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       Applying a Bayesian Network to VaR Calculations 

           Abstract 
 

This paper focuses considers a methodology for deriving stock returns and VaR through 

the application of a Bayesian Network (BN). A network map is specified where the returns 

for three stocks are deemed to be conditionally dependent on two factors. The latter are 

defined having previously considered literature relating to the financial crisis and risk 

contagion. Subsequently, two factors are identified as influencing the individual stock 

returns – one relating to liquidity and the other relating to the market. Following application 

of the Gaussian Bayesian Network, regressions generate models for the said returns. The 

latter are then used to simulate time series of stock returns and those outcomes are 

compared to the original data series. The BN specification is found to be a satisfactory 

alternative for the modelling of stock returns. Furthermore, the resulting quantiles are 

shown to be more prudent estimates in relation to VaR calculations at the 5% level and, 

therefore, can result in increases in regulatory capital.  

 

 

 

 

 

 



Applying a Bayesian Network to VaR Calculations 

1 Introduction 

In their survey of 31 quantitative measures of systemic risk, Bisias et al (2012) identify a 

research method in relation to Network Analysis in general. Specifically, a small network 

of factors is defined as being systemically important in relation to their impact on the 

returns of a set of financial entities. Where each factor is regarded as commonly significant 

to each entity. Existing research tends to focus on applying such networks in the assessment 

of how events spread through a financial system and interconnectedness in general. For 

example, simulating how the failure of one bank can trigger the domino effects across many 

and whether certain ones are more resilient to the default than others. Indeed, Chan-Lau et 

al (2009) and the IMF (2009a) use network models to assess the impact of a failing bank 

on others given respective exposures between them. While the specified networks can be 

used to quantify VaR losses at the bank level following the original default and subsequent 

domino effect, this is rarely discussed. This paper thereby attempts to contribute to existing 

literature by applying a Bayesian Network of two factors to determine their impact on the 

returns of three UK banking stocks and their three-stock portfolio in terms of VaR.  

Identification of the factors isn’t necessarily intuitive but existing literature in relation to 

financial linkages and reasons for the spread in financial crises, can be drawn upon. For 

example, issues around market liquidity are raised and I suggest that the latter is an 

important factor when assessing impacts on stock returns. There are certain market 

indicators of the overall health and strength of liquidity among financial institutions, such 

as the LIBOR-OIS spread in the UK and the TED-spread in the US. Indeed, Hull and White 



(2013) suggest that, despite both spreads being stable and largely ignored pre-financial 

crisis, both are now used as the summary indicators of liquidity following their extreme 

movements in 2007 and 2008. Subsequently, in order to define a workable network, I begin 

with just two factors – firstly the aforementioned liquidity factor and secondly, the 

influence of the wider financials’ sector on each stock. In terms of visualising the network, 

there are a series of nodes connected to each other by edges – where the latter represent the 

relationship between the nodes. Thereafter, the resulting model is used to simulate returns 

data for each bank and their three-stock portfolio and quantify their respective 5% and 1% 

quantiles -  where the latter can be used in a VaR calculation and be reasonably applied as 

an alternative to the RiskMetrics approach. The network itself is specified using Bayesian 

techniques as presented by Scutari and Denis (2015) and Shonoy and Shonoy (2000). 

This paper is divided into several parts. Section 2 highlights the recent literature in relation 

to Network Analysis and measuring systemic risk but also general applications of Bayesian 

Networks (BN). Section 3 presents the data, identifying each time series and summary 

statistics. Application of the BN to this data set in modelling stock returns is presented in 

section 4 – including specification of the network, the underlying probability distributions 

and tests of conditional independence and model specifications. The process for simulating 

stock returns is also discussed. Results are detailed in section 5 – specifically the respective 

significance of the partial correlations, the parameters of the BN model specifications and 

the comparisons of the simulated summary statistics and quantiles versus those of the actual 

historical returns. The paper ends with concluding remarks.  

 



2 Relevant Literature 

2.1 Network Analysis 

A network rationale has been applied in a diverse range of social and behavioural science 

contexts. For example, considering how large corporations differ in the extent to which 

they offer support or assistance to local communities in which they have a presence. 

Corporate and social responsibility dictates that they should be actively involved in their 

communities but how much of that is influenced by the activities of other corporations? A 

network can be used to model how such community involvement is influenced by their 

interactions and relationships with other corporations. Likewise, in any decision-making 

process involving several individuals or groups, a network approach can be used to 

understand how individuals within a group influence each other in the decision-making 

process. A common underlying theme is how the units within the network interact – they 

are not viewed in isolation. According to Faust and Wasserman (1994, pp. 7):  

“The network perspective differs in fundamental ways from 

standard social and behavioural science research methods. 

Rather than focus on attributes of autonomous individual units, 

the associations among these attributes, or the usefulness of one 

or more attributes for predicting the level of another attribute 

are theorised and modelled through a network.” 

 

Such associations and relationships can be witnessed in many other contexts, certainly 

within science, finance and economics. Indeed, the interlinkages and interconnectedness 



between financial institutions and within financial systems, leading to spreading in crises 

are directly relevant (Diao et al 2000). From a scientific perspective, networks are used in 

a variety of contexts – engineering, biology, ecology, medicine. For example, they are used 

to analyse ecological systems and specifically how the food chains and ecosystems are 

connected. In relation to public health, Luke and Harris (2007) present their use in the study 

of how diseases are transmitted, specifically HIV and AIDS. Applications in medical and 

microbiology contexts are popular – for instance, Barabasi et al (2011) use network-based 

methods in genetics to identify molecular linkages and subsequent gene mutations.  

