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Abstract

We fully identify the class of social choice functions that are implementable

in von Neumann Morgenstern (vNM) stable sets (von Neumann and Mor-

genstern, 1944) by a rights structure. A rights structure formalizes the idea

of power distribution in a society. Following the so-called Harsanyi’s cri-

tique (Harsanyi, 1974), we also study the implementation of social choice

correspondences in strict vNM stable sets.
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 Introduction

THE FIRST SOLUTION CONCEPT for a general model of binding agreements has

been introduced by von Neumann and Morgenstern (1944) in their monumental

work on game theory. “The solution”, so eloquently named by the authors and

now widely referred to as the von Neumann Morgenstern (vNM) stable set, builds

on a notion of dominance. A social state x dominates a state y if a coalition of

agents has the right to move from y to x and each of its members strictly prefers

x over y. The vNM stable set satisfies two properties. Internal stability : No state

in the set is dominated by another state in the set. External stability : Every state

outside the set is dominated by a state in the set.

Despite its applications in several areas, we still do not have a full under-

standing of the vNM stable set. We know that it is usually not unique (Lucas,

1968) and may fail to exist (Lucas, 1992). Also, the problem of its computation

is undecidable (Deng and Papadimitriou, 1994). As Aumann (1987) aptly noted:

Finding stable sets involves a new tour de force of mathematical rea-

soning for each game or class of games that is considered. Other than

a small number of very elementary truisms (e.g., that the core is con-

tained in every stable set), there is no theory, no tools, certainly no

algorithm.

These facts imposed the Core as the central solution concept for games where

coalitions are the fundamental decision units (Gillies, 1959). The Core is the

set of undominated states, so its points are immune to coalitional deviations.

A limitation of the Core is that it excludes a state just because another state

dominates it without requiring that the coalitional deviation itself is credible.1

As pointed out by Ray and Vohra (2019), the idea of credibility is circular. A

deviation is credible if no other credible deviation challenges it. The vNM stable

set embodies this idea since it can be equivalently defined as the set of states

that are not dominated by any state in the vNM stable set (von Neumann and

1This recently motivated Grabish and Sudhölter (2021) to identify necessary ad sufficient
conditions for TU-games under which the Core coincides with the unique vNM stable set.
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Morgenstern, 1944). Of course, the vNM stable set includes the Core, but it may

also include other elements. This feature is significant because the Core might

not be able to fully describe all agents’ bargaining possibilities. In contrast, the

vNM stable set may offer consistent predictions in several environments such as

pure exchange economies (e.g. Einy and Shitovitz, 2003), matching (e.g. Ehlers,

2007; Herings, Mauleon and Vannetelbosch, 2017) and assignment problems (e.g.

Núñez and Rafels, 2013). Recently, Ehlers and Morrill (2020) introduce a notion

of stability à la von Neumann and Morgenstern in public school choice problems.

To make this point clearer, let us consider the following simple trading example.

A seller has one indivisible object to be sold to one of two potential buyers. The

valuation of the seller is zero, and the valuations of buyers, say v1 and v2, lie in

the interval r0,M s Ď R`. Suppose that buyer 1’s valuation is positive but smaller

than buyer 2’s valuation—that is, 0 ă v1 ă v2. Let us assume that buyer i “ 1, 2

would be willing to pay at most his valuation for the object. The Core of this

trading example includes all trades where buyer 2 receives the object and pays a

price p P rv1, v2s to the seller. Suppose that the seller and buyer 2 would trade at

a price p P r0, v1q that is outside the Core. The standard story says that this is

impossible because buyer 1 would offer a higher price. However, the offer by buyer

1 is not credible because buyer 2 can credibly make an even larger counteroffer.

The vNM stable set embodies this recursive idea: An allocation is stable even

when a coalition can improve upon it because the new allocation can be credibly

challenged by another deviation. In this example, the vNM stable is larger than

the Core because it consists of all trades where buyer 2 receives the object and

pays a price p P r0, v2s to the seller.

The above trading example is not an exception.2 Then, the solution concept

of the Core, and so mechanisms implementing in Core, may not always function

properly. To overcome these shortcomings, the designer may consider implement-

ing in vNM stable instead.

2The Core can possibly exclude states that would not be credibly dominated. This, among
others, is confirmed by empirical findings in matching markets that suggest that the Core can
be small (e.g. Roth and Peranson, 1999).
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The importance of the vNM stable set as a solution concept is undoubted.

However, its normative investigation is almost entirely unexplored territory.3 This

paper aims to fill this vacuum by studying the vNM stable set in the realm of

implementation theory.

Implementation theory offers a framework for the design of institutions, empha-

sizing the problem of incentives. A common interpretation of an implementation

problem is that a hypothetical planner wants to achieve a socially desirable out-

come without knowing agents’ preferences. The social objective the planner wants

to achieve is summarized by a social choice function (SCF), that is, a single-valued

function mapping agents’ preferences into an outcome. The planner decentralizes

the decision-making by designing a mechanism or game form to achieve his goal.

