and

transition distributions are both normal, and the corresponding copula of the discretely sampled

process is a Gaussian copula with correlation parameter e���.

Example 2: Cox-Ingersoll-Ross (CIR) model. The CIR process (c.f. Cox et al., 1985) is

given by

dXt = � (��Xt) dt+ �
p
XtdWt: (2.9)

The process is stationary on X = (0;+1) if and only if � > 0, � > 0 and 2��=�2 � 1. Conditional
on Xi�, X(i+1)� admits a non-central �2 distribution with fractional degrees of freedom while

its stationary distribution is a Gamma distribution. To our best knowledge, the corresponding

dynamic copula has not been analyzed before or used in empirical work.

Example 3: Nonlinear Drift Constant Elasticity Variance (NLDCEV) model. The

NLDCEV speci�cation (c.f. Conley et al., 1997) is given by

dXt =

 
lX

i=�k
�iX

i
t

!
dt+ �X�

t dWt: (2.10)

It is easily seen that when ��k > 0 and �l < 0 the drift term of the di¤usion in (2.10) exhibits

mean-reversions for large and small values of X. A popular choice for various studies in �nance

assumes that k = 1 and l = 2 or 3 (c.f. Aït-Sahalia, 1996b; Choi, 2009; Kristensen, 2010; Bu, Cheng

and Hadri, 2017), in which case the drift has linear or zero mean-reversion in the middle part and

much stronger mean-reversion for large and small values of X. Meanwhile, the CEV di¤usion term

is also consistent with most empirical �ndings of the shape of the di¤usion term. It follows that

since (2.10) is one of the most �exible parametric di¤usions, di¤usion processes that are unspeci�ed

transformations of (2.10) should represent a very �exible class of di¤usion models. Similar to (2.9),

the implied copula of the NLDCEV is most likely unestablished in the copula literature.

Examples 1-2 are attractive from a computational standpoint since the corresponding transition

densities are available on closed-form thereby facilitating their implementation. But this comes at

the cost of the dynamics being somewhat simple. The NLDCEV model implies more complex
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and richer dynamics but on the other hand its transition density is not available on closed form.

However, the marginal pdf of the NLDCEV process, as well as more general speci�cations, can be

evaluated in closed form by (2.4). Moreover, closed-from approximations of the transition density of

the NLDCEV model developed by, for example, Aït-Sahalia (2002) and Li (2013) can be employed.

Alternatively, simulated versions of the transition density can be computed using the techniques

developed in, for example, Kristensen and Shin (2012) and Bladt and Sørensen (2014). In either

case, an approximate version of the exact likelihood can be easily computed, thereby allowing for

simple estimation of even quite complex underlying UPDs.

2.3 Related Literature

As already noted in the introduction, our modelling framework is related to the class of so-called

discrete-time copula-based Markov models; see, for example, Chen and Fan (2006) and references

therein. To map the notation and ideas of this literature into our continuous-time setting, we set

the sampling time distance � = 1 in the remaining part of this section. Now, in this literature, a

given discrete-time, stationary scalar Markov process Y = fYi : i = 0; 1; : : : ; ng is modelled through
a bivariate parametric copula, say, cX (u0; u; �), together with its stationary marginal cdf FY , i.e.,

pY (yjy0; �; FY ) = fY (y) cX (FY (y0) ; FY (y) ; �) ; (2.11)

where fY (y) = F 0Y (y). An alternative representation of this model is

Yi = F�1Y (Xi) ; Xi+1jXi = x0 � cX (x0; �; �) ;

so that Yi is a transformation of an underlying Markov process Xi 2 [0; 1] with a uniform marginal

distribution and transition density c (x0; x; �). Thus, if cX (x0; x; �) is induced by an underlying

Markov di¤usion transition density, the corresponding copula-based Markov model falls within our

framework. Reversely, consider a given parametric speci�cation of our continuous-time UPD and

suppose that X is stationary with marginal cdf FX (x; �). In this case, we obtain the following link

between the invariant marginal cdf of Y , FY (y), and the transformation function can be expressed

as

FY (y) = FX (U (y) ; �), U (y) = F�1X (FY (y) ; �) : (2.12)

That is, given knowledge of the parametric di¤usion X, we can recover U from the marginal cdf

of Y . Substituting (2.12) into (2.7), we see that pY can be expressed in the form of (2.11) where

cX (u0; u; �) is the density function of the (dynamic) copula1 implied by the discretely sampled

UPD X,

cX (u0; u; �) =
pX
�
F�1X (u; �) jF�1X (u0; �) ; �

�
fX
�
F�1X (u; �) ; �

� : (2.13)

1The copula CX (u0; u1; �) for the discretely sampled UPD is de�ned as

CX (u0; u1; �) = Pr
�
X0 � F�1X (u0; �) ; X1 � F�1X (u1; �)

�
:

The corresponding copula density is then given by cX (u0; u1; �) = @2CX (u0; u1; �) = (@u0@u1).
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Thus, our semiparametric class of di¤usion models falls within the framework of copula-based

Markov models.

However, the literature on copula-based Markov models focus on discrete-time models with

standard copula speci�cations derived from bivariate distributions in an i.i.d. setting. Using copulas

that are originally derived in an i.i.d. setting complicates the interpretation of the dynamics of the

resulting Markov model, and conditions for the model to be mixing, for example, can be quite

complicated to derive; see, e.g., Beare (2010) and Chen, Wu and Yi (2009). This also implies that

very few standard copulas can be interpreted as di¤usion processes; to our knowledge, the only one

is the Gaussian copula which corresponds to the OU process in Example 1.

In contrast, we here directly generate copulas through an underlying continuous-time di¤usion

model for X. This resolves the aforementioned drawbacks of existing copula-based Markov models:

First, we are able to generate highly �exible copulas so far not considered in the literature, while

at the same time we are able to derive precise conditions under which the parameters of the copula

are identi�ed from the data. Second, given that our copulas are induced by specifying the drift and

di¤usion functions of X, the time series dependence structure is much more easily inferred from

our model. Third, the resulting model can be interpreted in a continuous-time context and so for

asset pricing applications existing results for continuous-time models can be employed. Finally,

some of our identi�cation results will not require stationarity and so expands the scope for using

copula-type models in time series analysis.

Our modelling strategy is also related to the ideas of Aït-Sahalia (1996a) and Kristensen (2010,

2011) where FY is left unspeci�ed while either the drift, �Y , or the di¤usion term, �
2
Y , is speci�ed

parametrically. As an example, consider the former case where �2Y (y; �) is known up to the pa-

rameter �. Given knowledge of the marginal density fY (or a nonparametric estimator of it), the

di¤usion term can then be recovered as a functional of fY and �Y as

�Y (y; fY ; �) =
1

2fY (y)

@

@y

�
�2Y (y; �) fY (y)

�
:

From this expression, we see that fY a¤ects the resulting dynamics of Y .

3 Identi�cation

Suppose that a particular parametric di¤usion X written as in (2.2) (e.g., OU, CIR, NLDCEV) has

been chosen. Given a discrete sample of Y , Yi�, i = 0; 1; :::; n, we then wish to estimate � together

with V . To this end, we �rst have to show that these are actually identi�ed from data.

Formally, recall that S = (�; V ) and let the model consist of all the structures that satisfy, as a
minimum, Assumptions 2.1(i)�(ii) and 2.2. According to (2.7), each structure implies a conditional

density pY (yjy0;S) of the observables. We shall say that two structures S = (�; V ) and ~S = (~�; ~V )
are observationally equivalent, a property which we denote by S � ~S, if they imply the same
conditional distribution of the observables, i.e. if for almost every (y; y0) we have

pY (yjy0;S) = pY (yjy0; ~S):
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The structure S is said to be identi�ed within the model if S � ~S implies S = ~S. In terms of
the copula induced by the UPD as given in eq. (2.13), S is identi�ed if cX (u0; u; �) identi�es

�. That is, cX (u0; u; �) = cX(u0; u; ~�) for almost every (u0; u) if and only if ~� 6= �. However, in

our setting, cX is a complicated functional of pX and FX and without suitable normalizations, the

identi�cation condition in terms of cX will generally not be satis�ed. To see this, let X be the data-

generating UPD with transition density pX (xjx0; �), and suppose that there exists an increasing
transformation T (x) so that ~X = T (X) has transition density pX(xjx0; ~�) for some ~�. Then S � ~S
where ~S = (~�; ~V ) with ~V (~x) = V

�
T�1 (~x)

�
. To illustrate this issue, let us return to Example 1:

Example 1 (continued). The UPD X is here characterized by � = (�; �; �). By Ito�s Lemma,

for any a 2 R and b > 0, ~X = a+ bX is also an OU process on the form

d ~Xt = b� (��Xt) dt+ b�dWt = � (b�+ a� (a+ bXt)) dt+ b�dWt = �(~�� ~Xt)dt+ ~�dWt;

where ~� = b� + a and ~� = b�. Thus, S � ~S where ~S = (~�; ~V ) with ~� = (~�; �; ~�) and ~V (~x) =

V ((~x� a) =b), and so we can only identify � while we have to �x � and �. This can also be seen in
terms of the implied copula of the OU model: cX is a Gaussian copula density which only depends

on the parameter �.