 

Of course, this paper is interested in their application in finance and economics, specifically 

in relation to systemic risk. Given the focus on liquidity issues, particularly in the interbank 

markets, the work of Chan-Lau et al (2009), is relevant. In using network models, they 

highlight the impact of institutional failure when there are exposures within such markets 

– where the network illustrates the domino effect between connected banks when exposed 

to a failing institution. Furthermore, Bilio et al (2012) go beyond the inter-bank markets in 

their application of Granger-causality networks to the study of interconnectedness between 

a variety of investor sub-groups, specifically hedge funds, banks, brokers and insurance 

companies. Likewise, the IMF (2012) assess linkages within the global over-the-counter 

derivative markets and the identification of systemically important financial 

intermediaries. In each case, as suggested by Battiston et al (2012), there is no widely 

accepted, single methodology to determine the systemically important nodes or factors 

within the network – it is very much linked to interpretation and the underlying data set 



(financial instrument, market, sub-sector, region). The latter indicates the degree of 

qualitative judgement required in defining the network in the first instance. Nevertheless, 

Allen and Babus (2009, pp. 367) argue that network analysis can assist our understanding 

of financial systems and specifically risk contagion, given the interconnections revealed by 

the 2008 financial crisis. Furthermore, aside from defining the network itself, they suggest 

that it can then be usefully applied in formulating a regulatory framework for supervising 

financial institutions, an objective entwined within this paper. Consistent with Allen and 

Babus (2009), Hu at al (2012) allude to the deficiencies of pre-existing methods in 

measuring exposures to systemic risk, given the significant widespread losses post 2008. 

Accordingly, they too suggest a network-based approach as a more appropriate and 

accurate measurement and monitoring process.  

 

Unsurprisingly, there has been an upsurge in interest in research in this area - several 

empiricists identify the importance of the use of network analysis. For example, Markose 

et al (2012) apply a network to investigate the connections between banks in the Credit 

Default Swap market – the latter market being identified as a key determinant of substantial 

losses in 2008. In some cases, there is the final realisation that, given their widespread 

application in science and medicine, surely analogies can be drawn in finance. For instance, 

Haldane and May (2011) apply the dynamics of food webs in an ecological context to 

modelling the stability of a given financial system. A leading empiriscist in relation to 

network theory, Kimmo Soramaki, has several publications focusing on applications in 

finance. For instance, Soramaki et al (2016) simplify complex network structures in order 



to filter or highlight the most important determinants of correlations between returns of 

European stocks. Earlier studies focus on the interbank payment systems and, specifically, 

the creation of a network representing how payments are transferred between financial 

institutions (see Soramaki et al (2007)). The latter highlights the key players in such 

markets and the degrees of connectedness between them but also makes the point that the 

“minor” players in the market are also connected to the more tightly connected core of 

major players. Given the financial linkages, the network illustrates the severe impact of 

any subsequent disruption to it and the issues arising in transferring and accessing capital 

through the interbank markets. This is further explored by Soramaki and Cook (2013) and 

Soramaki and Langfield (2016), whereby, following a bank’s failure, the disruption to the 

payment network is identified along with systemically important institutions and the 

resulting impacts on individual network participants. A common theme, once again, is the 

interbank markets. It is clear that, whether referring to literature immediately following the 

crisis or more recently, that theme remains -  the liquidity issues generating from within 

the inter-bank markets. Similar to Chan-Lau et al (2009), Krause and Giansante (2012) also 

focus on the exposures within those markets and use a network of connected banks to 

model how failure of one spreads through the network.  Subsequently, a factor 

encompassed within the BN defined in section 4, relates to liquidity – denoted by a 

particular spread quoted in the inter-bank markets. 

 

 

 



2.2 Network Analysis from a Bayesian Perspective 

Bayesian Networks are encompassed within the framework of network analysis and 

incorporate graphical theories and conditional dependencies between variables in the 

graphical network. Within the literature there are several instances of the application of 

BNs to data sets, not necessarily from a finance perspective. Indeed, almost any event 

conditional on the probability of a prior event can be analysed using this concept. In 

geographical and environmental studies, for example, a BN is used to evaluate flood plains 

and the extent of flooding given certain extreme prior events such as changes in sea level 

and improvements in coastal defenses (see Narayan et al 2018). They are also applied 

within the context of Social Corporate Responsibility in assessing a corporation’s likely 

compliance with child labour regulations across their supply chain network. The BN is 

used to determine the likelihood of breaches to such regulations using available data on 

suppliers, their employee demographics and the frequency of child labour incidents (see 

Thoni et al 2018). From a medical research perspective, BNs are also readily applied. For 

instance, in assessing links between patients diagnosed with clinical depression and 

variability in their heart rates and also in identifying important factors in relation to survival 

rates from lung cancer (see Anisa and Lin 2017).  

From a risk management perspective, there is ample literature relevant to their application, 

particularly in relation to operational risk. Essentially, various factors are identified and 

inserted into the BN with estimates made of associated loss distributions resulting from the 

various risk factors. According to Cowell et al (2007), such techniques can be applied in 

insurance settings when assessing the financial impact of cases of fraud upon the insuring 



company and thereby in the setting aside of adequate regulatory capital in relation to such 

cases. From a banking perspective, Aquaro et al (2010) present their application in relation 

to losses sustained through cases of failed internal processes, human error, IT failures and 

certain litigation cases. The factors leading to the losses in each situation become part of 

the BN and the associated loss distributions are generated. Clearly, there is some degree of 

subjectivity in identifying the break-downs in the internal processes or human interventions 

leading to loss making errors but, this is a commonality across all BNs, regardless of the 

arena in which they are being applied. In all cases, analogies can certainly be drawn with 

VaR and the need to ascertain the loss quantiles from subsequent returns’ distributions. 

