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Abstract

This paper studies how the structure of centralized markets may
a¤ect the e¢ cient allocation in anonymous decentralized trades. In
line with previous studies, we show that e¢ ciency in decentralized
markets can be sustained in a moneyless �nite-number-of-agents set-
ting if agents are patient enough and the price is observed with noise
as long as the noise disappears, but not too fast, as the number of
agents grows. We also show that the Levine-Pesendorfer noise can be
applied to dynamic games, not only to static games.

Keywords: Essentiality of money, anonymity, noisy prices, trading
post

1 Introduction

In any ideal monetary model, money should be essential in the sense that it
helps to achieve a better allocation compared to a model without it. This
guiding principle has led a large segment of the money literature to introduce
a variety of frictions in the trading process that make intertemporal trades

�I would like to thank an associate editor and three anonymous referees who helped
to improve the paper. Address: Management School, University of Liverpool. Email:
am2527@liverpool.ac.uk.
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(i.e. trade credit) more di¢ cult.1 The idea is that money allows agents to
trade quid pro quo as it is an immediate compensation for the producer of
goods, which expands the set of feasible allocations when trade credit is not
possible.
A limitation of this literature is that the frictions that impair trades are

usually descriptive and insu¢ ciently formalized. For example, agents are
merely assumed to meet and trade in pairwise meetings but the physical
environment (preferences, technologies, etc.) under which this happens is
not made explicit. This prevents a clear understanding of how these frictions
reduce the set of feasible allocations.
In an attempt to overcome this limitation, part of the money literature

has focused on the underlying economic conditions that a¤ect the essentiality
of money. For example, Aliprantis, Camera and Puzzello (2006, 2007c) pro-
vide rigorous set-theoretic foundations to bilateral matching theory. In their
paper, anonymity is a result rather than an assumption. Araujo (2004) and
Aliprantis, Camera, and Puzzello (2007a, 2007b) showed that anonymity in
bilateral trades is not su¢ cient for money to be essential. Lack of commu-
nication is also needed.2 To see this, think of a gift-giving economy without
money where each agent agrees to produce a good in a bilateral meeting
whenever it is his turn to do so with the expectation that others will do the
same in the future when it is their turn to produce. If an agent deviates by not
producing in a meeting, then his trading partner �who will never meet him
again�can communicate the deviation to other agents who can punish the
deviator in future trading. In other words, agents can use social norms and
social punishment as a threat to sustain the desired outcome. These studies
show that such a scheme is e¤ective as long as agents are patient enough
and information spreads quickly enough. They also show that the speed at
which the information spreads among agents depends on how markets are
structured. For example, it may take several rounds of decentralized trades

1These frictions, which are mainly in the form of informational and spatial separations,
are made explicit by assuming agents interact in small coalitions. To this end, the literature
relied on pairwise random matching models as in Kiyotaki and Wright (1989), Shi (1997),
Green and Zhou (1998), and Lagos and Wright (2005), to cite a few. For earlier studies
on the essentiality of money, see e.g. Ostroy (1973), Kocherlakota (1998), and Wallace
(1998).

2Araujo (2004) introduces social norms in a setup similar to Kiyotaki and Wright
(1989), whereas Aliprantis, Camera and Puzzello (2007a, 2007b) do so in a Lagos and
Wright�s (2005) framework. See Kandori (1992) for a seminal paper on social norms.
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in Kiyotaki and Wright (1989) before the deviator gets punished. In con-
trast, punishment can take place immediately in centralized economies such
as in Lagos and Wright (2005). In this context, Aliprantis, Camera, and
Puzzello (2007b) show that money can fail to be essential in large economies
if individual�s actions are observable and agents are patient enough.
The assumption that individual�s actions are observable in large economies

is quite strong, though. A more plausible assumption is that aggregate vari-
ables, e.g. prices, are perfectly observable. Araujo, Camargo, Minetti, and
Puzzello (2012), ACMP hereafter, address this issue by studying a �nite-
number-of-agents framework similar to Lagos and Wright. They show that
there exists a non-monetary equilibrium that implements the �rst-best if
agents observe prices instead of actions. The idea is that individuals are non-
zero measure in �nite-number-of-agents economies, so there is a one-to-one
correspondence between individual�s actions and the price. Consequently,
a deviation by an agent has a measurable e¤ect on prices and so can be
detected regardless of the population size.
A more realistic assumption in large economies is that prices are ob-