In the above example, determining which parameters that are identi�ed from the dynamic

copula is easy since the joint distribution of (X�; X0) and their stationary marginal distribution

were known on closed form. However, in general, the marginal distributions of stationary Markov

chains are not available on closed form. This in turn implies that the dynamic copula is not

available on closed form and it is not obvious which parameters are identi�ed. We believe this is a

big part of the reason for the fact that in the existing literature on copula-based Markov models in

discrete time, copulas have been imported from the existing literature on modelling cross-sectional

dependence.

Identi�cation of di¤usion copula models is facilitated by three particular features of di¤usion

processes: First, the stationary distributions of Markov di¤usion processes are available on closed

form, c.f. eq. (2.4). Second, the process Y is itself a Markov di¤usion process with its drift and

di¤usion terms satisfying eqs. (2.5)-(2.6). Third, under regularity conditions, the drift and di¤usion

terms of a discretely sampled process are nonparametrically identi�ed (c.f. Hansen et al., 1998).

The last property entails that, given observations of Y , we can treat �Y and �
2
Y as known in our

identi�cation argument.

These three properties will in the following be used to develop three di¤erent identi�cation

schemes: In the �rst one, we propose to �x the stationary distribution fX so it is known, and

choose a parametric form for either �X or �2X . In the second one, we �x the di¤usion function

�2X so it is known and choose a parametric form for �X (x). Finally, one can alternatively �x the

drift function �X to be zero and choose a parametric form for �2X (x). In each of the three cases,

easy-to-verify conditions for identi�cation can be derived. We analyze each scheme in turn in the

following three subsections and show how they can be applied to standard UPDs as presented in
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Examples 1-3. In particular, we demonstrate how any UPD, where both the drift and di¤usion

terms are speci�ed up to unknown parameters, can via transformations be brought onto a form

that satis�es each of the three identi�cation schemes. Moreover, the second and third identi�cation

schemes work without imposing stationarity since the normalization does not involve any stationary

distribution. This is in contrast to the existing literature on copula-based Markov models.

We wish to keep the analysis at a general level and provide formal identi�cation results for gen-

eral UPDs, not just speci�c models, thereby allowing for added �exibility in choosing the underlying

di¤usion model. We will therefore work under the following somewhat abstract identi�cation con-

dition:

Assumption 3.1 The drift, �Y , and the di¤usion, �2Y , are nonparametrically identi�ed from the

discretely sampled process Y .

This assumption is similar in spirit to existing papers on non- and semiparametric identi�cation

where it is routinely assumed that certain characteristics of the distribution of the observed process

are nonparametrically identi�ed from data. However, the above assumption is not completely

innocuous and does impose some additional regularity conditions on the Data Generating Process

(DGP). Below, we therefore provide primitive conditions for this assumption to hold.

The �rst set of primitive conditions can be found in Hansen et al. (1998) who showed that �Y
and �2Y are identi�ed from the discretely sampled process if Y is stationary and its in�nitesimal

operator has a discrete spectrum. Due to Theorem 2.1(4), we know that the spectrum of Y can be

recovered from the one of X. In particular, if X is stationary with a discrete spectrum, then Y will

have the same properties. Since the dynamics ofX is known to us, the properties of its spectrum are

in principle known to us and so this condition can be veri�ed a priori. The second set of primitive

conditions come from Bandi and Phillips (2003): They show that as � ! 0 and n� ! 1, the
drift and di¤usion functions of a recurrent Markov di¤usion process are identi�ed. This last result

holds without stationarity, but on the other hand requires high-frequency observations.

In order to formally state the above two results, we need some additional notation. Recall that

the in�nitesimal operator, denoted LX , of a given UPD X is de�ned as

LX;�g (x) := �X (x; �) g
0 (x) +

1

2
�2X (x; �) g

00 (x) ;

for any twice di¤erentiable function g (x). We follow Hansen et al. (1998) and restrict the domain

of LX to the following set of functions:

D (LX;�) =
�
g 2 L2 (fX) : g0 is a.c., LX;�g 2 L2 (fX) and lim

x#xl

g0 (x)

s (x)
= lim
x"xu

g0 (x)

s (x)
= 0

�
:

where a.c. stands for absolutely continuous. The spectrum of LX;� is then the set of solution pairs

('; �), with ' 2 D (LX;�) and � � 0, to the following eigenvalue problem, LX;�' = ��'. We
refer to Hansen et al. (1998) and Kessler and Sørensen (1999) for a further discussion and results

regarding the spectrum of LX . The following result then holds:
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Theorem 3.1 Suppose that Assumption 2.1(i)-(ii) is satis�ed. Then Assumption 3.1 holds under
either of the following two sets of conditions:

1. Assumption 2.1(iii) hold and LX;� has a discrete spectrum where � is the data-generating

parameter value.

2. �! 0 and n�!1.

Importantly, the above result shows that Assumption 3.1 can be veri�ed without imposing

stationarity. Unfortunately, this requires high-frequency information (� ! 0). To our knowledge,

there exists no results for low-frequency (� > 0 �xed) identi�cation of the drift and di¤usion terms

of scalar di¤usion processes under non-stationarity. But by inspection of the arguments of Hansen

et al. (1998) one can verify that at least the di¤usion component is nonparametrically identi�ed

from low-frequency information without stationarity.

3.1 First Identi�cation Scheme

As noted earlier, in the literature on estimation of discrete-time copula-based Markov models,

identi�cation is resolved by normalizing the underlying process X so that its stationary marginal

distribution is uniform. We here generalize this idea and start out with a chosen marginal density

fX . Given this density, we show how to generate two classes of UPD that are stationary with

marginal distribution fX , in which case identi�cation of the remaining parameters is guaranteed.

While this normalization is di¢ cult to impose in a discrete-time setting, it is straightforward to do

so when X is a di¤usion due to eq. (2.4) that ties together fX , �X and �2X . Speci�cally, one can

choose a known (�xed) density fX (x) that describes the stationary distribution of X together with

a parametric speci�cation for either the drift or the di¤usion function. We can then rearrange eq.

(2.4) to back out the remaining term:

�X (x; �) =
1

2fX (x)

@

@x

�
�2X (x; �) fX (x)

�
; or (3.1)

�2X (x; �) =
2

fX (x)

Z x

xl

�X (z; �) fX (z) dz: (3.2)

In the case where the researcher has a UPD speci�ed in terms of a parametric drift term �X (x; �)

and di¤usion term �2X (x; �) in mind, one could here choose fX (x) = fX(x; ��) for some �� 2 �
chosen by the researcher.

Whether one generates the model through eq. (3.1) or (3.2), the resulting UPD is guaranteed

to have stationary density fX (x) and the parameters entering the parametric di¤usion (drift) term

are identi�ed under the following weak conditions:

Assumption 3.2 (i) The marginal density fX (x) is known (and so does not depend on �) and
three times di¤erentiable; (ii) either the drift and the di¤usion function of the UPD is speci�ed

parametrically while the remaining term satis�es eq. (3.1) or (3.2), respectively, so that

Assumption 2.1(i)-(ii) are satis�ed; (iii) there exists no ~� 6= � such that �X(x; ~�) = �X (x; �)

or �2X(x; ~�) = �2X (x; �) for all x 2 X .
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Assumption 3.2 implicitly imposes enough smoothness conditions on fX so that the implied drift

or di¤usion term, as given by eq. (3.1) or (3.2), respectively, satis�es the smoothness conditions

in Assumption 2.1 and the implied di¤usion process X is stationary and ergodic. Moreover, it

requires the implied drift and di¤usion terms to be parameterized so that � can be identi�ed from

observations of X. The following theorem shows that � is in fact identi�ed together with V from

discretely observed Y :

Theorem 3.2 Under Assumptions 2.1-2.2 and 3.1-3.2, S is identi�ed.

Example 1 (continued). The OU model has discrete spectrum (see Kessler and Sørensen, 1999).
If we choose fX (x) as the standard normal distribution and the drift as �X (x; �) = ��x, the
OU model with �2X (x; �) = 2� is then obtained from eq. (3.2). Alternatively, with fX (x) as the

standard normal distribution and choosing �2X (x; �) = 2� leads to �X (x; �) = ��x as the solution
to eq. (3.1). In both cases � = � is identi�ed together with the transformation function V by

Theorem 3.2.