Roughly speaking, a mechanism represents the communication and decision as-

pects of an organization. Formally, it specifies a message space for each agent

and an outcome function mapping vectors of messages into decisions. A mecha-

nism implements an SCF if its equilibrium outcome is consistent with the SCF,

irrespective of agents’ preferences.

Although successful results have been obtained in the last decades in identi-

fying the classes of SCFs that can be implemented with this approach, it is still

unclear how to replicate the circular character of the vNM stable set via a game

form. To overcome this issue, we follow the approach developed by Sertel (2001)

and Koray and Yildiz (2018), who propose a notion of rights structure as a for-

malization of what a coalition can or cannot do in a society. A rights structure

is a flexible tool for designing institutions such as constitutions, legal codes, and

rules of conduct. Moreover, it has the merit of formulating rules of behavior in a

language that is easily understandable and closer to “real life” rules. With this

approach, an implementation problem consists of designing a rights structure such

that its equilibrium outcome corresponds to the outcome of the SCF, irrespective

of agents’ preferences. In solving this problem, the planner describes the available

alternatives via a set of possible states and specifies which agents or coalitions

3A notable contribution is due by Kimya (2023) who provides an axiomatization of a far-
sighted version of the vNM stable set.
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have the right to move from one state to another.4 A devised rights structure im-

plements a given SCF in vNM stable sets when the outcome corresponding to its

vNM stable states is consistent with the SCF. As reflected by recent contributions

(Koray and Yildiz, 2018; Korpela, Lombardi and Vartiainen, 2020, 2021), this

“blocking” approach to implementation theory suits the normative investigation

of cooperative solution concepts well.

The main contribution of this paper is the characterization of SCFs imple-

mentable in vNM stable sets. The class of implementable SCFs is completely

characterized by three conditions: NO SIMULTANEUS DOMINATIONS, vNM MONO-

TONICITY, and TEST CYCLE. These conditions also imply that implementation in

the stable set is independent of implementation in (externally stable) core. In-

deed, whereas only Pareto efficient SCFs are implementable in vNM stable sets,

Pareto-dominated outcomes can be implemented in Core. Furthermore, any im-

plementable SCF in Core is (Maskin) monotonic, whereas monotonicity is not

necessary for implementation in vNM stable sets. This asymmetry is recomposed

partially when linear orderings represent agents’ preferences. In this case, imple-

mentability in vNM stable sets implies implementability in Core. The converse

implication, however, is false.

We mainly focus on SCFs because there is no other reason than the lack of

existence of a single-outcome vNM stable set that led von Neumann and Mor-

genstern (1944, p.39) to focus on multi-outcomes vNM stable sets. Indeed, by

paraphrasing von Neumann and Morgenstern (1944, p. 34, 4.2.2):

We can see no reason why one should no be satisfied with a solution of

this nature, providing it can be found: i.e. a single-imputation which

meets reasonable requirements for optimal (rational) behaviour.

4Although an alternative can represent a state, they are typically different objects. Indeed, a
state reflects a situation that society may end up with, supported by an argument or evidence,
and may also include an outcome. For instance, suppose that there are two candidates tx, yu
and three agents and that preferences are strict. Suppose our goal is to implement the majority
solution: fpRq “ a if a is preferred to b by at least two agents. In this case, the set of states
may consist of an outcome paired with a coalition of size two. The interpretation is that a state
pa, t1, 2uq is a claim that a is preferred to b by agents 1 and 2. And so on. Like in standard
mechanism design theory, after we have found an implementing rights structure, we must ask
what kind of social organization produces it.
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Actually, in the original idea of von Neumann and Morgenstern (1944, p.34),

a single-outcome vNM stable set is an ideal solution because it corresponds to

what they called “an absolute state of equilibrium” or the “first element” of the

orderings induced by the dominance relation—that is, to the outcome that dom-

inates all the others. Since the dominance relation is usually not transitive, such

a “first element” is unlikely to exist. However, this is not an issue for us because

an SCF is said to be implementable in vNM stable sets whenever each possible

social environment admits a single-outcome vNM stable set. In addition, a single-

outcome vNM stable set has the property to be a consistent set (Chwe, 1994) and

a farsighted stable set (Harsanyi, 1974; Chwe, 1994), and so our conditions also

guarantee the partial implementation of an SCF in such solutions.

In Section 4, we also study the case that the planner’s goal is represented by

a social choice correspondence (SCC, hereafter). A primary difficulty in studying

SCCs is the so-called Harsanyi’s critique. Harsanyi (1974) criticized the vNM sta-

ble because it is based on the assumption that coalitions are myopic. Specifically,

he argued that the property of internal stability can be violated when agents are

farsighted. For this reason, Harsanyi (1974) proposed a farsighted version of the

vNM stable set, called strict vNM stable. We also characterize a class of SCCs

implementable in strict vNM stable sets.