served only with noise. ACMP extend their analysis to this case and show
that money remains essential if the ratio between the number of agents who
participate in trade and the number of goods that are traded in the central-
ized market is su¢ ciently large. In other words, they show that the way the
centralized market is modeled matters for the essentiality of money.
The focus of the present paper is the same as ACMP�s. It di¤ers from

theirs in the way we formalize the noise. While ACMP follow the approach
in Green (1980) in modeling the noise, we follow Levine and Pesendorfer
(1995). In ACMP, the map between the agent�s actions and the price is not
deterministic, but agents observe the price with certainty. In our model,
the map between the actions and the price is deterministic, but the price is
observed with noise.
As a result of the way the Levine-Pesendorfer noise is formalized, we

obtain an expression for consumption that is di¤erent from the usual one
which is given by total bids divided total production for the trading post.
This is because what an agent gets from the trading post is a¤ected by his
observed price which, in turn, is subject to an i.i.d. shock. Hence, the market
may not clear. To address this point, we introduce rationing. For simplicity,
we assume a rule such that rationing (lump-sum transfer, if there is an excess
supply) is equal for all agents.
Using the Levine-Pesendorfer noise, we show that there is a sequential
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equilibrium that sustains an e¢ cient outcome in the decentralized stage. In
this equilibrium, players neither produce nor trade in the centralized stage
on the equilibrium path. This e¤ectively turns o¤ the noise in the observed
price, and makes it possible to detect deviations. Agents�inactivity in the
centralized stage does not result in a loss of e¢ ciency, however, since there
are no gains from trade in the trading post. In ACMP, by contrast, there are
positive gains from trade, and e¢ ciency is achieved both in the decentralized
stage and the centralized stage.
The paper is organized as follows. Next section discusses the Levine and

Pesendorfer�s (1995) noise and related literature. In Section 3, we present
the deterministic setup which is a review of ACMP. Section 4 extends the
deterministic setup to noisy observations and establishes the main result.

2 The Levine and Pesendorfer�s (1995) noise
and related literature

Standard models use the continuum-of-agents assumption. The rationale
for this assumption is that it is a useful idealization of large �nite-number-
of-agents economies. However, in dynamic settings, equilibria can be radi-
cally di¤erent in economies with �nite number of agents and economies with
continuum of agents. In a continuum-of-agents model, the play of any zero-
measure set of agents (and so of any single agent) is ignored (or negligible). In
contrast, in �nite-number-of-agents models, each agent is non-zero measure
and in principle his action can be observed, directly or indirectly. Conse-
quently, in models with �nite number of agents, each agent can be induced
to play in a cooperative way by future rewards or punishments depending
on his current action. This is the case even if agents are anonymous. In-
deed, in �nite economies, a slight change in the aggregate statistic (e.g. the
price vector, or the total supply or demand) from the equilibrium outcome
indicates that someone must have deviated. Thus, social norms can be de-
signed that implement cooperative equilibria. These equilibria are ruled out
in continuum-of-agents models because player�s actions are negligible. This
creates a discontinuity problem in �nite-number-of-agents models in the limit.
Green (1980) was one of the �rst to study the discontinuity problem in

a Cournot-type setting by showing that �rm�s actions can be negligible in
�nite economies if �rms are anonymous and aggregate variables are random.
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Intuitively, as the signi�cance of a �rm becomes small relative to the size
of the economy, the noise makes strategic threats and rewards on certain
equilibria unforceable in the limit. Green (1980) establishes this result by fo-
cusing on some sort of trigger-strategy equilibria. Dubey and Kaneko (1984,
1985) study the relation between information pattern and Nash equilibria
in extensive games in a continuum-of-agents economy and �nite-number-of-
agents economy, respectively. Dubey and Kaneko (1985) propose to solve
the discontinuity problem by assuming that agent�s deviations cannot be de-
tected unless they exceed some small threshold. This assumption is strong as
it implies that agent�s actions are not observable irrespective of the number
of players. Sabourian (1990) generalizes Green�s (1980) results by placing no
restriction on strategies.
On the same lines as Green (1980), Levine and Pesendorfer (1995) propose