Example 2 (continued). The CIR model has discrete spectrum (see Kessler and Sørensen, 1999).
Now, choosing fX (x) as the standard Gamma distribution with a �xed shape parameter � and

choosing �2X (x; �) = 2�x leads to �X (x; �) = � (�� x) as the solution to eq. (3.1). Reversely,
we can �rst choose �X (x; �) = � (�� x) then eq. (3.2) delivers �2X (x; �) = 2�x. In either case,

Assumption 3.2 is satis�ed and identi�cation of � = (�; �) and V is ensured.

In Example 1, with fX chosen as the standard normal, it is important to note that ��x is the
only choice of �X (x; �) such that the di¤usion X with �2X (x; �) satisfying eq. (3.2) is a OU process.

For any drift other than ��x, the resulting di¤usion function will not be constant and so X will

not be an OU process. But X still has the standard normal marginal distribution by construction

and the identi�cation result remains true as long as the chosen drift �X (x; �) satis�es Assumption

3.2(iii).

3.2 Second identi�cation scheme

Our second identi�cation strategy takes as starting point a �xed (and so parameter independent)

di¤usion function, �2X (x), together with a parametric drift function, �X (x; �). Again, if the re-

searcher initially has a parametric UPD in mind where both the drift and di¤usion terms are

parametric, the second identi�cation scheme would seem to require that all parameters in the

di¤usion term are �xed. However, this can be circumvented in the following way:

Let �X (x; �) and �
2
X (x; �) be a given speci�cation of the UPD X: We then apply the so-called

Lamperti transform of univariate di¤usion processes to X,

�Xt :=  (Xt; �) ;  (x; �) =

Z x

x�

1

�X (z; �)
dz;
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for some x� 2 X . Here,  (x; �) is the Lamperti transform. The resulting process is a unit di¤usion
process,

d �Xt = � �X
�
�Xt; �

�
dt+ dWt;

where

� �X (�x; �) =
�X
�
�1 (�x; �) ; �

�
�X (�1 (�x; �) ; �)

� 1
2

@�X
@x

�
�1 (�x; �) ; �

�
: (3.3)

In particular, after transformation, any given UPD where both the drift and di¤usion terms are

parameterized, can be written on the form of the second identi�cation scheme. Also note that since
�X is a invertible transformation of X, the dynamic properties of the two processes are identical.

Thus, working with �X or X as UPD will not make a di¤erence in our modelling framework.

For a given UPD with parametric drift and known di¤usion term, we then impose either of the

following two restrictions:

Assumption 3.3. Either of the following hold: (i) The di¤usion term �2X (x) is �xed (known)

and there exists no ~� 6= � such that �X(x; ~�) = �X (x; �) for all x 2 X , and for some
known x0 2 X and y0 2 Y, U (y0) = x0; or (ii) there exists no � 6= 0 and ~� 6= � such that

� �X(x;
~�) = � �X (x+ �; �) for all x 2 �X .

Assumption 3.3 contains two alternative identi�cation conditions: Condition (i) imposes a nor-

malization condition on U (y) and then requires the drift function to be speci�ed in such a way

that two di¤erent parameter values do not lead to the same drift function. The second identi�-

cation condition imposes the normalization and identi�cation condition on the transformed drift

function. When verifying Assumption 3.3(ii) for the transformed unit di¤usion �X de�ned above,

it will generally require us to �x some of the parameters that enter �X (x; �) and �
2
X (x; �) of the

original process X, c.f. examples below.

Theorem 3.3 Under Assumptions 2.1-2.2, 3.1 and 3.3, S is identi�ed.

Example 1 (continued). The Lamperti transform of the OU process in (2.8) is given by

d �Xt = �
�
�=� � �Xt

�
dt+ dWt:

Since �=� is a location shift of �X, we need to normalize �=� in order for the identi�cation condition

3.3(ii) to be satis�ed; one such is �=� = 0 leading to the following identi�ed model,

d �Xt = �� �Xtdt+ dWt: (3.4)

Example 2 (continued). The Lamperti transform of the CIR di¤usion in (2.9) is given by

d �Xt =

�
�

�
2
�Xt

�

�2
�
�Xt
2

�
� 1

2 �Xt

�
dt+ dWt; (3.5)
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which only depends on � = (�; ��) where �� = �=�2. Note that the dimension of the parameter

vector reduced from 3 to 2. Crucially, it also suggests that we can only identify � and �2 up to a

ratio. Hence, normalization requires �xing either �, �2, or their ratio.

Example 3 (continued). It can be easily veri�ed that the Lamperti transform of the NLDCEV

di¤usion in (2.10) takes the form

d �Xt =

"
lX

i=�k
��i �X

i��
1��
t � �

2 (1� �)
�X�1
t

#
dt+ dWt; (3.6)

where ��i := �i�
i�1
1�� (1� �)

i��
1�� , i = �k; :::; l. Hence, the parameters � =

�
�; ���k; :::; �

�
�l
�
are

identi�ed and the number of parameters is reduced from l + k + 3 to l + k + 2. Note that just

as (2.8) and (2.9) are special cases of (2.10), both (3.4) and (3.5) are special cases of (3.6) with

suitable parameter restrictions.

3.3 Third identi�cation scheme

Our �nal identi�cation strategy takes as input a parameter independent drift function, �X (x),

together with a parametric di¤usion function, �2X (x; �). Similar to our second scheme, if the

initial UPD involves parametric speci�cations of both components, we can arrive at this situation

through transformation: For given �X (x; �) and �
2
X (x; �) we transform X by its scale measure,

�Xt := S (Xt; �), which brings the di¤usion process onto its natural scale,

d �Xt = � �X
�
�Xt; �

�
dWt;

where the drift is zero (and so known) while

�2�X (�x; �) = s2
�
S�1 (�x; �) ; �

�
�2
�
S�1 (�x; �) ; �

�
: (3.7)

We impose the following standard identifying assumption on the UPD (where in case of the

model �rst having been scale-transformed, the assumption should be applied to the di¤usion term

given in eq. (3.7)):

Assumption 3.4. The drift term �X (x) = 0 and one of the two following conditions hold: Either

(i) there exists no ~� 6= � such that �2X(x; ~�) = �2X (x; �) for all x 2 X , while U (y0) = x0 and

U 0 (y1) = x1 for known y0; y1 2 Y and x0; x1 2 X ; or (ii) there exists no �1 6= 1, �2 6= 0 and
~� 6= � such that �2X(x; ~�) = �2X (�1x+ �2; �) =�

2
1 for all x 2 X .

In comparison to Assumption 3.3, we note two important di¤erences: First, while Assumption

3.3 only restricts the di¤usion term to be �xed (but potentially non-constant), we here restrict �X to

be zero. Fortunately, as pointed out above, any UPD with non-zero drift can be easily transformed

into a di¤usion with zero drift and so this issue is minor. Second, note that we here have to impose

15



two normalizations to ensure identi�cation. The intuition for this is that setting the drift to zero

does not act as a normalization of the process. That is, any location-scale transformation of X still

leads to a zero-drift. Therefore, for the third scheme to work we need both a scale and location

normalization.

Theorem 3.4 Under Assumptions 2.1-2.2, 3.1 and 3.4, S is identi�ed.

4 Statistical Inference

4.1 Estimation

Suppose that we have speci�ed a UPD X so that the parameter vector � is identi�ed by, for

example, using any of the three identi�cation schemes presented in the previous section. We then

propose two alternative semiparametric estimators for �. The �rst takes the form of a two-step

Pseudo Maximum Likelihood Estimator (PMLE). The second is a semiparametric sieve-based ML

estimator (SMLE), where � and V are jointly estimated. To motivate the two estimators, suppose

that U is known, in which case the MLE of � is given by

�̂MLE = argmax
�2�

Ln (�; U) ;

where Ln (�; U) is the log-likelihood of fYi� : i = 0; 1; :::; ng,

Ln (�; U) =
nX
i=1

�
log pX

�
U (Yi�) jU

�
Y(i�1)�

�
; �
�
+ logU 0 (Yi�)

	
: (4.1)

If U is unknown, the above estimator is not feasible and we instead have to estimate it together

with �.