Indeed, Martin et al (2005) apply BNs to specifically model the severest loss inducing 

events, referred to as the long tails or unexpected losses from an operational loss 

perspective – similar of course to the 1% and 5% VaR scenarios. Of direct relevance to this 

paper is the research of Hager and Andersen (2010) who seek to model loss severity across 

all activities of a financial institution and not just from an operational perspective. This is 

done through the identification of influencing factors – which I argue can be liquidity and 

market based.  

Other literature identifies the importance of risk contagion through BN modelling of 

default probabilities resulting from financial linkages – for example Giudici and Spelta 

(2016) and Chong and Kluppelberg (2017). Furthermore, interconnectedness is also 

examined through the effect of exposures within the interbank markets. A BN is applied to 

model individual institutional liabilities within that market and the subsequent impact on 

other banks in the event that a participant in the network defaults. Gandy and Veraart 



(2016) illustrate that the BN can be used to stress test differing assumed levels of inter-

bank liabilities and likelihood of default conditional on another bank defaulting. At the 

very least it indicates the importance of the inter-bank markets once more, if not 

specifically assessing the impact on bank returns’ distributions. Despite all of the literature 

under review, however, there appears to be a lack of focus on application of BNs 

specifically in modelling stock returns and losses applied in VaR estimations. This paper 

seeks to provide a workable alternative approach to modelling both, whilst also considering 

the importance of the entire financials sector, interlinkages and the impact of reducing 

liquidity within the inter-bank markets. 

 

3 The Data 

In order to produce the appropriate network, and specifically assess the impact of the 

chosen factors, the data is gathered for the period 14th December 2000 to 29th June 2012 – 

implying 2,914 daily observations for each variable. This timeframe incorporates the 

financial crisis but also adequate periods pre and post crisis. The data is sourced from 

Bloomberg (excluding the portfolio) and the variables are as follows, where the daily return 

and the daily percentage change ensure stationarity: 

• Daily returns for Barclays Bank stock; 

• Daily returns for Lloyds Bank stock; 

• Daily returns for HSBC stock; 

• Daily percentage change in the 3-month Sterling LIBOR vs. 3-month 

sterling overnight index swap spread (OIS); 



• Daily returns for the MSCI Financials’ Sector Index: 

• Daily returns for the three-stock portfolio. 

 

The data set representing the impact of the market on each stock is the MSCI Financials 

Sector Index, within which all three banking stocks have a percentage weighting. The 

chosen liquidity factor is represented by the daily percentage change in the difference 

between the 3-month sterling LIBOR rate and the 3-month sterling overnight indexed swap 

rate. Overnight indexed swaps are interest rate swaps whereby a fixed rate of interest is 

exchanged for floating and the latter is the average of a daily overnight rate. In deriving 

the floating rate payment, the intention is to replicate the aggregate amount of interest that 

would be earned from rolling over a sequence of daily loans at an appropriate overnight 

rate. Given that we are applying a 3-month time-frame, it implies rolling over a sequence 

of daily loans, for 90 days at an overnight rate – where that rate is determined in the UK 

by the Bank of England and referred to as SONIA (sterling overnight index average). The 

3-month sterling libor rate is the average interest rate at which a selection of banks lend 

British pounds to one another for a period of 3 months.  

In deriving the daily returns for each bank and the nominated market index, the following 

is applied: 

    𝑟𝑡 =
𝑝𝑡−𝑝𝑡−1

𝑝𝑡−1
                (3.1) 

Where: 𝑝𝑡 refers to the closing price of the stock or index at 

time t. 

𝑝𝑡−1 refers to the closing price of the stock or index at time 

t-1. 



𝑟𝑡 refers to the daily return of the stock or index at time t. 

 

 

With regards the three-stock portfolio, we begin with a total initial investment of 

£30,000,000, split equally between the stocks – representing an equal weighting of 33.33% 

and £10,000,000 invested in each stock in the portfolio. As the prices of the component 

stocks change in value, their weights in the portfolio change, as does the notional value of 

the portfolio. The daily return on the portfolio is derived as follows: 

 

  𝑟𝑝𝑜𝑟𝑡,𝑡 =
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑝𝑜𝑟𝑡,𝑡−𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑝𝑜𝑟𝑡,𝑡−1

𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑝𝑜𝑟𝑡,𝑡−1
        (3.2) 

The notional value of the portfolio each day is derived as follows: 

 

 

𝑁𝑉𝑝𝑜𝑟𝑡,𝑡 = [(1 + 𝑟𝑡,𝐵) × 𝑁𝑉𝑡−1,𝐵] + [(1 + 𝑟𝑡,𝐻) × 𝑁𝑉𝑡−1,𝐻] + [(1 + 𝑟𝑡,𝐿) × 𝑁𝑉𝑡−1,𝐿]               

(3.3) 

 

 

Where: 𝑁𝑉𝑝𝑜𝑟𝑡,𝑡 refers to the notional value of the 3-stock 

portfolio at time t. 