 Preliminaries

We consider a finite non-empty set of agents, denoted by N , and a non-empty

set of alternatives, denoted by Z. For each agent ipP Nq, a preference relation

over Z is a complete and transitive binary relation Ri Ď Z
Ś

Z. We denote

by Pi the asymmetric part of Ri, i.e., xPiy if and only if xRiy and not yRix,

while the symmetric part of Ri is denoted by Ii, i.e., xIiy if and only if xRiy

and yRix. A preference profile R ” pRiqiPN lists the preferences of all agents in

N . Let R be the collection of all admissible preference profiles. A coalition K

is any non-empty subset of N . For any preference profile RpP Rq and coalition

K Ď N , we write xRKy and xPKy for xRiy for all i P K and xPiy for all i P K,
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respectively. For any R P R, and any x, y P Z, let KpR, x, yq be a coalition defined

by the rule: i P KpR, x, yq ðñ xPiy. That is, KpR, x, yq is the set of agents that

strictly prefer x to y at R. As usual, Lipx,Rq denotes the lower contour set of x

at R for agent i. The goal of the planner can be represented by a social choice

correspondence or a social choice function. A social choice correspondence (SCC)

is a correspondence F : R Ñ Z such that H ‰ F pRq Ď Z for all R P R. A

social choice function (SCF), denoted by f : R Ñ Z, is a single-valued SCC. We

say that x is F -optimal at R if x P F pRq. The range of F : R Ñ Z is the set

F pRq ” tx P Z|x P F pRq for some R P Ru, and the graph of F : R Ñ Z is the set

GrpF q ” tpx,Rq|x P F pRq, R P Ru. For all x P Z, let F´1pxq ” tR P R|x P F pRqu

be the inverse image of F at x.

For all R P R and all x, z P Z, we say that z is equivalent to x at R if xINz,

and that z is welfare equivalent to x at R if z P fpRq and x is equivalent to z at

R. We write If px,Rq “ tz P fpRq | zINxu for the set of all welfare equivalent

outcomes to x at R.

To implement his goal, the planner designs a rights structure Γ “ pS, h, γq,

where S is the state space, h : S Ñ Z the outcome function, and γ : S
Ś

S Ñ N a

code of rights, which specifies, for each pair of distinct states ps, tq, the collection

of coalitions γ ps, tq Ď 2N that is entitled to move from state s to t. If γps, tq “ H,

then no coalition is entitled to move from s to t. To save notation, we denote Sx “

ts P S|hpsq “ xu, with a typical element sx, the set of states where the outcome

is x. A rights structure and a preference profile return a social environment, a

general framework to model strategic interaction among agents or groups.5

Definition 1 (Social Environment). A social environment is a pair xΓ, Ry con-

sisting of a rights structure Γ and a preference profile R.

Agents’ behavior is described by the solution concept Σ which select a subset of

S for each social environment xΓ, Ry. A right structure Γ implements F : R Ñ Z

in the solution concept Σ if the outcomes corresponding to the states selected by

5When S is the set of outcomes and h is the identity function, then our social environment
coincides with the social environment of Chwe (1994).
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Σ coincide with F at any preference profile. That is, if F pRq “ h ˝ ΣpΓ, Rq for

all R P R. Therefore, from an economic design perspective, the rights structure is

the planner’s design variable and corresponds to a “mechanism” in the economic

theory jargon. Figure 1 adapts the well-known Mount-Reiter diagram (Mount

and Reiter, 1974) to illustrate the implementation via rights structure.

R Z

S, γ

F

Σ h

Figure 1: A Mount-Reiter type diagram illustrating the implementation via
rights structure

Definition 2 establishes the dominance relation: a state y P S dominates another

state x P S if there is a coalition such that (i) it can move from x to y and (ii)

each of its members strictly prefer to do so.

Definition 2 (Dominance). Given a social environment xΓ, Ry and states s, s1 P

S, the state s P S dominates s1 P S under γ at R P R, if there is a coalition

K Ď N such that: (i) K P γps1, sq; and (ii) hpsqPKhps1q.

Given xΓ, Ry, if s dominates s1 under Γ at R, then we write s ąpΓ,Rq s1. Defi-

nition 3 introduces the notion of a vNM stable set for any social environment

xΓ, Ry.

Definition 3. Let xΓ, Ry be a social environment. The set V pΓ, Rq Ď S is a

vNM stable set of Γ at R if it satisfies the following conditions:

Internal Stability: for all s, s1 P V pΓ, Rq, not s1 ąpΓ,Rq s.

External Stability: for all s R V pΓ, Rq, there exists s1 P V pΓ, Rq such that

s1 ąpΓ,Rq s.

7



Internal Stability requires that no two states inside the set dominate each other.