The PMLE relies on Y being stationary in which case U satis�es U (y) = F�1X (FY (y) ; �). The

unknown cdf FY can be estimated by the empirical cdf de�ned as

~FY (y) =
1

n+ 1

nX
i=1

I fYi� � yg ;

where I f�g denotes the indicator function. One could alternatively use the following kernel smoothed
empirical cdf,

F̂Y (y) =
1

n

nX
i=1

Kh (Yi� � y) ;

where Kh (y) = K (y=h) with K (y) =
R y
�1K (z) dz, K being a kernel (e.g., the standard normal

density), and h > 0 being a bandwidth going to zero at a certain rate as n!1. Replacing FY in
the expression of U with either ~FY or F̂Y , we obtain the following two estimators of U ,

~U (y; �) = F�1X ( ~FY (y) ; �); Û (y; �) = F�1X (F̂Y (y) ; �):
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Since F̂Y (y) = ~FY (y) + O
�
h2
�
, the above two estimators of U will be �rst-order asymptotically

equivalent under appropriate bandwidth conditions. A natural way to estimate � in our semipara-

metric framework would then be to substitute Û (y; �) or ~U (y; �) into Ln (�; U). However, in the

latter case, this is not possible since Ln (�; U) depends on U 0 and ~U is not di¤erentiable. However,

note that

U 0 (y) =
fY (y)

fX (U (y) ; �)
; (4.2)

so that logU 0 (y) = log fY (y)� log fX (U (y) ; �). Since the �rst term is parameter independent, it

can be ignored and so we arrive at the following semiparametric PMLE,

�̂PMLE = argmax
�2�

�Ln(�; ~U);

where � is the parameter space and

�Ln (�; U) =
nX
i=1

�
log pX

�
U (Yi�) jU

�
Y(i�1)�

�
; �
�
� log fX (U (Yi�) ; �)

	
is an adjusted version of the log-likelihood function Ln (�; U) where we have subtracted the parameter-

invariant term
Pn
i=1 log fY (Yi�). One can easily check, by rewriting the above in terms of the

implied copula of X, that this estimator is equivalent to the one analyzed in Chen and Fan (2006).

For added transparency, we here, however, maintain the above expression since in our framework

the model is formulated in terms of the transition density of X and the transformation U .

The second estimator replaces the inverse of the unknown transformation function, U (y) by

a sieve approximation Um (y) 2 Um where Um is a �nite-dimensional function space re�ecting the

properties of U , m = 1; 2; :::. We here require, as a minimum, that Um is restricted to di¤erentiable
and strictly increasing functions. For a given choice of Um, we obtain the following semiparametric
sieve maximum-likelihood estimator,

(�̂SMLE; Ûm) = arg max
�2�;Um2Um

Ln (�; Um) :

The above SMLE shares similarities with the one proposed by Chen, Wu and Yi (2009) for the

estimation of copula-based Markov models. However, while they estimate � and FY , we here

estimate � and U . Under stationarity, there is a one-to-one correspondence between U and FY ,

but note that this involves evaluating F�1X (x; �) which in general is not available on closed form

in our setting: The cdf for general di¤usion models is itself not available on closed-form and its

evaluation involves numerical integration or Monte Carlo methods. This in turn also implies that

its inverse has to be computed using numerical methods. By reparameterizing the model in terms

of U , we avoid these issues. Moreover, the above SMLE does not require Y to be stationary and

so broadens the scope for modelling and estimation of copula-type dynamic models. On the other

hand, again in comparison with the PMLE, the numerical implementation of this SMLE involves

joint maximization over both � and UM , which is a harder numerical problem. In terms of statistical

e¢ ciency, �̂SMLE will in general reach the semiparametric e¢ ciency bound under stationarity, while

the PMLE is ine¢ cient.
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Once an estimator for � has been obtained, we can estimate the drift and di¤usion terms

of Y using the expressions given in (2.5) and (2.6) by replacing � and U with their estimators.

However, this involves estimating the �rst and second derivative of U . For the SMLE this is not an

issue assuming that Um is restricted to twice continuously di¤erentiable functions. For the PMLE,
estimating these derivatives take some more work: The �rst derivative is given in eq. (4.2) while

the second one is given by

U 00 (y) =
f 0Y (y)

fX (U (y) ; �)
� f 0X (U (y) ; �) fY (y)

2

fX (U (y) ; �)
3 ; (4.3)

where f 0X (x; �) and f
0
Y (y) are the �rst derivatives of fX (x; �) and fY (y), respectively. Since ~FY (y)

is not di¤erentiable, we replace this with F̂Y (y), leading to the following three-step estimators of

the drift and di¤usion functions

�̂Y (y) =
�X(Û (y) ; �̂PMLE)

Û 0 (y)
� 1
2
�2X(Û (y) ; �̂PMLE)

Û 00 (y)

Û 0 (y)3
; (4.4)

�̂2Y (y) =
�2X(Û (y) ; �̂PMLE)

Û 0 (y)2
; (4.5)

where Û (y) = F�1X (F̂Y (y) ; �̂PMLE).

4.2 Asymptotic Theory

4.2.1 Estimation of Parametric Component

We here establish an asymptotic theory for the proposed estimators. In the theoretical analysis we

shall work under the following high-level identi�cation condition:

Assumption 4.1 S0 is identi�ed.

The previous section provided three di¤erent sets of primitive conditions for this assumption to

hold. Instead of referring to these di¤erent sets of conditions, we simply maintain Assumption 4.1

to save space in the following. One implication of Assumption 4.1 is that pY (yjy0;S) 6= pY (yjy0;S0)
which in turn implies that E [log pY (Y�jY0;S)] < E [log pY (Y�jY0;S0)] for any S 6= S0, c.f. Newey
and McFadden (1994, Lemma 2.2). This ensures that the SMLE identi�es S0 in the limit. Regarding
the PMLE, we note that it replaces U by Û (y; �) = F�1X (F̂Y (y; �)). By the LLN of stationary and

ergodic sequences, Û (y; �)!P U (y; �) = F�1X (FY (y; �)), where, by the same arguments as before,

E [log pY (Y�jY0; �; U (�; �))] < E [log pY (Y�jY0; �0; U (�; �0))]. Thus, the PMLE will also in the limit
identify �0.

Next, we import conditions from Chen et al. (2010) guaranteeing, in conjunction with our own

Assumptions 2.1-2.2, that the UPD X, and thereby Y , is stationary and �-mixing with mixing

coe¢ cients decaying at either polynomial rate (c.f. Corollary 5.5 in Chen et al., 2010) or geometric

rate (c.f. Corollary 4.2 in Chen et al., 2010):
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Assumption 4.2. (i) �X and �2X satis�es

lim
x!xr

�
�X (x; �0)

�X (x; �0)
� 1
2

@�X (x; �0)

@x

�
� 0; lim

x!xu

�
�X (x; �0)

�X (x; �0)
� 1
2

@�X (x; �0)

@x

�
� 0;

(ii) With s (x; �) and S (x; �) de�ned in (2.3),

lim
x!xr

�
s (x; �0)�X (x; �0)

S (x; �0)

�
> 0; lim

x!xu

�
s (x; �0)�X (x; �0)

S (x; �0)

�
< 0;

Assumption 4.2(ii) is a strengthening of Assumption 4.2(i). For the analysis of the PMLE,

Assumption 4.2(i) su¢ ces while we need the stronger Assumption 4.2(ii) to establish an asymptotic

theory for the SMLE. As we mentioned before, it is not always straightforward to verify the required

mixing conditions for copula-based (discrete-time) Markov models such as Chen and Fan (2006)

and Chen, Wu and Yi (2009). In contrast, either sets of conditions stated in Assumption 4.2 can

be easily veri�ed by directly examining the drift and di¤usion functions of the UPD X.

Finally, we impose the same conditions as used in the asymptotic analysis of the PMLE in Chen

and Fan (2006) and Chen, Wu and Yi (2009), respectively, on the copula implied by the chosen

UPD and the sieve density in the case of SMLE:

Assumption 4.3. (i) cX (u0; u; �) de�ned in (2.13) satis�es the regularity conditions set out in
Chen and Fan (2006, A1-A3, A4 or A4�, A5-A6); (ii) cX (u0; u; �) satis�es Assumptions 3.1-

3.4 in Chen, Wu and Yi (2009), and the sieve space Um satis�es Assumptions 4.1-4.7 in Chen,
Wu and Yi (2009).

We here abstain the precise conditions and refer the interested reader to Chen and Fan (2006)

and Chen, Wu and Yi (2009); broadly speaking their conditions translate into moment bounds and

smoothness conditions on the log-transition density of the UPD. These conditions depend on the

precise choice of the UPD and so will have to be veri�ed on a case-by-case basis. One can show

that the OU and the CIR models, for example, satisfy these conditions. The following result now

follows from the general theory of Chen and Fan (2006) and Chen, Wu and Yi (2009), respectively:

Theorem 4.1 Under Assumptions 2.1-2.2, 4.1, 4.2(i) and 4.3(i),
p
n(�̂PMLE � �0)!d N

�
0; B�1�B�1

�
;

where B and � are de�ned in Chen and Fan (2006, A1 and A�n).

Under Assumptions 2.1-2.2, 4.1, 4.2(ii) and 4.3(ii),

p
n(�̂SMLE � �0)!d N

�
0; I�1� (�)

�
;

where I� is the second moment of the e¢ cient score function for  de�ned in Chen, Wu and Yi
(2009).
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4.2.2 Estimation of Drift and Di¤usion Functions

Once the transformation function V has been estimated together with the UPD parameters, we may

estimate the drift and di¤usion terms of Y , �Y and �
2
Y . These estimates provide the researchers

with a better understanding of the dynamic properties of Y such as the level of mean-reversion

and volatility. They can furthermore be used for speci�cation testing along the lines of Kristensen

(2011). We here focus on the kernel-based estimators of �Y and �
2
Y given in eqs. (4.4)-(4.5) and

impose the following regularity conditions on the estimator of the parametric component and the

kernel function:

Assumption 4.4. The transformation function V is four times continuously di¤erentiable.