to solve the discontinuity problem by introducing some noise in the model.
The two models, however, di¤er on several aspects. Green (1980) studies
in�nitely repeated games while Levine and Pesendorfer focus on three�stage
games. In Green (1980), the map between the player�s actions and the price
is random, but players observe the price with certainty. In Levine and Pe-
sendorfer (1995), in contrast, the map between the actions and the price is
deterministic, but the price is observed with noise. The way the noise is
formalized is also di¤erent in the two models. In Levine and Pesendorfer,
the noise vanishes as the number of agents tends to in�nity, but it does so at
a lower rate than the inverse of the number of players. In Green (1980), the
noise does not depend on the number of players in the economy. Moreover,
Levine and Pesendorfer (1995) focus on a class of games where there is a
large player and a (�nite or in�nite) number of small anonymous players,
while Green (1980) studies a more general class of market games.3

To the best of our knowledge, ACMP and this paper are the �rst to
study the essentiality of money using a noise a la Green (1980) and Levine
and Pesendorfer (1995), respectively. This paper is also the �rst to use the
Levine-Pesendorfer noise in a dynamic setting. Thus, we show that their
noise can be applied to dynamic games, not only to static games.
Our paper is also related to the growing literature that uses experiments

to study topics that are analyzed here (e.g., the essentiality of money) as well

3In particular, Green (1980) compares a sequence of replica markets with a nonatomic
market which is constructed as the limit of a replica sequence of markets.
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as other issues in monetary economics and policy.4 For example, Camera and
Casari (2014) and Du¤y and Puzzello (2014a, 2014b) discuss the essentiality
of money in a model where money is not essential. Similarly, Jiang et al.
(2022) study the essentiality of money both theoretically and experimentally
using mechanism design and a �nite-horizon model. They show that the
use of money and welfare are much higher in treatments where money is
essential. They also �nd that money is sometimes used when it should not.
Du¤y and Puzzello (2022) focus on monetary policy instead. They show
that the Friedman rule does not improve welfare in the lab and it is not
superior to a monetary policy with a constant growth rate of money supply.
A common denominator of these studies is that they use Lagos and Wright
(2005) �or a modi�ed version of it�as a theoretical setting.5 None of these
studies, however, contemplates noisy prices, either in the form of ACMP�s or
Levine-Pesendorfer�s noise.
Our model can be of interest to applied economists for a number of rea-

sons. Firstly, like the studies above, we propose a theoretical setup that is
well suited for the laboratory as it features microfoundations, frictions, and
tractability. Secondly, it would be worth investigating whether our theoret-
ical �ndings (Proposition 1) are supported in the lab. Indeed, the existing
experimental evidence shows that results in the lab may be at odds with theo-
retical predictions (Du¤y and Puzzello, 2022, and Jiang et al., 2022). Thirdly,
introducing noisy observations in the above (and other) laboratory experi-
ments would make the experiment more realistic, especially in treatments
with a large number of subjects. Fourthly, models in this literature typically
admit multiple equilibria due to their self-ful�lling nature �an agent�s will-
ingness to accept money depends on what he thinks other agents will do�and
equilibrium results can be quite sensitive to underlying frictions (Gu et al.,
2013). Noisy observations are one of these frictions and we conjecture that
�ndings in the lab may be substantially di¤erent with and without them, but
a deeper investigation is left to future research.

4See Du¤y (2016, 2021) for surveys on the use of experiments in monetary economics
and policy.

5Lagos and Wright (2005) is well suited to laboratory implementations. The reason for
this is that it is micro-founded and features anonymity, limited commitment, and limited
information, all desirable properties. It is also tractable and simple to understand which is
crucial when conducting laboratory experiments. Moreover, it provides a precise measure
of welfare which allows to assess the impact of di¤erent monetary policies.
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3 The deterministic case

The deterministic setup is very similar to that in ACMP.6 Time is indexed
by t = 1; 2; :::;1. There is a �nite number N of population in the economy
where N is an even number. Agents are indexed by j 2 f1; :::; Ng. There
are two stages in each period and each stage di¤ers in terms of the matching
process, preferences, and technology. In the �rst stage, agents are randomly
matched in pairs. Agents are anonymous in the �rst stage. In the second
stage, trade takes place in a centralized market. Agents discount between
periods, but not within periods. The discount factor is denoted by � 2 (0; 1).
In the decentralized market, agents produce or consume a divisible special