External Stability requires that each state outside the set is dominated by a state

inside the set. Internal and external stability work together: No two allocations

threaten each other, and jointly, the stable allocations dominate all non-stable

allocations. As von Neumann and Morgenstern (1944) pointed out, the notion

of the vNM stable set can be stated as a single condition. For a given social

environment pΓ, Rq and any subset A Ď S define DompΓ,R,ąqpAq, the dominion

of A, as the subset of states that are dominated by some element of A, formally,

DompΓ,R,ąqpAq ” ts P S|Ds1 P A : s1 ąpΓ,Rq su. Then, any vNM stable set at

pΓ, Rq is V pΓ, Rq ” S ´ DompΓ,R,ąqpV pΓ, Rqq that is the set of states that are not

dominated by any state in the vNM stable set. We denote by vNMpΓ, Rq the

union of all vNM stable sets at xΓ, Ry. On the other hand, the Core of Γ at R

can be defined as CpΓ, Rq “ S ´DompΓ,R,ąqpSq, which consists of the set of states

that are not dominated by any coalition.

Definition 4 (Implementation in vNM stable sets). A rights structure Γ imple-

ments F : R Ñ Z in vNM stable sets if F pRq “ h ˝ vNM pΓ,Rq for all R P R. If

such a rights structure exists, F : R Ñ Z is implementable in vNM stable sets by

a rights structure.

The following axiom, introduced by Korpela, Lombardi and Vartiainen (2020)

to characterize the class of functions implementable in externally stable Core, will

be used thereafter.

Definition 5 (NO SIMULTANEOUS DOMINATION). F : R Ñ Z satisfies NO SI-

MULTANEOUS DOMINATION (NSD, henceforth) provided that there exists Y , with

F pRq Ď Y , such that for all R P R and all x P Y zF pRq, there exist i P N and

x1 P F pRq such that x1Pix.

NSD simply states that if outcome x is not F -optimal at R, it cannot be that

this x dominates every outcome in the range of F at R, in the sense that x is

at least as good as every F -optimal outcome at R for every agent i P N . When

preference domain R is the domain of linear orderings, the condition implies that
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an outcome x that is not F -optimal at R cannot Pareto dominate every F -optimal

outcome at R.6

It turns out that NSD is necessary for the implementation of SCCs in vNM

stable set.

Theorem 1. If F : R Ñ Z is implementable in vNM stable sets by a rights

structure, then it satisfies NSD.

 A full characterization for SCFs

In coalition theory, a vNM stable set V pΓ, Rq is said single-payoff if for all

s, s1 P V pΓ, Rq, hpsq “ hps1q. Single-payoff cooperative solutions are widely stud-

ied in coalition theory.7 Their relevance is also motivated by von Neumann and

Morgenstern (1944, p.37). From an implementation point of view, this implies

focussing on SCFs. In this section, we identify the class of SCFs that are imple-

mentable in vNM stable sets.8

. Necessary and Sufficient Conditions

Koray and Yildiz (2018) and Korpela, Lombardi and Vartiainen (2020) show

that (Maskin) monotonicity is necessary for implementation in Core via a rights

structure. Monotonicity requires that if an outcome x is f -optimal at R,9 pref-

erences change from R to R1, and the outcome x does not fall in any agent’s

preference ordering relative to any other alternative, then x remains f -optimal

at R110. The following example shows that monotonicity is not necessary for im-

plementation in vNM stable sets via a rights structure. This supports Serrano’s

6For any profile R, we say that outcome x Pareto dominates y if xPiy for all i P N .
7Prominent examples are the Shapley value (Shapley, 1951) and the nucleolus (Schmeidler,

1969). Furthermore, single-payoff analysis is pervasive in the farsighted coalition formation lit-
erature: Béal, Durieu, and Solal (2008); Mauleon, Vannetelbosch, and Vergote (2011); Ray and
Vohra (2015); Dutta and Vohra (2017); Ray and Vohra (2019); Herings, Mauleon and Vannetel-
bosch (2020); Bloch and van den Nouweland (2021); Karos and Robles (2021).

8It may be worth noting that the single-payoff vNM stable set is unique when it exists.
Moreover, it is a consistent set (Chwe, 1994) and a farsighted stable set (Harsanyi, 1974; Chwe,
1994). Consistent sets and farsighted sets are formally introduced in Section 4.

9x is f -optimal at R means that fpRq “ x.
10Formally, for all R,R1 P R, LipfpRq, Rq Ď LipfpRq, R1q @i P N Ñ fpRq “ fpR1q
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conjecture (Serrano, 1997), according to which only the Core satisfies monotonicity

among the major cooperative solutions.

Example 1. There are two agents t1, 2u, three outcomes tx, y, zu and two prefer-

ence profiles R,R1 P R. The table below specifies agents’ preferences.11 The SCF

f : tR,R1u Ñ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note that f : R Ñ Z

is not monotonic: x is f -optimal at R. No agent experiences a preference reversal

around x when the state changes from R then R1, but x is not f -optimal at R1.

However, the SCF is implementable in vNM stable sets. The right-hand side of

Figure 2 is an example of implementing rights structure. First, we impose that

states are outcomes. An oriented graph represents the rights structure. The ver-

tices are the states. The edges represent the code of rights: Agent 1 can move

from x to y and from z to x. Agent 2 can move from y to x and from z to y

and vice versa. According to this rights structure, the unique vNM stable set at

R R1

1 2 1 2
y x y x, y

x z x, z z

z y

x y

z

{1}

{2}

{2}

{1}

Figure 2: An example of a non-monotonic SCF and an implementing rights
structure.