Assumption 4.5. The estimator �̂ of the parameter of the UPD X is
p
n-consistent.

Assumption 4.6. The kernel K is di¤erentiable, and there exists constants D;! > 0 such that���K(i) (z)
��� � D jzj�! ;

���K(i) (z)�K(i) (~z)
��� � D jz � ~zj ; i = 0; 1;

whereK(i) (z) denotes the ith derivative ofK (z). Moreover,
R
RK (z) dz = 1,

R
R zK (z) dz = 0

and �2 =
R
R z

2K (z) dz <1.

Assumption 4.4 ensures the existence of the 3rd and 4th derivatives of U (y), which in turn ensure

that relevant quantities entering the asymptotic distributions of our functional estimators of �Y and

�2Y are well de�ned. Assumption 4.5 ensures that the estimator of the UPD parameter converges

to the truth su¢ ciently fast, so that the asymptotic properties of �̂Y and �̂
2
Y are determined by

the properties of the kernel estimators. Clearly, this implies that our asymptotic results will be

applicable to not only the PMLE and the SMLE derived above but also to any other
p
n-consistent

estimators. Assumption 4.6 regulates the kernel functions and allow for most standard kernels such

as the Gaussian and the Uniform kernels. We are now able to state pointwise convergence results

for our kernel-based estimators of �Y and �
2
Y using the standard functional delta-method for kernel

estimators.

Theorem 4.2 Under Assumptions 2.1-2.2, 4.2(i), and 4.4-4.6, we have as n ! 1, h ! 0 and

nh3 !1, p
nh3

�
�̂Y (y)� �Y (y)�B�Y (y)

	
!d N

�
0; V�Y (y)

�
;

where

B�Y (y) = �
h2�2�

2
Y (y) f

000
Y (y)

4fY (y)
; V�Y (y) =

�4Y (y)

4fY (y)

Z
R
K 0 (z)2 dz:

Also, as n!1, h! 0 and nh!1, we have
p
nhf�̂2Y (y)� �2Y (y)�B�2Y (y)g !

d N (0; V�2 (y)) ;
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where

B�2Y
(y) = �h

2�2�
2
Y (y) f

00
Y (y)

fY (y)
; V�2Y

(y) =
4�4Y (y)

fY (y)

Z
R
K (z)2 dz:

The above theorem is based on the standard results for kernel density estimators as found in

Robinson (1983) which requires Y to be stationary and strongly mixing with a su¢ ciently smooth

marginal density fY . Assumption 2.1-2.2 and 4.2(i) guarantee that these are satis�ed.

4.3 Speci�cation Testing

Our semiparametric di¤usion model relaxes some restrictions imposed by a fully parametric di¤u-

sion model, but it still imposes parametric restrictions on the UPD or equivalently on the dynamic

copula implied by the UPD. From an empirical modelling point of view, it would be desirable to be

able to test the semiparametric speci�cation against the nonparametric alternative using discrete

sample. Assuming that Y is Markovian and we are interested in testing whether its dynamics is

described by a given UPD, we are e¤ectively jointly testing the assumption that (i) Y is a di¤u-

sion process (which can be pretested using the tests developed in Florens et al., 1998 and Kanaya,

2008) and (ii) the UPD X in terms of its implied copula is correctly speci�ed. Two classes of

semiparametric speci�cation tests may be considered for our model:

The �rst class of tests are often referred to as the transition-based speci�cation tests. This

class of tests compare the distance between the semiparametric estimator of the transition density

or transition distribution under the null with the corresponding fully nonparametric estimator

under the alternative. Typically, either the Kolmogorov-Smirnov type or Cramér-Von Mises test is

entertained. The test will reject the null hypothesis if the sample statistic is too large compared

to the critical value implied by the limiting distribution of the test statistic. Transition-based

speci�cation tests include Hong and Li (2005), Aït-Sahalia et al. (2009), Kristensen (2010, 2011),

etc. Interested readers are referred to these papers for more detailed discussions on this subject.

The second class of tests focus more speci�cally on the underlying parametric copula of the

semiparametric model. Under the maintained assumption that the process is Markovian and its

marginal distribution is estimated nonparametrically, the main task is to test whether the para-

metric copula function is correctly speci�ed. Consequently, our semiparametric speci�cation test

is closely related to the goodness-of-�t tests for parametric copulas. This type of tests usually

examine the distance between the estimator of the parametric copula function and the nonpara-

metric empirical copula for a given sample. Similar to the transition-based tests, both the sup-type

and the L2-type distance measures are often considered. However, since the majority of such test

statistics are non-pivotal, their critical values typically need to be simulated from computationally

intensive bootstrap procedures. Interested readers can refer to Fermanian (2005) and Genest and

Rémillard (2008) for excellent surveys on existing literature.
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5 Triangular Models

We here extend the modelling framework to a multivariate setting with a triangular structure. For

simplicity, we here focus on the bivariate case, but all arguments can be generalized.

Consider a bivariate process (St; Yt) where the �rst component St, can be thought of as the

log-price of an asset and Yt as the stochastic volatility process. Suppose that the �rst component

solves a fully parametric SDE,

dSt = �S (St; Yt; �S) dt+ �S (St;Yt; �S) dWS;t

where the drift and di¤usion terms potentially depend on both components. The second component,

Yt, is modelled semiparametrically on the form of eqs. (2.1)-(2.2). The two Brownian motions,WS;t

and Wt, may be correlated, thereby capturing leverage e¤ects, and let � = cov (dWS;t; dWt) denote

the correlation coe¢ cient. A particular example falling within the above general framework is the

following:

dSt = �dt+
p
YtdWS;t;

where Yt is the stochastic volatility process assumed to follow our semiparametric di¤usion process.

As such, the bivariate model depends on (�; �; �; V ), where (�; V ) is the structure of the semipara-

metric di¤usion model de�ned in the Section 2. We here follow Aït-Sahalia and Kimmel (2007)

and assume that a proxy for the volatility process is observed.

Given a sample of (St; Yt) at discrete time points, identi�cation of this bivariate model follows

straightforwardly from our univariate results: First, given the triangular structure, we can identify

the parameters entering the UPD for Y and the transformation function using only data of Y . Once

the nonparametric component has been identi�ed, we can rely on existing results for identi�cation

of fully parametric di¤usion models to identify the remaining parameters entering the speci�cation

of S.

Estimation of the model can be done by the following simple extension of the semiparametric

estimators developed in the univariate case: First, estimate V and � appearing in eqs. (2.1)-(2.2)

using only the observations of Y ; this can be done through either the PMLE or the sieve MLE.

This provides us with a
p
n-consistent estimator of V . Given V and � (or an estimator of these),

the bivariate model is fully parametric and all remaining parameters, � and �, can be estimated

using standard parametric methods such as the MLE of Aït-Sahalia and Kimmel (2007). By the

same arguments as in Chen and Fan (2006), it follows that the estimator of � and � will be
p
n-

asymptotically normally distributed under great generality.

6 Monte Carlo Simulations

In this section, we investigate the �nite sample performance of our semiparametric pseudo ML

inference procedure in comparison with a similar multi-stage but fully parametric ML procedure

by Monte Carlo simulations. The details of the latter procedure are explained in Section 6.2.
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6.1 Data Generating Processes

In this simulation study, we consider two UPDs:

OU : dXt = ��Xtdt+
p
2�dWt; � = �; (6.1)

CIR : dXt = � (��Xt) dt+
p
2�XtdWt; � = (�; �) : (6.2)

Both have closed-form transition density and also closed-form marginal density thereby facilitating

the numerical implementation. Note that both processes have been normalized by letting �2 = 2�.

This particular normalization has the advantage that the marginal distributions of X in (6.1) and

(6.2) are now invariant to the mean-reversion parameter �. Hence, by varying the value of � alone,

we can change the persistence level of X (and thus Y ) while keeping the marginal distributions

�xed. In this way, we can examine the impact of persistence on the performance of the proposed

semiparametric estimators of �, �Y and �
2
Y in relation to the fully parametric estimators.