𝑟𝑡,𝐵 refers to the daily return of Barclays at time t; 

𝑁𝑉𝑡−1,𝐵 refers to the notional value of investment in 

Barclays at time t-1; 

𝑟𝑡,𝐻 refers to the daily return of HSBC at time t; 

𝑁𝑉𝑡−1,𝐻 refers to the notional value of investment in HSBC 

at time t-1; 

𝑟𝑡,𝐿 refers to the daily return of Lloyds at time t; 

𝑁𝑉𝑡−1,𝐿 refers to the notional value of investment in Lloyds 

at time t-1.   

 

The graphs are presented for each time series of returns’ data in figures 3.1 to 3.5 plus an 

indication of how the LIBOR-OIS spread moved in the period under review in figure 3.6. 

The former illustrate stationarity in the time series and significant volatility in the 2007-



2008 time-frame of the financial crisis. In relation to the LIBOR-OIS spread, there are 

noticeable peaks associated with certain key events. For instance, in September 2007, the 

spread reached 85 basis points in response to the Bank of England announcing emergency 

funding to rescue Northern Rock and, three months later as the crisis began to unfold, 

reached an all-time high of 108 basis points. At its worst, following the insolvency of 

Lehman Brothers in the autumn of 2008, the spread was around 300 basis points. The 

Augmented Dickey Fuller tests at various lags in table 3.1, indicate the stationarity in the 

time series of returns for each variable: 

 

Table 3.1: Augmented Dickey Fuller tests for each variable 

 

 LIBOROIS Market Barclays HSBC Lloyds 

1 Lag -47.0068* -38.5601* -36.5903* -41.127* -38.3401* 

2 lags -40.925* -33.0937* -30.3896* -33.8231* -31.5608* 

3 lags -33.7785* -27.1927* -25.4275* -28.0044* -27.0613* 

4 lags -29.4624* -26.0475* -23.5451* -25.5346* -26.8292* 

5 lags -24.4209* -24.5432* -21.8710* -24.7745* -25.0340* 

6 lags -22.0149* -22.1618* -20.8262* -21.6686* -23.5661* 

7 lags -20.7559* -19.8397* -19.6280* -19.5955* -21.9056 

8 lags -18.6174* -18.4505* -17.2105* -18.2352* -20.2806* 

9 lags -17.3829* -17.9787* -17.1425* -17.7670* -18.0233* 

10 lags -16.8473* -17.4447* -16.3418* -17.9372* -16.7871* 

   Note:  Critical values of -3.43, -2.86, -2.57. * denotes test statistic < critical values at all level 



Figure 3.1: Time Series of Barclays Daily Returns. 

 

 

Figure 3.2: Time Series of HSBC Daily Returns. 

 

 



Figure 3.3: Time Series of Lloyds Daily Returns. 

 
 

Figure 3.4: Time Series of Market Daily Returns. 

 

 



Figure 3.5: Time Series of Portfolio Daily Returns. 

 

Figure 3.6: Graph of the LIBOR-OIS spread. 

 



In relation to the summary statistics presented in table 3.2, the mean daily returns appear 

close to zero and the minimum returns reflect the substantial losses during the financial 

crisis.  

 

Table 3.2: Summary Statistics for LIBOROIS % change, Market, Stock and Portfolio Daily Returns. 

 LIBOROIS Market Barclays HSBC Lloyds Portfolio 

Max 141.6667 16.0399 29.2357 15.5148 32.2159 21.2197 

Min -67.6692 -9.8446 -24.8464 -18.7788 -33.9479 -16.3841 

Median 0.0000 0.0000 -0.0501 0.0000 -0.0504 -0.0076 

Mean 0.7612 -0.0223 -0.0076 0.0024 -0.0429 -0.0183 

 

 

4 Application of a Gaussian Bayesian Network to Continuous Data 

 

4.1 Proposed Network Structure 

In applying Bayesian Networks to modelling data, they are useful in the situation where 

information is incomplete and uncertainty exists over the key determinants of the 

dependent variable. According to Shenoy and Shenoy (2000), there is initially a degree of 

qualitative judgement and subjectivity in specifying the factors to include in the graphical 

representation of the network. However, in subsequently applying quantitative tests of the 

model and simulating posterior data distributions, certain inferences can be made about its 

validity. In this instance the proposed network is being applied to model portfolio returns 

based on certain inputs or factors added to it. Furthermore, given the simulated posterior 

return distribution of the portfolio, a cut-off return is derived for use in a VaR calculation, 

where the cut-offs refer to the 1% and 5% quantiles of the said distribution. 

In specifying a Gaussian Bayesian Network, I am modelling continuous data sets with the 



underlying assumption of multivariate normality. With regards the variables defined in 

section 3, I denote them with the following abbreviations: 

• Daily returns for Barclays Bank stock→B 

• Daily returns for Lloyds Bank stock→L 

• Daily returns for HSBC stock→H 

• Daily percentage change in the 3-month Sterling LIBOR vs. 3-month 

sterling overnight index swap spread (OIS) →S 

• Daily returns for the MSCI Financials’ Sector Index→M 

• Daily returns for the three-stock portfolio→P 

 

 

Prior to tests of conditional independence, the suggested relationships between variables 

are as follows: 

B is directly influenced by S and M, L is directly influenced by S and M, H is directly 

influenced by S and M and P is directly influenced by B, L and H. Consequently, the 

proposed relationships are defined as follows: 

                 {𝑆, 𝑀} → 𝐵, {𝑆, 𝑀} → 𝐿,       {𝑆, 𝑀} → 𝐻,   {𝐵, 𝐿, 𝐻} → 𝑃         (4.1) 

 