R and R1 are, respectively, vNMpΓ, Rq “ txu and vNMpΓ, R1q “ tyu. To see

this, take, as an example, the preference profile R. Then, txu trivially satisfies

internal stability. External stability is also satisfied since z and y are dominated

by x. Note that txu is the unique vNM stable set at R. Indeed, one can check that

at R, any subset of tx, y, zu different from txu violates either internal or external

stability. A similar argument applies to R1.

11We allow for indifferences because implementation in vNM stable sets implies implementa-
tion in Core when preferences are strict. On this point, see Corollary 4
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Remark 1. Note that in the above example, the Core is empty at the profile R.

This is the reason that the above example violates monotonicity.

To guarantee the property of “external stability” of f : R Ñ Z at the profile

R, for every outcome x different from fpRq, one agent needs to prefer strictly fpRq

to x. This property is captured by the axiom discussed at the end of Section 2

and named NO SIMULTANEOUS DOMINATION.

Note that if fpRq is Pareto dominated at R by an outcome x P Y , then f vio-

lates NO SIMULTANEOUS DOMINATION. Moreover, if f satisfies NO SIMULTANEOUS

DOMINATION, then f is a sub-solution of the Pareto correspondence where the set

of feasible outcomes is Y . This implies that only efficient SCFs (relative to Y )

can be implemented in vNM stable sets. This contrasts with the implementation

in Core, which does not require NSD (Koray and Yildiz, 2018; Korpela, Lombardi

and Vartiainen, 2020)

It is straightforward to see that the SCF described in Example 1 satisfies

NSD. However, NSD is not sufficient for the implementability in vNM stable sets.

We show this in the example below.

Example 2. There are two agents t1, 2u, three outcomes tx, y, zu and two pref-

erence profiles R,R1 P R. The table below specifies agents’ preferences.

R R1

1 2 1 2
y x y x

x, z z x y, z

y z

The SCF f : tR,R1u Ñ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note

that the SCF satisfies NSD: Agent 2 strictly prefers fpRq to y and to z at R and

agent 1 strictly prefers fpR1q to x and to z at R1.

However, f : R Ñ Z is not implementable in vNM stable sets. Indeed, if Sx is

a vNM stable set at R and Sy a vNM stable set at R1, then it has to be that Sx is

also a vNM stable set at R1. To see it, note that Sx satisfies internal stability at

any preference profile, including R1. Also, any rights structure implementing Sx

11



at R must satisfy the following property. Agent 2 must be allowed to move from

s1 P Sy to s P Sx and from s2 P Sz to s P Sx. Otherwise, external stability is not

satisfied. Since this guarantees external stability at R1 for the set Sx, it follows

that Sx is a vNM stable set at R1.

Example 2 suggests that another property is required to rule out undesirable

outcomes. In the particular case of Example 2, the planner wants to achieve

Sx as the unique vNM stable set at R and Sy as the unique vNM stable set at

R1. However, x happens to be a vNM stable set at R1 because the agents strictly

preferring x to y and x to z at R, namely agent 2, and the same happens at R1.

In other words, from one side, agent 2 guarantees external stability of Sx at R;

from the other side, no other agent is breaking the external stability of Sx at R1.

To break this, we need a preference reversal when we move from R to R1.

An implementable SCF satisfies the von Neumann Morgenstern monotonicity.

We abbreviate this condition as vNM MONOTONICITY. It requires that for any x

in the range of f : R Ñ Z that is not f -optimal at some R1, an outcome z acting

as a breaking-point of the vNM stability of x at R1 exists. In particular, vNM

MONOTONICITY requires that an outcome z exists such that, for every preference

profile R at which x is f -optimal, one agent who strictly prefers x to z experiences

a preference reversal when we move from R to R1. Moreover, this preference

reversal over the pair tx, zu must also hold over the pair tx˚, zu, where x˚ is any

outcome that is welfare equivalent to x at R1.

Definition 6 (vNM MONOTONICITY). f : R Ñ Z satisfies vNM MONOTONICITY

if there exists Y Ď Z such that fpRq Ď Y , and that for all px,R1q P Z
Ś

R with

x P fpRqzfpR1q, there exists z P Y such that KpR, x˚, zq Ę KpR1, x˚, zq for all

x˚ P If px,R1q and all R P f´1px˚q.

Henceforth, we denote by Mf px,R1q the set of outcomes satisfying vNM MONO-

TONICITY at px,R1q. That is, Mf px,R1q contains all attainable outcomes z such

that for all x˚ P If px,R1q and all R P f´1px˚q, the set of agents strictly preferring

x˚ to z at R1 differs from the set of agents strictly preferring x˚ to z at R.
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Theorem 2. If f : R Ñ Z is implementable in vNM stable sets by a rights

structure, then it satisfies vNM MONOTONICITY.