good. With probability 1=2 an agent is a producer in a meeting and with
probability 1=2 he is a consumer. Consuming q � 0 units of the special
good yields utility u(q), while producing q units of this good costs c(q).
We assume u0(q) > 0; u00(q) < 0; c0(q) > 0; c00(q) > 0; u(0) = c(0) = 0;
u0(0) = 1; and c0(0) = 0: We also assume that there exists a �q > 0 such
that u(�q) = c(�q), and there exists a unique e¢ cient quantity produced q� > 0
such that u0(q�) = c0(q�).
In the centralized market, agents can consume and produce a divisible

general good. We assume a trading post protocol in the centralized market.
We also assume quasi-linearity. An agent who consumes x units of the general
good obtains utility x. So, there are no gains from trade.7 An agent who
produces x units of this good incurs a disutility x. Like ACMP, we impose
an upper bound �x > 0 on the amount of goods that an agent can produce
in a period. Both the special good and the general good are not storable, so
they have to be consumed in the same stage where they are produced.

3.1 The stage game

The stage game is an extensive-form game with one round of decentralized
market followed by one round of centralized market. Agents in the �rst stage
can commit themselves to a reaction in the second stage. At the beginning of
the �rst stage, before they are matched pairwise, agents learn their type (i.e.
consumers or producers). In a decentralized meeting agents simultaneously
(and independently) choose from two actions: say "yes" or "no". If at least

6More precisely, we borrow from Araujo, Camargo, Minetti, and Puzzello (2010) which
is an earlier version of ACMP where they assume only one trading post.

7This means that the trading post acts merely as a coordinating device in our model.
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one agent in a match says "no", then no trade takes place and agents walk
away. If both agents in a match say "yes", then the producer transfers the
e¢ cient quantity q� of the special good to the consumer.
In the centralized market, an agent can produce a general good. The

general good produced by an agent can be consumed directly by him or it
can be traded in the trading post. In each period, an agent j simultaneously
and independently chooses the quantity zjt of the general good to be produced
for his own consumption, the quantity yjt of the general good to be exchanged
at trading post; and the bid 0 � bjt � yjt to be submitted to the trading post.
By de�nition, the price of the general good in period t is pt =

PN
j=1 b

j
tPN

j=1 y
j
t

; where

pt = 0 if
PN

j=1 b
j
t = 0. The quantity of the general good that agent j obtains

in the trading post in period t is then xjt =
bjt
pt
where

PN
j=1 y

j
t =

PN
j=1 b

j
t

pt
=PN

j=1 x
j
t : It turns out that the aggregate supply in the trading post is always

equal to the aggregate demand. The price pt is public knowledge.
The amount of goods agent j consumes in the centralized market is given

by the sum of two components: what he produces for himself and what he

receives from the trading post, zjt +
bjt
pt
; while the total amount he produces

is given by the sum of two components: the quantity of goods he produces
zjt for himself and y

j
t for the trading post.

3.2 The repeated game

The environment consists of in�nite repetitions of the stage game in the
previous subsection. Each agent�s history consists of his past actions in both
markets, the actions of his past partners in the decentralized market, and the
history of prices in the centralized market. A behavior strategy for an agent
is a map from the set of all his possible histories into a (mixed) action.
Strategies are described by automata. Let A1 = fyes,nog be the action set

of an agent in the decentralized market and A2 = fa2 = (z; y; b) : z; y 2 R+
and b � yg be the action set of an agent in the centralized market. In our
setup, an automaton is a list (W;w0; (f1; f2); (� 1; � 2)) where W is a set of
states; w0 2 W is the initial state; f1 : W ! �(A1) and f2 : W ! �(A2)
are decision rules in the decentralized and centralized markets, respectively;
and � 1 : W � A21 ! W and � 2 : W � A2 � R+ ! W are transition rules
in the decentralized and centralized markets, respectively. A transition rule
is a speci�cation of behavior as a function of states. A transition rule in
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the decentralized market associates the next state of the automaton with the
agent�s current state and the pro�le of actions in his match. More precisely,
� 1(w; a1; a

0
1) is the new state of an agent who enters the decentralized market

in state w if the consumer and producer in his match choose a1 and a01,
respectively. Similarly, a transition rule in the centralized market associates
the next state of the automaton with the agent�s current state, his action,
and the observed price. We restrict attention to symmetric strategy pro�les,
where all agents behave according to the same automaton. A pro�le of states
for a strategy pro�le � is a map � : W ! f1; :::; N � 1g such that �(w) is
the number of other agents in the population who are in state w, whereP

w2W � (w) = N � 1. Denote the set of all state pro�les by �. A belief
for an agent is a map p : � ! [0; 1] such that