4.2 Proposed Network Graph and Probability Distribution 

Based upon the above suggested relationships between the variables a graphical 

representation can be defined – as presented in figure 4.2.1. It is referred to as a directed 

acyclic graph (DAG) and contains a series of arcs and nodes. The former reflect the direct 



dependencies between variables and the latter reflect the variables within the network. Each 

variable or node has its own distribution – for example, ‘B” has a distribution or time series 

of daily returns. If an arc exists from one variable to another, the latter variable is dependent 

upon the former, otherwise known as the parent. The overall distribution, encompassing 

all variables and suggested dependencies, can be depicted as follows: 

 

Pr(𝑆, 𝑀, 𝐵, 𝐿, 𝐻, 𝑃) = Pr(𝑆) Pr(𝑀) Pr (𝐵|𝑆, 𝑀)Pr (𝐻|𝑆, 𝑀)Pr (𝐿|𝑆, 𝑀)Pr (𝑃|𝐵, 𝐻, 𝐿)       

 

Furthermore, the distributions at each node can be expressed as: 

 

𝐵|𝑆 = 𝑠, 𝑀 = 𝑚      𝐻|𝑆 = 𝑠, 𝑀 = 𝑚      𝐿|𝑆 = 𝑠, 𝑀 = 𝑚       𝑃|𝐵 = 𝑏, 𝐻 = ℎ, 𝐿 = 𝑙 

 

where, the distribution at each node is conditional on the values of its parents. Rather than 

determining the overall joint probability distribution encompassing all variables from the 

outset, the Bayesian Network (BN) approach breaks the distribution into sub-groups and 

derives the local distributions at each node. Scutari and Denis (2015) present that 

specifying a joint probability distribution is rather difficult and complex given the numbers 

of variables and correlations requiring estimation. Therefore, the BN overcomes this 

modelling issue through specifying the local distribution at each node conditional on the 

values of the parents.  

 

 

 

 

 



Figure 4.2.1: Proposed DAG of Relationship Between 2 factors, Stock Returns and Portfolio Returns 

 

 

4.3 Algebraic Representation of the DAG 

The conditional relationships for each of the nodes of the three stocks may be specified as 

an equation, consistent with the assumptions that 1) every node follows a normal 

distribution and 2) the equations represent a Gaussian linear model incorporating an 

intercept, with the node’s parents as the explanatory variables. The specifications in this 

case, for each factor and stock are as follows: 

   𝑆~𝑁(𝜇𝑆, 𝜎𝑆
2)      𝑀~𝑁(𝜇𝑀, 𝜎𝑀

2 )       (4.2) 

                𝐵|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(𝛼𝐵 + 𝛽1,𝐵𝑠 + 𝛽2,𝐵𝑚, 𝜀𝐵
2)                                  (4.3) 



                𝐻|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(𝛼𝐻 + 𝛽1,𝐻𝑠 + 𝛽2,𝐻𝑚, 𝜀𝐻
2 )                                 (4.4) 

                  𝐿|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(𝛼𝐿 + 𝛽1,𝐿𝑠 + 𝛽2,𝐿𝑚, 𝜀𝐿
2)                                  (4.5) 

Where: 𝛼 refers to the intercepts, 𝛽 refers to the regression coefficients for 

the parents, S and M and 𝜀 represents the standard deviation of the residuals. 

 

 

There is no specification for the three-stock portfolio because its subsequent simulated 

returns are derived using equations (3.2) and (3.3).  

 

4.4 Testing for Conditional Independence 

As each arc in the DAG encompasses a probabilistic dependence, conditional 

independence tests can be used to assess whether the data actually supports it. In terms of 

hypotheses, for each variable, the following conditional dependencies are being tested: 

 

𝐻0: 𝐵 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆     versus    𝐻1: 𝐵 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆 

𝐻0: 𝐵 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀     versus    𝐻1: 𝐵 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀 

𝐻0: 𝐻 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆     versus    𝐻1: 𝐻 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆 

𝐻0: 𝐻 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀     versus    𝐻1: 𝐻 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀 

𝐻0: 𝐿 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆     versus    𝐻1: 𝐿 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑀|𝑆 

𝐻0: 𝐿 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀     versus    𝐻1: 𝐿 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑆|𝑀 

 

The null hypothesis depicts that B, H or L may be independent from M given S or S given 

M. If the null is proven, the Beta coefficients in equations 4.3 to 4.5 are equal to zero. Using 

“B” as an example, through the hypotheses, the partial correlation between B and M given 



S or S given M, is being tested – denoted by 𝜌𝐵,𝑀|𝑆 or 𝜌𝐵,𝑆|𝑀. The null holds if 𝜌𝐵,𝑀|𝑆 or 

𝜌𝐵,𝑆|𝑀 is not statistically different from zero. In the test, the appropriate distribution is a 

student’s t distribution with n – 3 degrees of freedom (where n refers to the total number 

of observations in each time series of B, H and L and 3 refers to the number of variables in 

the test e.g. B, S and M).  

  𝑡(𝜌𝐵,𝑀|𝑆) = 𝜌𝐵,𝑀|𝑆 √
2911

1−𝜌𝐵,𝑀|𝑆
2                                                     (4.6) 

The null hypothesis of independence is rejected if the corresponding p-value is less than 

the 10%, 5% and 1% degrees of significance.  