The reader can check that, in Example 2, the SCF violates vNM MONOTONIC-

ITY. To this end, note that x P fpRqzfpR1q, t2u “ KpR, x, yq “ KpR1, x, yq and

KpR, x, zq “ KpR1, x, zq “ t1, 2u. Therefore, Mf px,R1q “ H.

Next, we show that NSD and vNM MONOTONICITY are not sufficient for im-

plementing f : R Ñ Z in vNM stable sets. The following example makes the

point.

Example 3. There are two agents t1, 2u, three outcomes tx, y, zu and two pref-

erence profiles R,R1 P R. The table below specifies agents’ preferences.

R R1

1 2 1 2
y, z x y x, z

x y x, z y

z

Again, f : tR,R1u Ñ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note that

this non-monotonic SCF satisfies NSD: Agent 2 strictly prefers x “ fpRq to y and

z at R and agent 1 strictly prefers y “ fpR1q to x and z at R1. It also satisfies vNM

MONOTONICITY because Mf px,R1q “ tzu and Mf py, Rq “ tzu. However, this

f : R Ñ Z is not implementable. Indeed, if Sx were a vNM stable set at R and

Sy a vNM stable set at R1, then it would have to be that Sx YSz is a vNM stable

set at R1. To see the latter point, note that any implementing rights structure

where Sx is a vNM stable set at R must allow agent 2 to move from each sy P Sy

to an sx and from each sz P Sz to an sx. Otherwise, external stability would not

be satisfied for Sx at R. Since agent 2 can move from a state in Sy to a state in

Sx and he has incentives to do so at R1 and since agent 2 can move from a state in

Sz to a state in Sx but he is indifferent between x and z at R1, it follows that the

set Sx Y Sz satisfies external stability at R1. Since agents are indifferent between

x and z at R1, it follows that Sx Y Sz is a vNM stable set at R1.

Example 3 suggests that vNM MONOTONICITY is too weak for ruling out all

undesirable vNM stable sets. How can we rule them out?
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A clue comes from the studies of Richardson (1946, 1953) and Harary et al.

(1966), which show that an odd cycle exists when no vNM stable set exists. An

odd cycle at P 1 is a sequence of outcomes z1, z2, ..., zk where k P N is odd and such

that zkP 1
ih
z1P 1

i1
z2P 1

i2
...P 1

ih´1
zk holds for i1, i2, ..., ih P N .12 Although their result is

undoubtedly relevant from a positive point of view,13 it is helpful for our purposes

as well. Indeed, to be sure that in Example 3 the set Sx Y Sz is not a vNM

stable set at R1, we need to make sure that when we move from R to R1 and

fpRq ‰ fpR1q, either an odd cycle at R1 exists among the states in Sz—that is,

among the outcomes in Mf px,R1q—or an odd cycle at R1 exists among a state in

Sx, the f -optimal outcome at R1 and a state in Sz—that is, among x, fpR1q and

z. These requirements allow us to violate the internal stability of Sx Y Sz at R1.

This is the core idea of our following necessary condition, which is called TEST

CYCLE and builds over the notion of an odd cycle.

Definition 7 (TEST CYCLE). f : R Ñ Z satisfies TEST CYCLE if for all R1 P R

and all x P fpRqzfpR1q such that xP 1
ifpR1q for some i P N , one of the following

requirements holds:

(i) There exists z P Mf px,R1q such that for all x˚ P If px,R1q, x˚P 1
ifpR1qP 1

jzP
1
kx

˚

holds for some j, k P N .

(ii) There exists an odd cycle at R1 with outcomes in Mf px,R1q Y If px,R1q.

(iii) fpR1q P Mf px,R1q.

Theorem 3. If f : R Ñ Z is implementable in vNM stable set by a rights

structure, then it satisfies TEST CYCLE.

Remark 2. In Example 3, f is not implementable because it violates TEST

CYCLE. To see it, observe that x “ fpRq ‰ fpR1q “ y and that xP 1
2
fpR1q.

Parts (ii)-(iii) of the condition are violated because fpR1q R Mf px,R1q “ tzu and

If px,R1q “ txu. Part (i) is also violated because Mf px,R1q “ tzu, If px,R1q “ txu

and no agent k exists who strictly prefers z to x at R1.

12From definition, it follows that k ě 3.
13The equivalent statement of Richardson’s result is that if there are no odd cycles, then a

vNM stable set exists.
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Theorem 1, Theorem 2 and Theorem 3 prove the following corollary.

Corollary 1 (Necessity). If f : R Ñ Z is implementable in vNM stable sets,

then there exists X Ď Z such that fpRq Ď X and that f : R Ñ Z satisfies NSD,

vNM MONOTONICITY and TEST CYCLE with respect to X.

Next, we show that NSD, vNM MONOTONICITY, and TEST CYCLE are also

sufficient for implementation in vNM stable sets.

Theorem 4 (Sufficiency). Let X Ď Z be such that fpRq Ď X. If f : R Ñ Z

satisfies NSD, vNM MONOTONICITY and TEST CYCLE with respect to X, then f :

R Ñ Z is implementable in vNM stable sets by a rights structure.