P
w2W Pr (�) = 1, where

Pr(�) is the probability an agent assigns to the event that the pro�le of
states is �, and � the set of all possible beliefs. A belief system for an agent
is a map � : W ! �. In an abuse of notation, we use � to denote the
pro�le of belief systems where all agents have the same belief system �. We
consider sequential equilibria of the repeated game. Note that the repetition
of Nash equilibria of the stage game is an equilibrium outcome. The �rst
best is achieved when in every period trade takes place in all meetings in
the decentralized market and all agents consume the same amount that they
produce in the centralized market.
Let �� be the strategy pro�le where all agents behave according to the

following automaton. The set of states is W = fC;D;Ag, where C stands
for cooperation, D for deviation, and A for autarky. The initial state is C.
The decision rules are

f1(C) = f1(D) = yes, f1(A) = no,

f2(C) = (0; �x; �x); f2(D) = (0; �x; 0); and f2(A) = (0; 0; 0):

For instance, an agent in state C agrees to trade in the decentralized
market (says "yes") and chooses (0; �x; �x) in the centralized market. The
transition rules are

� 1 (C; a1; a
0
1) =

�
C if (a1; a01) = (yes, yes)
D if (a1; a01) 6= (yes, yes)

;

� 1 (D; a1; a
0
1) = D; � 1 (A; a1; a

0
1) = A;
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and

� 2 (w; a2; p) =

�
C if w 2 (C;D) and p 2

�
N�2
N
; 1
	

A if w 2 (C;D) and p =2
�
N�2
N
; 1
	 ;

� 2 (A; a2; p) = A:

An agent in state C in the decentralized market remains in C only if
there is trade in his match, otherwise he moves to state D. Likewise, an
agent in state C in the centralized market stays in C if the price he observes
is either 1 or N�2

N
; otherwise he moves to state A. Note that no agent is ever

in state D after the centralized market (on- and o¤-the-path-of-play). It is
evident that �� implements the �rst best. Indeed, under ��, the transaction
takes place in every decentralized meeting (everybody says "yes") and agents
always choose (0; �x; �x) in the centralized market.
Consider the belief system �� where: an agent in state C believes that all

other agents are in state C; an agent in state A believes that all other agents
are in state A; an agent in state D believes that there is one other agent in
state D, and the remaining N � 2 agents are in state C.
Now, assume �x > c(q�). Then, in equilibrium, the �rst best is achieved

for any � � �, independent of the number of agents N .
To see this, suppose that N � 2 agents choose (0; �x; �x) in the centralized

market and the other two agents choose the action (0; Y; B).8 If (0; Y; B) is
such that the price is N � 2=N , then

p =
2B + (N � 2)�x
2Y + (N � 2)�x =

N � 2
N

;

which implies B=p = BN=(N � 2) = Y � �x. Hence, the �ow payo¤ of the
deviator in the centralized market is U(B=p)�Y = U(Y � �x)�Y = ��x < 0.
Let us �rst check incentives in state C. A producer in the decentralized

market has no pro�table one�shot deviation if

�c(q�) + V �CM � ��x+ �V �DM

which is always satis�ed since �x > c(q�), by assumption. A consumer clearly
has no pro�table one shot deviation either.

8As there are no gains from trade, the choice of Z is irrelevant for an agent�s payo¤, so
we assume Z = 0.

10



Consider now an agent in the centralized market and suppose he chooses
(0; Y; B). In this case, his �ow payo¤ is U(B=p)� Y , where

p =
B + (N � 1)�x
Y + (N � 1)�x

as he believes all another agents are in state C and produce �x and bid �x at
the trading post. Since B=p is increasing in B and B � Y , then the highest
�ow payo¤ the agent can obtain is U(Y )�Y , which is zero. Therefore, there
is no pro�table one�shot deviation.
Let us now check incentives in state D. Consider an agent in the central-

ized market (no agent is ever in state D in the decentralized market). There
are two types of one�shot deviations to consider: (1) the agent behaves so
that p 2 f1; (N � 2)=Ng and so the continuation payo¤ is V �DM ; (2) the agent
behaves so that p =2 f1; (N � 2)=Ng and so the continuation payo¤ is V �A.
Case (1). Clearly, the price can never be 1 as B � Y . If the agent behaves

such that p = (N � 2)=N , then

p =
B + (N � 2)�x
Y + (N � 1)�x =

N � 2
N

which implies BN= (N � 2) = Y � �x, as one another agent is in state D and
produces �x and bids 0 at the trading post. Thus, the payo¤ from a one�shot
deviation is