 

4.5 Simulating the Returns’ Distributions 

Following the independence tests in section 4.4, the parameters of equations 4.3 to 4.5 are 

estimated using the maximum likelihood estimator. Each time-series of bank returns, as 

the response variables, are regressed on the time-series of the daily percentage change in 

the LIBOROIS spread and the daily returns in the market index. Having determined the 

parameters of the models proposed by the DAG in section 4.3, they are then used to 

simulate sets of random variables for each node, B, H and L. Simulation is performed from 

the BN by generating a sample of random values from the joint distribution of the specified 

nodes. It is performed following the order implied by the arcs in the DAG – from the 

parents first, followed by the children (LIBOROIS and the Market being the parents, the 3 

banks being the children). For each node, 2,914 random values are generated – depicting 

estimates of the daily returns for each stock. In each case, the simulation is performed on 



the basis of both a normal distribution and a student’s t-distribution, using the “rnorm” and 

“rt” functions in R-studio.  

5 Results 

5.1 Tests of Conditional Independence 

For each of the banks, inverse correlation matrices are produced, which are required for 

the significance tests and generation of p-values. The resulting correlations are presented 

in tables 5.1.1 to 5.1.3.  

Table 5.1.1: Correlation Matrix for Barclays versus 2 parent nodes 

 Barclays Returns LIBOROIS Market 

Barclays Returns 1.0000 0.0332 0.7818 

LIBOROIS 0.0332 1.0000 -0.0827 

Market 0.78718 -0.0827 1.0000 

 

Table 5.1.2: Correlation Matrix for HSBC versus 2 parent nodes 

 HSBC Returns LIBOROIS Market 

HSBC Returns 1.0000 0.0306 0.7828 

LIBOROIS 0.0306 1.0000 -0.0805 

Market 0.7828 -0.0805 1.0000 

 

Table 5.1.3: Correlation Matrix for Lloyds versus 2 parent nodes 

 Lloyds Returns LIBOROIS Market 

Lloyds Returns 1.0000 0.0192 0.6953 

LIBOROIS 0.0192 1.0000 -0.0787 

Market 0.6953 -0.0787 1.0000 



The respective significance tests for the partial correlations are presented in table 5.1.4 In 

all cases, the bank returns have a significant positive correlation with the market (M) given 

the daily percentage change in the LIBOROIS spread (S) and we can thereby reject the null 

hypothesis of independence given the extremely small p-values at all levels of significance. 

In relation to the conditional dependence between the bank returns and the LIBOROIS 

variable, given the market returns, there is positive correlation but at a low level. 

Furthermore, the p-values only indicate significance at the 10% level. However, at that 

level of significance the null hypothesis of independence is rejected and we can surmise 

that there is a degree of conditional dependence between daily bank returns and the chosen 

indicator of liquidity in the financial markets. Thereby, both factors, deemed to be the 

parents in the DAG, can subsequently be applied in the modelling of the bank returns.  

Table 5.1.4: Significance Tests of Partial Correlations 

 𝐵~𝑆|𝑀 𝐵~𝑀|𝑆 𝐻~𝑆|𝑀 𝐻~𝑀|𝑆 𝐿~𝑆|𝑀 𝐿~𝑀|𝑆 

Pearson’s 

Correlation 

0.0332 0.7818 0.0306 0.7828 0.0192 0.6953 

Degrees of 

Freedom 

2911 2911 2911 2911 2911 2911 

P-Value 0.0729* 0.0000*** 0.0991* 0.0000*** 0.0990* 0.0000*** 

Note: * denotes significance at 10%, ** significance at 5%, *** significance at 1%.    
 

5.2 Parameters of the BN Model Specification 

Following the Gaussian linear regression for each bank, the respective maximum 

likelihood estimators are produced and presented in table 5.2.1. Values for the intercepts 

(𝛼𝐵, 𝛼𝐻𝑎𝑛𝑑 𝛼𝐿) and contributions of the parents, as depicted by the Beta coefficients, are 

provided.  



Table 5.2.1: Parameters of the BN Model for the returns of each bank 

𝛼𝐵 𝛼𝐻 𝛼𝐿 𝛽1,𝐵 𝛽2,𝐵 𝛽1,𝐻 𝛽2,𝐻 𝛽1,𝐿 𝛽2,𝐿 𝜀𝐵
2 𝜀𝐻

2  𝜀𝐿
2 

0.0175 0.0174 0.019 0.0053 1.304 0.0028 0.769 0.0036 1.197 1.952 1.152 2.322 

 

The contributions from the LIBOROIS variable are small but the value of the spread itself 

is also and percentage changes in the daily returns of any stock are not frequently sizeable.  

Referring back to equations 4.3 to 4.5, the BN model specifications, following the linear 

regression, are as follows: 

       𝐵|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(0.0175 + 0.0053𝑠 + 1.304𝑚,   1.952)                           (5.1)                                          

      𝐻|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(0.0174 + 0.0028𝑠 + 0.769𝑚, 1.152)                        (5.2) 

      𝐿|𝑆 = 𝑠, 𝑀 = 𝑚~𝑁(−0.019 + 0.0036𝑠 + 1.197𝑚, 2.322 )                        (5.3)   

               𝑆~𝑁(0.76, 12.392)      𝑀~𝑁(−0.0223, 1.882)  

    

Equations 5.1, 5.2 and 5.3 are then applied in simulating sets of returns for the three bank 

stocks. 

 

5.3 Simulated Data         

Following the simulation of time series of returns for each of the three bank stocks and 

subsequent three-stock portfolio, a comparison is made between the summary statistics of 

the original, actual data sets and the simulations, applying both a normal and student’s t-

distribution. Both are presented in tables 5.3.1 to 5.3.4. 