. Environments with a simpler characterization

This subsection shows that the TEST CYCLE condition is redundant in envi-

ronments with transfers and when linear orderings represent agents’ preferences.

.. Transfers

Let D be a set of potential social decisions with typical element d P D. A

transfer of agent i is any real number ti P R. As usual, we write t´i ” ptiqiPNztiu P

R
n´1. In this environment, an outcome z P Z ” D

Ś

R
n consists of a social

decision d together with a profile of transfers t “ pt1, ..., tnq. For any i P N , agent

i’s preference relation Ri is defined over Z. An environment with transfers is a

triplet xN,Z, pRiqiPNy. We impose over Ri the following requirement:

Definition 8 (Money Monotonicity). Agent i ’s preference relation Ri is money

monotonic if for all d P D, all t´i P R
n´1, and all ti, t

1
i P R, ti ą t1

i ñ

pd, pti, t´iqqPipd, pt1
i, t´iqq.

The next result shows that in an environment with transfers where preferences

satisfy some requirements, vNM MONOTONICITY implies TEST CYCLE. In light of

this result and of Theorem 4, we obtain that in an environment with transfers

where preferences are continuous and money monotonic and where the domainR is
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finite, NSD and vNM MONOTONICITY fully characterize the class of implementable

functions.

Theorem 5. Assume that preferences in R are continuous, and money monotonic

and that the cardinality of R is finite. If f : R Ñ Z satisfies NSD and vNM

MONOTONICITY, then it satisfies TEST CYCLE.

Corollary 2. Assume that preferences in R are continuous, and money mono-

tonic and that the cardinality of R is finite. Then, f : R Ñ Z is implementable

in vNM stable sets by a rights structure if and only if it satisfies NSD and vNM

MONOTONICITY in some set Y Ď Z such that fpRq Ď Y .

.. Linear Orderings

A binary relation Ri Ď Z ˆ Z is a linear order if it is reflexive, transitive, and

anti-symmetric. Let L be a domain of profiles of linear orderings. The next result

states that TEST CYCLE is redundant under the domain restriction.

Theorem 6. If f : L Ñ Z satisfies NO SIMULTANEOUS DOMINATION and vNM

MONOTONICITY, then it satisfies TEST CYCLE.

Therefore, NSD and vNM MONOTONICITY fully characterize the class of imple-

mentable functions in vNM stable sets when agents’ preferences are linear order-

ings.

Corollary 3. f : L Ñ Z is implementable in vNM stable sets via a rights

stricture if and only if there exists a set X Ď Z such that f : L Ñ Z satisfies NSD

and vNM MONOTONICITY with respect to X.

In Section 3.4, we show that a similar result applies in environments with

transfers under mild conditions on agents’ preferences.

. Connections with the (Externally Stable) Core

The fact that an SCF is implementable in vNM stable sets does not imply that

it is implementable in Core. Indeed, monotonicity, which is necessary for imple-

mentation in Core (Koray and Yildiz, 2018; Korpela, Lombardi and Vartiainen,
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2020), is not a necessary condition for implementation in vNM stable sets (see

Example 1 above). Recall that, since NO SIMULTANEOUS DOMINATION, only

Pareto efficient SCFs are implementable in vNM stable sets, whereas this is not

the case for implementation in Core. Example 4 below makes this point.

Example 4. Suppose that N “ t1, 2, 3u, Z “ tx, y, zu, and R “ tR,R1, R2u.

Preferences of agents at different profiles are defined in the table below.

R R1 R2

1 2 3 1 2 3 1 2 3

x y x z y y x x x

z x z x z z y y y

y z y y x x z z z

Let SCF f be such that fpRq “ z, fpR1q “ y, and fpR2q “ x. This SCF is

monotonic and unanimous. Therefore, f is implementable in the core (Korpela,

Lombardi and Vartiainen, 2020). However, it does not satisfy NSD; hence, it is not

implementable in vNM stable sets.

The asymmetry between implementation in vNM stable sets and implementa-

tion in Core is partially recomposed when preferences are linear orderings. First,

one can prove that under this domain restriction, NSD, together with vNM MONO-

TONICITY, implies monotonicity and unanimity, which are the necessary and suf-

ficient conditions for implementation in Core.

Theorem 7. If f : L Ñ Z is implementable in vNM stable sets, then it satisfies

monotonicity and unanimity in some set Y Ď Z such that fpRq Ď Y .

Then, since monotonicity and unanimity w.r.t. Y fully characterize the imple-

mentation in Core (Korpela, Lombardi and Vartiainen, 2020), the following result

directly follows.

Corollary 4. If SCF f : L Ñ Z is implementable in vNM stable sets, then it is

also implementable in Core.
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Nevertheless, the implementation in vNM stable sets and implementation in

Core are very different design exercises. Indeed, the following example shows that

implementation in Core does not imply implementation in vNM stable sets even

when f : L Ñ Z is Pareto efficient. The example below makes it crystal clear.