U(B=p)� Y + V �DM = U(Y � �x)� Y + V �DM = ��x+ V �DM :

Since �x > 0, there is no pro�table one-shot deviation.
Case (2). A one-shot deviation is not pro�table if

��x+ �V �DM � B=p� Y + V �A
or, equivalently,

��x+ �

2 (1� �) [u (q
�)� c (q�)] � B=p� Y: (1)

Since B=p is increasing in B and B � Y , it holds that

B=p� Y � Y
Y + (N � 1)�x
Y + (N � 2)�x � Y

=
Y �x

Y + (N � 2)�x
< �x:
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Since the right-hand side of the last inequality is bounded above by �x
and the left-hand side of (1) goes to in�nity as � goes to 1, then there exists
a � such that a one-shot deviation is not pro�table if � >�. Finally, it is
straightforward to see that no one-shot deviation is pro�table in state A.
The main idea is that, if a defection occurs in the decentralized trading

stage, players can use prices in the centralized trading stage to �broadcast�
their (anonymous) partner�s cheating behavior. This deters defections in the
decentralized stage through the threat of future punishments if agents are
patient enough. In the next section, we show that under some conditions this
�broadcasting� ability is not diminished by adding the Levine-Pesendorfer
noise.

4 The noisy case

In what follows, we depart from ACMP by assuming a di¤erent noise, a noise
a la Levine and Pesendorfer (1995).
Suppose that each agent can observe the price in the trading post only

with some degree of imperfection. Let pt be the actual price of the general
good in period t, and suppose that agent j observes a random variable vjt ,
de�ned as

vjt =
pt

1 + "jt
; where (2)

pt =

PN
j=1 b

j
tPN

j=1 y
j
t

; and (3)

"jt = �
Nt �
N;j
t : (4)

The term 
Nt is a positive number, 
Nt �
N;j
t is an observational error, and

0 < � <
p
2 a constant parameter. For simplicity, we assume that �N;jt is a

continuous i.i.d. random variable with support [�1; 1] and zero mean.
We assume 
Nt = 1p

N
as a functional form. It is easy to see that this

choice of 
Nt satis�es the Levine-Pesendorfer (1995) condition (p.1164), i.e.

Nt ! 0; and N
Nt ! 1 as N ! 1. This condition is key for our results.
The �rst assumption, 
Nt ! 0 as N ! 1, ensures that the error term
vanishes as the number of agents goes to in�nity. The second assumption,
N
Nt ! 1 as N ! 1, ensures that the error term vanishes at a rate less
than 1

N
as the number of agents increases.

12



Note that 
N�N;j has support
h
� 1p

N
; 1p

N

i
and the observational error

"jt = �
N�N;j has support
h
� �p

N
; �p

N

i
. Also note that �
Nt satis�es the

Levine-Pesendorfer condition as well. From (2), the noisy variable, vt; has
support [vt; vt] with vt =

pt
1+ �p

N

and vt =
pt

1� �p
N

.

4.1 Rationing

The usual expression for own consumption de�ned as own bid divided by
the price, xj = bj

vj
, does not guarantee market clearing in the noisy case. To

see this, note that
PN

j=1
bj

vj
di¤ers from

PN
j=1

bj
p
because of the i.i.d. error

term. So, we need to rely on some form of rationing/transfer for the market
to clear. For simplicity, we assume that the per-capita rationing (transfer, if
there is excess supply) is the same for all agents; i.e. individual consumption
for all agents is reduced (increased) by the same quantity accordingly. Then,
what an agent j obtains from the trading post is

xj =
bj (1 + "

j)

p
� 1

N

NX
i=1

bi"
i

p
:

The �rst term on the right-hand-side is the usual expression for own con-
sumption in the absence of rationing, i.e. own bid divided by the (observed)
price. The second term is new and can be interpreted as the per-capita
rationing/transfer component, whereas

PN
i=1

bi"
i

p
is the aggregate excess de-

mand (excess supply, if negative). Total consumption with rationing is

NX
j=1

xj =
NX
j=1

"
bj (1 + "

j)

p
� 1

N

NX
i=1

bi"
i

p

#
=

NX
j=1

bj
p
=

NX
j=1

yj:

Hence, the trading post always clears.