 

 



Table 5.3.1: Comparison of Summary Statistics – Actual versus Simulated Returns - Barclays 

 Barclays Actual 

Returns 

Simulated Returns 

(Normal Dist’n) 

Simulated Returns 

 (t-distribution) 

Mean -0.00759% -0.02102% 0.06029% 

Max 29.2357% 10.45150% 11.02510% 

Min -24.8464% -9.75948% -10.64131% 

Median -0.05013% 0.01165% 0.06097% 

Stdev 3.13367% 3.14959% 3.25881% 

 

Table 5.3.2: Comparison of Summary Statistics – Actual versus Simulated Returns - HSBC 

 HSBC Actual 

Returns 

Simulated Returns 

(Normal Dist’n) 

Simulated Returns 

 (t-distribution) 

Mean 0.002432% -0.008251% 0.03320% 

Max 15.51481% 6.407118% 7.63505% 

Min -18.77880% -6.580565% -7.42987% 

Median -0.00000% 0.038593% 0.07663% 

Stdev 1.84544% 1.82093% 2.13113% 

 

Table 5.3.3: Comparison of Summary Statistics – Actual versus Simulated Returns - Lloyds 

 Lloyds Actual 

Returns 

Simulated Returns 

(Normal Dist’n) 

Simulated Returns 

 (t-distribution) 

Mean -0.04285% -0.09143% -0.07486% 

Max 32.21586% 10.26661% 10.93075% 

Min -33.94790% -11.76306% -11.21700% 

Median -0.007604% -0.02116% 0.000267% 

Stdev 2.13653% 1.61464% 1.802019% 

 

 

 

 

 

 

 



Table 5.3.4: Comparison of Summary Statistics – Actual versus Simulated Returns - Portfolio 

 Portfolio Actual 

Returns 

Simulated Returns 

(Normal Dist’n) 

Simulated Returns 

 (t-distribution) 

Mean -0.018333% -0.04074% 0.011784% 

Max 21.21970% 6.19230% 6.413994% 

Min -16.38410% -5.72795% -5.939262% 

Median -0.007604% -0.021160% 0.000267% 

Stdev 2.13653% 1.61464% 1.802019% 

 

Given that the mean return is expected to be close to zero, in all cases the simulated values 

are consistent. Furthermore, the simulated standard deviations match the actuals with 

reasonable accuracy. Of greater relevance is the model’s ability to derive meaningful 

estimates of minimum returns, given the implications for VaR. For each bank and the 

portfolio, the estimated minimum returns are significantly different from the actual values. 

However, given the underlying assumption of a Gaussian BN and normality, it will not 

necessarily correctly evaluate the tails of the distribution. It is encouraging that, when 

applying a t-distribution, the resulting minima are larger than in the normal case for three 

of the four data series – consistent with its ability to model tails more effectively. Despite 

the clear differences in summary statistics, it is important to consider the relative accuracy 

of the model in relation to quantiles. After all, they are used as the cut-off points in relation 

to VaR calculations. Given that the most severe maxima or minima values for daily returns 

occur so infrequently, they are not necessarily an accurate indicator of the most likely 

maximum daily loss. Thereby, a comparison of the quantiles from the actual returns and 

the simulated cases are presented in tables 5.3.5 to 5.3.8.  

 



Table 5.3.5: Comparison of Quantiles – Actual versus Simulated - Barclays 

Quantile Barclays 

Actual 

Simulated 

(Normal 

Dist’n) 

Over / 

Under 

Estimates 

Simulated  

(t-

distribution) 

Over / 

Under 

Estimates1 

1% -8.786% -7.782% Under -7.479% Under 

5% -4.372% -5.174% Over -5.288% Over 

10% -3.069% -3.976% Over -4.123% Over 

90% 2.939% 3.854% Over 4.287% Over 

95% 4.785% 5.035% Over 5.482% Over 

99% 8.641% 7.322% Under 7.708% Under 
 

Table 5.3.6: Comparison of Quantiles – Actual versus Simulated - HSBC 

Quantile HSBC 

Actual 

Simulated 

(Normal 

Dist’n) 

Over / 

Under 

Estimates 

Simulated  

(t-

distribution) 

Over / 

Under 

Estimates1 

1% -5.279% -4.215% Under -4.718% Under 

5% -2.546% -3.065% Over -3.529% Over 

10% -1.835% -2.382% Over -2.774% Over 

90% 1.849% 2.289% Over 2.752% Over 

95% 2.689% 3.008% Over 3.615% Over 

99% 5.107% 4.154% Under 5.035% Under 
 

Table 5.3.7: Comparison of Quantiles – Actual versus Simulated - Lloyds 

Quantile Lloyds 

Actual 

Simulated 

(Normal 

Dist’n) 

Over / 

Under 

Estimates 

Simulated 

(t-

distribution) 

Over / 

Under 

Estimates1 

1% -8.893% -7.859% Under -7.809% Under 

5% -4.408% -5.390% Over -5.523% Over 

10% -3.051% -4.204% Over -4.394% Over 

90% 2.920% 3.927% Over 4.210% Over 

95% 4.468% 5.268% Over 5.318% Over 

99% 9.079% 7.487% Under 8.264% Under 

 

Table 5.3.8: Comparison of Quantiles – Actual versus Simulated - Portfolio 

Quantile Portfolio 

Actual 

Simulated 

(Normal 

Dist’n) 

Over / 

Under 

Estimates 

Simulated  

(t-

distribution) 

Over / 

Under 

Estimates1 

1% -5.874% -3.881% Under -4.236% Under 

5% -3.099% -2.766% Under -2.997% Under 

10% -2.187% -2.106% Under -2.312% Over 

90% 2.079% 2.027% Under 2.300% Over 

95% 3.163% 2.641% Under 2.938% Under 

99% 6.423% 3.582% Under 4.318% Under 

 