Next, we specify the transformation of the DGP of Y . We do this by specifying a parametric

marginal distribution with cdf FY (y;�) which induces the transformation V as

Yt = V (Xt;�) = F�1Y (FX (Xt; �) ;�) : (6.3)

Given FY (y;�), its corresponding pdf fY (y;�), and pX (xjx0; �), the transition density of the true
DGP of Y then takes the form

pY (yjy0; �; �) = fY (y;�) cX (FY (y0;�) ; FY (y;�) ; �) : (6.4)

We choose FY (y;�) as a �exible distribution to re�ect stylized features such as asymmetry and fat-

tailedness of observed �nancial data. Speci�cally, we use the Skewed Student-t (SKST) Distribution

of Hansen (1994). The location-scale version of the SKST distribution Y has the following density

function:

fY (y;�) =

8>>>>>>>>>>><>>>>>>>>>>>:

bq

v

0BB@1 + 1

� � 2

0B@ b

v
(y �m) + a
1� �

1CA
2
1CCA
�(�+1)=2

if y < m� av=b;

bq

v

0BB@1 + 1

� � 2

0B@ b

v
(y �m) + a
1 + �

1CA
2
1CCA
�(�+1)=2

if y � m� av=b;

(6.5)

where v > 0, 2 < � <1, �1 < � < 1, and

a = 4�q

�
� � 2
� � 1

�
; b2 = 1 + 3�2 � a2; q =

� ((� + 1) =2)p
� (� � 2)� (�=2)

:

Note that the location-scale SKST has four parameters, i.e., � 2 (m; v; �; �) which has to be

chosen in order to fully specify the DGP. While m and v are the unconditional mean and standard

deviation of the distribution, � controls the skewness and � controls the degrees of freedom (hence
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the fat-tailedness) of the distribution. The distribution reduces to the usual student-t distribution

when � = 0. Due to its �exibility in modelling skewness and kurtosis, the SKST distribution is

often used in �nancial modelling. (c.f. Patton, 2004; Jondeau and Rockinger, 2006; Bu, Fredj and

Li, 2017).

The transformed di¤usion Y generated by the SKST marginal distribution in (6.5) and nor-

malized UPD in (6.1) or (6.2) via (6.3) is referred to as the OU-SKST or the CIR-SKST di¤usion

model correspondingly.

6.2 Calibration and Estimation

The true data-generating parameters � and � are chosen to match the estimates obtained when

the model is �tted to the classic data set of 5505 observations of daily (� = 1=252) observations

of 7-day Eurodollar rate used in Aït-Sahalia (1996b). The calibration is based on a 2-Stage MLE

(2SMLE). In the �rst stage, the SKST distribution is �tted to the data (as if they are i.i.d) to obtain

the MLE �̂. We then plug the corresponding MLEs of FY (y; �̂) and fY (y; �̂) into (6.4) which is

then maximized with respect to � to obtain �̂. The calibrated parameter values of the marginal

SKST distribution are
�
m̂; v̂; �̂; �̂

�
= (0:0835; 0:0358; 0:5193; 25:3708), and those of the underlying

OU and CIR di¤usions are �̂ = 1:1376 and (�̂; �̂) = (0:7653; 1:1653), respectively.

Arti�cial samples of sizes 2202 and 5505, respectively, are then generated using � = �̂ and

� = �̂ as our true data-generating parameters. For both OU-SKST and CIR-SKST, � involves the

mean-reversion parameter �. We therefore create 3 additional scenarios by multiplying � by factors

of 5, 10, and 20 while keeping everything else unchanged. Collectively, we have a total of 8 cases

corresponding to 2 sample sizes and 4 persistence levels. The maximum factor 20 is chosen because

it creates data series with 1st-order autocorrelation coe¢ cient �1 equal to 0:9 approximately, which

is a reasonably high persistent level without being excessively close to the unit root. Finally, 500

replications for each case are generated. The values of the true data-generating parameters of the

underlying di¤usion X and the approximate value of �1 for each scenario can be found in Tables

1-3.

Two estimation methods are investigated in this simulation study. The �rst estimation method

is the 2SMLE which is simply the method used for our calibration. This fully parametric estimator

is included mainly as a benchmark to be compared with our semiparametric PMLE. Note that the

only di¤erence between the 2-stage ML method and our pseudo ML method is that the former

estimates the marginal distribution FY by the parametric ML, while the latter estimates it by the

nonparametric empirical cdf. The marginal density and its �rst derivatives, which are the two

components for estimating the drift and di¤usion functions, are all estimated by nonparametric

kernel estimators using the Gaussian kernel, and the bandwidth is obtained by Silverman�s Rule-

of-thumb (c.f. Silverman, 1986).

The calibrated SKST distribution, the benchmark Normal distribution and the kernel estimator

of the marginal distribution are plotted in Figure 1. The nonparametric kernel estimator does not

su¤er from misspeci�cation, so we expect the kernel density to re�ect the most important features
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of our data. We observe that this is indeed the case. On one hand, we note that the �tted kernel-

based density (dashed line) is heavily skewed to the right compared to the �tted Normal distribution

(dotted line). On the other hand, we observe that the kernel density has a right tail much thicker

and a left tail substantially thinner than those of the �tted Normal distribution. In this regard,

the SKST speci�cation (solid line) does, as we expect, re�ect the most vital distributional features

and thus our choice is suitably justi�ed.

[Figure 1]

6.3 Estimation Results

6.3.1 Parametric Component

The results for the OU-SKST case are presented in Table 1. The true value of � calibrated from

Aït-Sahalia (1996b) data is 1:1376. The persistence level implied by the OU-SKST process is very

high, with an average �1 (over our 500 replications) approximately equal to 0:9944. Three additional

scenarios are generated by multiplying � by factors of 5, 10 and 20, generating three decreasing

persistent levels.

[Table 1]

The scaled bias and the scaled RMSE (de�ned as the ratios of the actual bias and the actual

RMSE over the true parameter value, respectively) are reported in order to examine the performance

of the two estimation methods. Overall, the results from the two estimation methods are generally

comparable with the same magnitudes. Speci�cally, at sample size 5505 and in terms of the scaled

bias, the fully parametric 2SMLE outperforms the PMLE in cases with � = 1:1376, 5:6882 and

11:377, but not when � = 22:753. This may suggest that when sample sizes are relatively large and

the DGP is highly persistent, the fully parametric 2SMLE (bene�ting from parametric structure)

outperforms our semiparametric PMLE. However, when the DGP becomes more stationary (a

situation which our model is designed for), our PMLE overtakes the 2SMLE slightly. This is not

too surprising, since it is well understood that nonparametric density estimators do not perform

well in small and moderate samples when data are persistent (see, for example, Pritsker, 1998). In

terms of the scaled RMSE, basically a similar story takes place. Although the 2SMLE is better than

the PMLE even when � = 22:753, the discrepancy between the two methods becomes negligible

when persistence reduces. At sample size 2202, the results are similar in terms of both the bias

and the RMSE. However, we note that as sample size decreases, the di¤erence between the two

methods also becomes smaller. The results for the CIR-SKST case are presented in Table 2 and 3

which are qualitatively very similar to the ones for the OU-SKST.

[Table 2 and 3]
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Overall, the performance of the PMLE is comparable with the fully parametric 2SMLE with

very similar estimation errors. Moreover, the gap in the performance of the PMLE relative to the

2SMLE appears to narrow when we move in the following two directions: (i) when the true DGP

gets less persistent; and (2) when sample size gets smaller2.

6.3.2 Semiparametric Drift and Di¤usion Functions

We now investigate the performance of the semiparametric functional estimators of the drift and

di¤usion terms of our data generating di¤usion Y . To examine the quality of these functional

estimators, we plot the mean and pointwise 95% con�dence bands from the 500 estimates against

the truth.

Figure 2 plots the estimated drift and di¤usion functions from the 2-stage parametric method

and our 2-stage semiparametric method where the true DGP is the OU-SKST process with � =

22:753 and sample size 2202. First of all, it is important to point out that, as we can see, although

the underlying OU process has a linear drift and a constant di¤usion function, the transformed

process does exhibit strong nonlinearities in both terms. In particular, to a large extent such non-

linearities closely resemble the nonlinearities depicted in, for example, Aït-Sahalia (1996b), Jiang

and Knight (1997), and Stanton (1997). Secondly, the mean estimates from both estimation meth-

ods are fairly close to the truth, but the variability of the semiparametric estimator is noticeably

larger than the parametric method, especially on the right side of the function. However, such dif-

ference in the variability is not surprising for the following two reasons. Firstly, as shown in Section

4.2.2, the drift function converges at a slow rate
p
nh3 due to its dependence on the nonparametric

estimator of the �rst derivative of the marginal density. Secondly, from Figure 1 we can see that

the marginal distribution has a long right tail, which implies that the support extends far into the

right, but observations of large realizations are relatively few. As a result, the right tail of the dis-

tribution is very di¢ cult to estimate by the kernel estimator. The situation for the semiparametric

di¤usion estimator is better since it converges at a faster rate
p
nh, although the fully parametric

method is still slightly better at this sample size. Figure 3 presents the same estimators at sample

size 5505. At this larger sample size, the bias is even smaller for both methods and the variability of

these estimates are also reduced signi�cantly. Overall, although the parametric method obviously

has the advantage due to its parametric structure, our semiparametric method also provides fairly

satisfactory estimation results.