4.2 The repeated game

The in�nitely repeated game when prices are noisy is the same as the one
described in the deterministic case, except that agents now observe vt, not
the actual prices pt. Hence, the transitions rules depend on the observed
prices vt, rather than the actual prices pt.
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The decision rule f1 is also the same but f2 now di¤ers, as described
below. Let ��� be the strategy pro�le where all agents behave according to
the following automaton. The decision rules f1 and f2 are now given by

f1(C) = f1(D) = yes, f1(A) = no,

f2(C) = f2(A) = (0; 0; 0); and f2(D) = (0; �x; �x):

The initial state is state C. Then, the transition rules � 1 and � 2 are

� 1 (C; a1; a
0
1) =

�
C if (a1; a01) = (yes, yes)
D if (a1; a01) 6= (yes, yes)

;

� 1 (D; a1; a
0
1) = D; � 1 (A; a1; a

0
1) = A;

and

� 2 (w; a2; vt) =

�
C if w 2 (C;D) and vt = 0
A if w 2 (C;D) and vt 6= 0

;

� 2 (A; a2; vt) = A:

Consider the belief system ��� where: (i) an agent in state C believes
that all other agents are in state C; (ii) an agent in state A believes that all
other agents are in state A; (iii) an agent in state D believes that there is one
other agent in state D, and the remaining N�2 agents are in state C. Under
���, the transaction takes place in every decentralized meeting (everybody
says "yes") and all agents are in state C in the centralized market. Hence,
��� implements the �rst best.

Proposition 1 For any e� � � < 1, (���; ���) is a sequential equilibrium.
Proof. Let V ��DM and V ��CM be the discounted lifetime utility of an agent in
state C before he enters the decentralized and centralized market, respec-
tively. Then,

V ��DM =
1

2 (1� �) [u (q
�)� c (q�)] and V ��CM = �V ��DM :

Let V ��D be the lifetime utility of an agent in state D before he enters the
centralized market. Then,

V ��D = � [�V ��DM + (1� �)V ��A ]
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where � is the probability that v = 0 and 1�� is the probability that v 6= 0.
Now, let�s assume an agent is in state D in the centralized market. There
can be two cases: (1) he can follow the rule or (2) he can deviate.
Case (1). Assume the agent follows the rule. Then, he bids �x and produces

�x to the trading post. Because there is one other agent in state D, who does
exactly the same, while everyone else do not participate in the trading post,
then the actual price is pD = 1. In this case, the price an agent j observes is
vj = pD=(1+"

j) which is di¤erent from zero with probability 1 (� = 0) as the
distribution of vj is continuous. Therefore, the observed price signals that
a deviation occurred. Hence, the economy moves to state A with certainty
next period and V ��D = �V ��A = 0. There is no one-shot deviation that
restores state C once an agent is in state D; permanent autarky is the only
equilibrium.
Case (2). Assume the agent deviates and chooses (0; Y; B). Since one

other agent is in state D who bids �x and produces �x to the trading post, the
actual price is p0D =

B+�x
Y+�x

> 0. In this case, the price an agent j observes
is vj = p0D=(1 + "

j) which again is di¤erent from zero. This signals that
a deviation occurred that moves the economy to state A next period and
V ��D = �V ��A = 0. No one-shot deviation restores state C once an agent is in
state D and permanent autarky is the only equilibrium.
We now check agents� incentives. Let us �rst check incentives in state

C. If the agent is a producer in the decentralized market, then he has no
pro�table deviation if

�c (q�) + V ��CM > V ��D = 0, �

2 (1� �) [u (q
�)� c (q�)] > c (q�)

which is always satis�ed as long as � is close enough to 1. A consumer has no
pro�table deviation either. Consider now an agent in the centralized market.
If he cooperates, he has zero �ow payo¤as nobody participates to the trading
post. If he chooses (0; Y; B) with Y > 0, his expected �ow payo¤ is