In all cases, the simulated 1% quantiles from the simulated returns, are less than those 

based upon the actual time series of returns. Perhaps not surprising given the underlying 

normal distribution assumption. However, the related simulated 5% and 10% quantiles are 

larger than those on an actual basis. This implies greater prudence in subsequent VaR 

estimates due to the left tail being larger in the simulated cases if the quantiles are used as 

the appropriate cut-off. Despite the under-estimations at the 1% level, the simulated results 

are still of use in a practical context due to the industry convention of reporting VaRs at 

the 5% level for individual stocks. The simulated portfolio quantiles are slightly misleading 

given that they are impacted by the respective weights of the component stocks. They are, 

nevertheless, comparable to the portfolio actual quantiles at both the 5% and 10% levels.  

Application of the t-distribution, allows for a more realistic modelling of the tails. 

Consequently, in the simulations, the resulting 5% and 10% quantiles for all stocks are 

even more prudent than in the normal case and also at the 1% level for HSBC.  

Table 5.3.9 illustrates the absolute percentage increases in the 5% and 10% quantiles 

offered by the simulated results. At the 5% level, the increases in the quantile range from 

0.5% to just over 1%. From a regulatory perspective, and the setting aside of regulatory 

capital based on VaR assessments, an additional 1% would be significant – if we consider 

the notional values of stocks and equity portfolios. 

Table 5.3.9: Absolute % increase in 5% and 10% quantiles offered by Simulated Data 

 Barclays  

Normal 

Dist’n 

HSBC  

Normal 

Dist’n 

Lloyds 

Normal 

Dist’n 

Barclays  

t-dist’n 

HSBC  

t-dist’n 

Lloyds 

t-dist’n 

5% 0.802% 0.519% 0.982% 0.916% 0.983% 1.115% 

10% 0.907% 0.547% 1.153% 1.054% 0.939% 1.343% 

 



Finally, figures 5.3.1 to 5.3.3 reflect the fitted distributions of the simulated stock returns 

according to the underlying assumption of normality. 

 

 

 

 

 

Figure 5.3.1: Barclays Fitted Simulated Returns 

 

Figure 5.3.3: Lloyds Fitted Simulated Returns 

 

Figure 5.3.2: HSBC Fitted Simulated Returns 

 

 

Consistent with the quantiles reflected in 

tables 5.3.5 to 5.3.7, the left tails in the 

fitted distributions reflect the 10%, 5% 

and 1% levels. For example, the 1% 

quantile for Lloyds being -7.859% and 

reflected in the spread of the left-hand 

side of figure 5.3.3. 

Figure 5.3.4 reflects comparisons between the original and simulated returns for each stock 

on the basis of an assumed Chi-Squared Distribution. In each case, the outcomes are 

similar. 



Figure 5.3.4: Comparative Graphs of Original versus Simulated Squared Returns and Chi-Squared 

Distribution: 

 

 

 
 

 

 

 

 

 



5.6 Concluding Remarks 

This paper provided a BN approach to modelling stock returns. The data was sourced from 

Bloomberg and included time series of daily returns for three UK banks, namely, Barclays, 

HSBC and Lloyds. A subsequent portfolio was constructed from the three stocks. Using a 

degree of qualitative judgement, a DAG was constructed using the evidence presented in 

the literature with regards factors being important in relation to their impact on stock 

returns. In this instance, the market and the liquidity factors were selected with the latter 

being represented by the 3-month LIBOR versus OIS spread.   

The DAG suggested conditional dependencies between the factors and stock returns, 

subsequently verified by conditional independence tests and partial correlations. Whilst 

low levels of significance were indicated for the liquidity factor, it did still exist and the 

linear regression models were specified for the returns of each stock.  The latter were 

subsequently used to simulate time series of returns. Summary statistics and quantiles were 

compared for the actual returns and the simulated returns. Whilst the simulated returns 

underestimated minimum values, the quantiles were comparable at the 5% and 10% levels. 

The latter suggests that the underlying Gaussian BN (GBN) could be applied in modelling 

stock returns and could be further used to estimate quantiles and VaR cut offs. Although it 

does assume normality, and may be regarded as over-simplifying the modelling issues, its 

comparable estimations are a positive. An objective in this instance was to suggest a 

workable alternative to the RiskMetrics approach in deriving VaR. As suggested by Scutari 

and Denis (2015), a more complex specification may be preferred but relatively simple 



models often perform better. Indeed, the widely used RiskMetrics approach is convenient 

to apply and well understood but, I suggest that the GBN is as intuitive and, furthermore, 

appears to provide prudent estimates for the quantiles used as the cut-offs in VaR 

calculations. Given that losses were underestimated in the 2008 financial crisis applying 

VaR techniques of the time, a model resulting in a potential 1% increase in regulatory 

capital would be an improvement. Based on a portfolio with a notional value of £1 billion, 

it would result in at least an additional £10 million in regulatory capital.  

There are, of course, certain limitations with this technique, not least of which is 

determining the DAG structure in the first instance. Subsequently, if the structure is 

ascertained, there may be issues with data being readily available representing the 

components of the DAG – for example sourcing regular data in relation to balance sheet 

indicators such as levels of indebtedness or rising levels of delinquencies amongst bank 

customers.  Furthermore, although the network can be altered or updated for new 

components, as the number of variables grows, the simulation methods may produce less 

reliable estimations.  
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