[Figure 2 and 3]

The drift and di¤usion estimators from the two methods where the true DGP is the CIR-SKST

process with � = 15:307 and the two sample sizes are presented in Figure 4 and 5, respectively.

Almost identical qualitative conclusions can be reached. However, it is very important to point

2Simulation results based on sample sizes 1101 and 11010 (not reported for space of economy) deliver similar

qualitative conclusions.
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out that although both the OU and CIR processes have linear drifts, because of their distinctive

di¤usion terms, the drift and di¤usion terms of the transformed OU and those of the transformed

CIR processes are quite di¤erent. In particular, the drift of the transformed CIR process has a much

stronger nonlinear downward pull on the right end and the di¤usion exhibits higher growth rate.

These are exactly the featured nonlinearities found by, for example, Aït-Sahalia (1996b), Jiang and

Knight (1997), and Stanton (1997). This suggests that our semiparametric transformed di¤usion

model can do a very good job in creating the documented nonlinearities while at the same time

being analytically and numerically tractable. This is evidence that our semiparametric model may

be an appealing alternative to the less tractable fully nonparametric models and the less �exible

fully parametric models.

7 Conclusion

We develop a copula-based semiparametric approach for modelling stationary nonlinear univariate

di¤usions. We show that our model speci�cations potentially encompass very general parametric

stationary di¤usions as well as their time-invariant transformations. Primitive conditions for the

identi�cation of the UPD parameters together with the unknown transformations from discrete

samples are provided. We derive the asymptotic properties for our semiparametric likelihood-based

estimators of the UPD parameters and kernel-based drift and di¤usion estimators. Our simulation

results suggest that our semiparametric method performs well in �nite sample compared to the

fully parametric method. Potential future work under this framework may include extensions to

multivariate di¤usions or even non-Markovian stochastic processes.
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A Proofs

Proof of Theorem 3.2. FY (y) is identi�ed from data. This together with knowledge of FX (x),

as chosen by us, allows us to identify U (y) from eq. (2.12). We can therefore treat Xi� = U (Yi�),

i = 1; 2; :::, as directly observed and so �X and �
2
X are identi�ed due to Assumption 3.1. Assumption

3.2 then ensures that � is identi�ed.

Proof of Theorem 3.3. First, recall that �Y and �
2
Y are identi�ed from the discrete sampled Y

under Assumption 3.1 and so can be treated as known. Next, observe that by Ito�s Lemma,

�Y (y) =
�X (U (y))

U 0 (y)
� 1
2
�2X (U (y) ; �)

U 00 (y)

U 0 (y)3
; (A.1)

�2Y (y) =
�2X (U (y) ; �)

U 0 (y)2
: (A.2)

We now establish identi�cation under Assumption 3.3(i): From (A.2), we obtain the following

separable Odinary Di¤erential Equation (ODE):

�X (U (y))

U 0 (y)
= �Y (y) ;

with solution

SX (U (y)) = SY (y) + k , U (y) = S�1X (SY (y) + k) ;

for some constant k 2 R, where SX (x) =
R
1=�X (x) dx and SY (y) =

R
1=�Y (y) dy; note here that

SX (x) is invertible since �X (x) > 0. The normalization imposed on U �xes k,

x0 = S�1X (SY (y0) + k)() k = SX (x0)� SY (y0) :

This in turn implies that U (y) is identi�ed. Next, observe that

�X (U (y) ; �) = U 0 (y)

�
�Y (y) +

1

2
�2X (U (y))

U 00 (y)

U 0 (y)3

�
;

where the right-hand side is known. This together with the assumption that �X (x; �) 6= �X(x;
~�)

for any � 6= ~� imply that � is identi�ed.
Next, we establish identi�cation under Assumption 3.3(ii): Since � �X = 1, we have �2Y (y) =

U 0 (y)�2. Hence, given �2Y (y) we identify U
0 (y) and so also U 00 (y). Meanwhile, U 0 (y) identi�es

U (y) up to some constant �, i.e., U (y) = U0 (y) + �, where U0 is known. Moreover, given �Y (y),

U 0 (y), U 00 (y) and U0 (y), �Y (y) = � �X (U (y) ; �) =U
0 (y) + 1

2U
00 (y)U 0 (y) identi�es � �X (U (y) ; �) =

� �X (U0 (y) + �; �). The normalization imposed on � �X together with the requirement that � is

uniquely identi�ed from � �X ensure identi�cation of � and �, and thereby U (y).

Proof of Theorem 3.4. By the same arguments used to obtain eqs. (A.1)-(A.2),

�Y (y) =
�X (U (y))

U 0 (y)
� 1
2
�2Y (y)

U 00 (y)

U 0 (y)
=
�X (U (y))� 1

2�
2
Y (y)U

00 (y)

U 0 (y)
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which can be rewritten as

�Y (y)U
0 (y) +

1

2
�2Y (y)U

00 (y) = �X (U (y)) :

Since �X (x) = 0, we obtain

�2�Y (y)
�2Y (y)

=
U 00 (y)

U 0 (y)
=
@ logU 0 (y)

@y
:

That is, logU 0 (y) = k1 � 2
R y
y1

�Y (z)
�2Y (z)

dz and so U 0 (y) = exp
�
k1 � 2

R y
y1

�Y (z)
�2Y (z)

dz
�
which in turn

implies

U (y) = k0 +

Z y

y0

exp

�
k1 � 2

Z v

y1

�Y (z)

�2Y (z)
dz

�
dv:

The two normalizations, U 0 (y1) = x1 and U (y0) = x0, imply that k1 = log x1 and k0 = x0. In

particular, U (y) is identi�ed.

Next, we establish identi�cation under Assumption 3.4(ii): From the above characterization of

U , we easily see that, for some constant �1,

U 0 (y) = exp

�
�2
Z y �Y (z)

�2Y (z)
dz

�
�1 = U 00 (y) �1;

where U 00 (y) is known. This in turn implies that U (y) = �1U0 (y) + �2 for some other constant �2.

Then, we note that

�2X (U (y) ; �) = �2Y (y)U
0 (y)2 = �2Y (y) �

2
1U

0
0 (y)

2

�2X (�1U0 (y) + �2; �)

�21
= �2Y (y)U

0
0 (y)

2

The right hand side is known and so � is identi�ed under the normalization in Assumption 3.4(ii).

Proof of Theorem 4.1. We �rst note that the PMLE takes the same form as the one analyzed

in Chen and Fan (2006) with the general copula considered in their work satisfying eq. (2.13). The

desired result will follow if we can verify that the conditions stated in their proof are satis�ed by our

assumptions: First, by Assumptions 2.1, the discrete sample fXi� : i = 0; 1; : : : ; ng generated by
the UPD X is �rst-order Markovian and has absolutely continuous marginal distribution FX (x; �),

marginal density fX (x; �) and transition density pX (xjx0; �) with respect to the Lebesgue measure.
Hence, the copula density cX (u0; u; �) in (2.13) implied by X is absolutely continuous with respect

to the Lebesgue measure on [0; 1]2 due to its continuity in FX (x; �), fX (x; �) and pX (xjx0; �).
Moreover, the implied copula is neither the Fréchet-Hoe¤ding upper or lower bound due to As-

sumption 2.1, i.e., �2X (x; �) > 0 for all x 2 X . Thus, Chen and Fan (2006, Assumption 1) is
satis�ed. Second, our Assumption 4.2(i) ensures that X is �-mixing with polynomial decay rate.

Third, by Theorem 2.1, Y is mixing with the same mixing properties as X and so satis�es Chen

and Fan (2006, Assumption 1). The remaining conditions are met by Assumption 4.3(i).
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For the analysis of the proposed sieve MLE, we note that it takes the same form as the one

analyzed in Chen, Wu and Yi (2009), except that the conditional density of Y in our case takes the

form pY (yjy0; �; U) = U 0 (y) pX (U (y) jU (y0) ; �) while in their work it is given by p
�
yjy0; �; F�1Y

�
=

@F�1Y (y) = (@y) c
�
F�1Y (y) jF�1Y (y0) ; �

�
. Relabelling our U and pX as F�1Y and c, respectively, all

their arguments and results carry over to our setting. Assumption M and the �-mixing property

required by Chen, Wu and Yi (2009) are satis�ed by Y under our Assumptions 2.1, 2.2, and 4.2(ii)

together with our Theorem 2.1. The remaining conditions are met by Assumption 4.3(ii).