E
�
B (1 + "j)

p0C
� 1

N

B"j

p0C
� Y

�
=
B

p0C
� Y;

as E("j) = 0, by de�nition, where "j is his noise and the �rst two terms
within brackets denote his consumption xj. The actual price resulting from
the deviation is p0C =

B
Y
since he believes he is the only one to use the trading

post. Hence, his expected �ow payo¤ from a deviation is zero. Since V ��DM is
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already the highest continuation payo¤ possible, the agent has no pro�table
one-shot deviation.
Consider now an agent in state D in the centralized market. If he chooses

(0; Y; B) with Y > 0, then p0D =
B+�x
Y+�x

is positive as one other agent is in state
D who bids �x and produces �x to the trading post. Then his expected �ow
payo¤ is

E
�
B (1 + "j)

p0D
� 1

N

B"j + �x"i

p0D
� Y

�
= B

Y + �x

B + �x
� Y;

as E("j) = E("i) = 0, by de�nition, where "j is his noise and "i is the
other agent in state D�s noise. It is evident that his expected �ow payo¤ is
maximized at Y = B and always non-positive. As we have shown above,
a positive price triggers permanent autarky, so his continuation payo¤ from
choosing (0; Y; B) is zero. Therefore, the agent has no pro�table one-shot
deviation.
Now, suppose he chooses (0; Y; B) with Y = 0. Since B � Y , then B = 0

and so his expected �ow payo¤ is

E
�
� 1
N

�x"i

p0D

�
= 0;

since the other agent in state D�s noise is such that E("i) = 0. The economy
moves to autarky next period, so his continuation payo¤ is zero. Conse-
quently, there are no pro�table one-shot deviations for an agent in state D.
It is evident that there are no pro�table one-shot deviations in state A.

The idea of the proof of Proposition 1 is as follows. If agents are patient
enough, the threat of punishment from a deviation is enough to sustain co-
operation in the decentralized stage. In contrast, if agents are not su¢ ciently
patient, the punishment is not severe enough to deter them from deviating;
permanent autarky is the only outcome. Note that agents cannot use the
centralized market to punish a deviation directly, as there are no gains from
trade. They can only use it as a coordination device to punish past deviations
in future decentralized market meetings. If they observe no deviation in the
decentralized market, agents do not participate in the next round of trading
post. This results in p = 0 which e¤ectively turns o¤ the noise. If a devia-
tion is observed in the decentralized market, at least one agent participates
in the next round of trading post. This results in p > 0 which turns on the
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noise. Since the distribution of v is continuous, v = 0 is a zero probability
event when p > 0. Hence, a deviation in the decentralized market is detected
with certainty in the next round of trading post. Permanent autarky as the
only punishment for a deviation in the decentralized market is made here for
simplicity. A less severe punishment, such as a �nite number of periods in
autarky before cooperation is restored, would still be a deterrent if agents
were patient enough.
It is important to emphasize that the observed price v and the rationing

amount convey di¤erent information about the noise. The price vj observed
by an agent j depends on his own noise, "j, but not on the other agents�
noise. In contrast, the rationing amount depends on the noise of all agents,
"1; "2;���; "N . Thus, rationing provides some information about the noise distri-
bution that is not in v. In principle, this information can be used strategically
to achieve a better outcome if � < e�. Indeed, by just observing v, the current
strategy already achieves the highest payo¤s if � > e�. A further investigation
of this aspect would be very interesting but we leave it to future research.

5 Conclusion

Araujo, Camargo, Minetti, and Puzzello (2012) show that, in economies with
alternating centralized and decentralized markets, the way one models the
former matters for the allocation in the latter. We show that this result is
robust to a change in the noise speci�cation. Using the noise speci�cation
in Levine and Pesendorfer (1995), we show that the e¢ cient allocation in
anonymous decentralized trades can be sustained when the noise goes to zero
�but not too fast�as the population grows. We also show that the Levine
and Pesendorfer�s (1995) noise can be applied to dynamic games, not only to
static games. We propose two directions for future research. Theoretically, it
would be worthwhile to analyze the e¤ects of noisy observations when agents
are not anonymous, but the number of actions is bounded as in Fudenberg,
Levine, and Pesendorfer (1998). Experimentally, it would be interesting to
study noisy prices in the lab and compare the results with those in previous
experiments. This may also help to verify whether our theoretical predictions
(Proposition 1) are supported in the laboratory.
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