Proof of Theorem 4.2. Similar to the proof strategy employed in Lemma B.1, we de�ne

~�Y (y) =
�X (U (y) ; �)

U 0 (y)
� 1
2
�2X(U (y) ; �)

Û 00 (y)

U 0 (y)3
;

~�2Y (y) =
�2X (U (y) ; �)

Û 0 (y)2
;

and, with f (i)Y denoting the ith derivative of fY and similar for other functions, arrive at

p
nh3

(
�̂Y (y)� �Y (y)�

1

2
h2�2

f
(3)
Y (y)

fX (U (y) ; �)

�
��

2
X (U (y) ; �)

2U 0 (y)3

�)

=
p
nh3

(
~�Y (y)� �Y (y)�

1

2
h2�2

f
(3)
Y (y)

fX (U (y) ; �)

�
��

2
X (U (y) ; �)

2U 0 (y)3

�)
+ op (1)

= ��
2
X (U (y) ; �)

2U 0 (y)3

p
nh3

(
Û (2) (y)� U (2) (y)� 1

2
h2�2

f
(3)
Y (y)

fX (U (y) ; �)

)
+ op (1) ;

and

p
nh

(
�̂2Y (y)� �2Y (y)�

1

2
h2�2

f
(2)
Y (y)

fX (U (y) ; �)

�
�2�

2
X (U (y) ; �)

U 0 (y)3

�)

=
p
nh

(
~�2Y (y)� �2Y (y)�

1

2
h2�2

f
(2)
Y (y)

fX (U (y) ; �)

�
�2�

2
X (U (y) ; �)

U 0 (y)3

�)
+ op (1)

= �2�
2
X (U (y) ; �)

U 0 (y)3
p
nh

(
Û 0 (y)� U 0 (y)� 1

2
h2�2

f
(2)
Y (y)

fX (U (y) ; �)

)
+ op (1) :

These together with (B.1) and (B.2) of Lemma B.1 and Slutsky�s Theorem complete the proof.

B Lemma

Lemma B.1 Under Assumptions 2.1-2.2, 4.2(i), and 4.4-4.6, we have as n!1, h! 0, nh!1,
p
nh

�
Û 0 (y)� U 0 (y)� 1

2
h2�2

f 00Y (y)

fX (U (y) ; �0)

�
!d N

 
0;
U 0 (y)2

fY (y)

Z
R
K (z)2 dz

!
; (B.1)

and as n!1, h! 0, nh3 !1,
p
nh3

�
Û 00 (y)� U 00 (y)� 1

2
h2�2

f 000Y (y)

fX (U (y) ; �0)

�
!d N

 
0;
U 0 (y)2

fY (y)

Z
R
K 0 (z)2 dz

!
: (B.2)
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Proof. Let f̂ (i)Y (y) for i = 1; 2 be the ith derivative of the kernel marginal density estimator. Using

standard methods for kernel estimators (c.f. Robinson, 1983), we obtain under the assumptions of

the lemma that, as n!1; h! 0, and nh1+2i !1,

p
nh1+2i

�
f̂
(i)
Y (y)� f (i)Y (y)� 1

2
h2�2f

(i+2)
Y (y)

�
!d N (0; Vi (y)) (B.3)

where Vi (y) = fY (y)
R
RK

(i) (z)2 dz. Assumptions 2.1 and 4.4 ensure that fY (y) is su¢ ciently

smooth so that f (2)Y (y) and f (3)Y (y) exist. Assumption 4.2(i) and 4.6 regulate the mixing property

of Y and the kernel function, respectively, as required by Robinson (1983).

From (4.2) we have Û 0 (y) = f̂Y (y) =fX(Û (y) ; �̂). Now de�ne ~U 0 (y) = f̂Y (y) =fX(U (y) ; �0)

and note that Assumption 4.4 and 4.5 together with the delta-method implies Û 0 (y) � ~U 0 (y) =

OP (1=
p
n)=oP (1=

p
nh). It then follows that

p
nh

�
Û 0 (y)� U 0 (y)� 1

2
h2�2f

(2)
Y (y)

1

fX (U (y) ; �0)

�
=

p
nh

�
Û 0 (y)� ~U 0 (y) + ~U 0 (y)� U 0 (y)� 1

2
h2�2f

(2)
Y (y)

1

fX (U (y) ; �0)

�
=

p
nh

�
oP

�
1=
p
nh
�
+ ~U 0 (y)� U 0 (y)� 1

2
h2�2f

(2)
Y (y)

1

fX (U (y) ; �0)

�
=

p
nh

�
~U 0 (y)� U 0 (y)� 1

2
h2�2f

(2)
Y (y)

1

fX (U (y) ; �0)

�
+ oP (1)

=
1

fX (U (y) ; �0)

p
nh

�
f̂Y (y)� fY (y)�

1

2
h2�2f

(2)
Y (y)

�
+ oP (1) :

Using (B.3) and the same arguments as in Kristensen (2011, Proof of Theorem 1), we arrive at

(B.1).

Meanwhile, from (4.3) we have

Û 00 (y) =
f̂ 0Y (y)

fX(Û (y) ; �̂)
� f 0X(Û (y) ; �̂)f̂Y (y)

2

fX(Û (y) ; �̂)3
:

De�ne

~U 00 (y) =
f̂ 0Y (y)

fX (U (y) ; �0)
� f 0X (U (y) ; �0) fY (y)

2

fX (U (y) ; �0)
3 ;

and a similar argument leads to

p
nh3

�
Û 00 (y)� U 00 (y)� 1

2
h2�2f

(3)
Y (y)

1

fX (U (y) ; �0)

�
=

p
nh3

�
~U 00 (y)� U 00 (y)� 1

2
h2�2f

(3)
Y (y)

1

fX (U (y) ; �0)

�
+ op (1)

=
1

fX (U (y) ; �0)

p
nh3

�
f 0Y (y)� f 0Y (y)�

1

2
h2�2f

(3)
Y (y)

�
+ op (1)

which together with (B.3) yield (B.2).
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Table 1: Bias and RMSE of � in the OU-SKST Model
Bias/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 1:1376 0:9944 0:6121 1:1379 0:2690 0:5054

� = 5:6882 0:9758 0:1230 0:1987 0:0652 0:0939

� = 11:377 0:9531 0:0656 0:0888 0:0400 0:0441

� = 22:753 0:9093 0:0385 0:0383 0:0270 0:0210

RMSE/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 1:1376 0:9944 0:8603 1:2932 0:4476 0:6224

� = 5:6882 0:9758 0:2420 0:2930 0:1454 0:1655

� = 11:377 0:9531 0:1574 0:1730 0:0974 0:1044

� = 22:753 0:9093 0:1059 0:1133 0:0668 0:0711
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Table 2: Bias and RMSE of � in the CIR-SKST Model
Bias/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 0:7653 � = 1:1653 0:9921 0:9023 1:5269 0:4576 0:7717

� = 3:8267 � = 1:1653 0:9675 0:2358 0:3347 0:1194 0:1754

� = 7:6533 � = 1:1653 0:9399 0:1328 0:1816 0:0646 0:0853

� = 15:307 � = 1:1653 0:8917 0:0768 0:0928 0:0349 0:0398

RMSE/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 0:7653 � = 1:1653 0:9921 1:2424 1:7509 0:6692 0:9231

� = 3:8267 � = 1:1653 0:9675 0:3881 0:4511 0:2363 0:2746

� = 7:6533 � = 1:1653 0:9399 0:2431 0:2771 0:1498 0:1672

� = 15:307 � = 1:1653 0:8917 0:1712 0:1847 0:1003 0:1068

Table 3: Bias and RMSE of � in the CIR-SKST Model
Bias/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 0:7653 � = 1:1653 0:9921 0:9458 1:0299 0:6192 0:8720

� = 3:8267 � = 1:1653 0:9675 0:4353 0:5171 0:1899 0:2554

� = 7:6533 � = 1:1653 0:9399 0:2633 0:3152 0:1033 0:1279

� = 15:307 � = 1:1653 0:8917 0:1302 0:1646 0:0663 0:0780

RMSE/�

Sample Size 2202 5505

True Parameter Value �1 2SMLE PMLE 2SMLE PMLE

� = 0:7653 � = 1:1653 0:9921 1:5614 1:5784 1:1222 1:4309

� = 3:8267 � = 1:1653 0:9675 0:8443 0:9197 0:3867 0:4462

� = 7:6533 � = 1:1653 0:9399 0:5473 0:5695 0:2298 0:2558

� = 15:307 � = 1:1653 0:8917 0:2802 0:3139 0:1453 0:1684
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Figure 1: Marginal Densities of the Eurodollar Rates
Solid = SKST Density, Dashed = Kernel Density, Dotted = Normal Density
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Figure 2: Estimated Drift and Di¤usion for the OU-SKST Model (T = 2202)
Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Con�dence Bands
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Figure 3: Estimated Drift and Di¤usion for the OU-SKST Model (T = 5505)
Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Con�dence Bands
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Figure 4: Estimated Drift and Di¤usion for the CIR-SKST Model (T = 2202)
Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Con�dence Bands
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Figure 5: Estimated Drift and Di¤usion for the CIR-SKST Model (T = 5505)
Solid = True Function, Dashed = Mean of Estimates, Dotted = 95% Con�dence Bands
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