Example 5. Suppose that N “ t1, 2u, Z “ tx, y, z, uu, and R “ tR,R1, R2u.

Preferences of agents at different profiles are defined in the table below.

R R1 R2

1 2 1 2 1 2

u z u z x u

x y z x z z

z x x y u y

y u y u y x

Let f be such that fpRq “ x, fpR1q “ z, and fpR2q “ z. This SCF is mono-

tonic and unanimous. Therefore, f is implementable in the core (Korpela, Lom-

bardi and Vartiainen, 2020). However, it does not satisfy vNM MONOTONIC-

ITY; hence, it is not implementable in vNM stable sets. To see this, notice

that z belongs to fpRqztfpRqu, If pz, Rq “ tzu, and f´1pzq “ tR1, R2u. Since

t2u “ KpR1, z, uq Ď KpR, z, uq “ t2u, t1, 2u “ KpR1, z, yq Ď KpR, z, yq “ t1, 2u,

and t2u “ KpR2, z, xq Ď KpR, z, xq “ t2u, f does not satisfy vNM MONOTONIC-

ITY.

The relationship between implementation in vNM stable sets and implemen-

tation in Core via rights structure goes behind Corollary 4. Indeed, it is well

known the Core is contained in every stable set and moreover, if the Core satisfies

the property of external stability, then it becomes the unique vNM stable set.

This observation led to the following remark.

Remark 3. If f : R Ñ Z is implementable in externally stable Core, then it is

also implementable in vNM stable sets.

In what follows, we argue that the converse of Remark 3 is false. Koray

and Yildiz (2018) introduce a notion of Winner monotonicity, which strengthens
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(Maskin) monotonicity, and they show that it is necessary for the implementation

of SCCs in externally stable Core.14

Definition 9 (Winner monotonicity (Koray and Yildiz, 2018)). An SCC F : RZ

satisfies Winner monotonicity provided that, for all R,R1 P R, if x P F pRq, and

Lipx,Rq X F pR1q Ď Lipx,R
1q for all i P N , then x P F pR1q.

The example below shows the existence of an SCF that is not implementable

in externally stable core, though it is implementable in vNM stable set. Another

SCF with these features is minimum distance SCF for facility location problems,

which is introduced in Section 3.4.

Example 6. Suppose that N “ t1, 2u, Z “ tx, y, zu, and R “ tR,R1u. Prefer-

ences of agents at different profiles are defined in the left-hand side of Figure 3.

The SCF f is such that fpRq “ x and fpR1q “ y. The SCF is implementable in

vNM stable sets and the right-hand side of Figure 3 represents an implementing

rights structure. However, f violates Winner monotonicity. To see this, suppose

that preferences move from R to R1. The premises of Winner monotonicity are sat-

isfied in this case. Indeed, x “ fpRq, L1px,RqXfpR1q “ tyu Ď tx, y, zu “ L1px,R
1q

and L2px,Rq X fpR1q “ tHu Ď txu “ L2px,R1q. However x ‰ fpR1q.

R R1

1 2 1 2
x y x y

z x y z

y z z x

x y

z

{1}

{2}

{1}

{2}

Figure 3: An example of a non-Winner Maskin monotonic SCF and an imple-
menting rights structure.

14When agents’ preferences are described by linear orderings and the domain is full, Winner
monotonicity is also a sufficient condition for implementation.
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Section 3.4 provides an example of implementable SCF in the realm of bilat-

eral trading. In a previous preliminary draft of the manuscript (Korpela, Lombardi

and Saulle, 2023), we identified further SCFs that are implementable in vNM sta-

ble sets. For instance, it turns out the minimum distance rule in facility location

problems although non monotonic, and thus non-implementable in Core, it is im-

plementable in vNM stable set. An another example of implementable SCF is the

Condorcet rule in voting environment when the preference domain is Condorcet.

Furthermore, we provide an example of non-implementable SCF. For instance, the

Vickrey auction rule is not implementable because it violates vNM MONOTONIC-

ITY. We refer the interested reader to (Korpela, Lombardi and Saulle, 2023).

. An Application to Bilateral Trading

A basic model of bilateral trading (Myerson and Satterthwaite, 1983; Chatter-

jee and Samuelson, 1983) consists of one indivisible object to be traded between

agent 1 (the seller) and agent 2 (the buyer). The value of agent i is denoted by vi.

Both values lie in the interval ra, bs and all value profiles pv1, v2q P ra, bs2 are admis-

sible. The set of outcomes Z is the set of all possible trading prices p P t0u Y ra, bs

where 0 means that there is no trade and p P ra, bs means that agents trade with

price p. Agents’ utility functions are u1ppq “ p ´ v1 and u2ppq “ v2 ´ p.

f maps any profile of valuations pv1, v2q to a trading price p P ra, bs, or to 0

if there is no trade. We require f to be individually rational ´ both agents must

benefit from trade when it takes place.

Fix any p P ra, bs. fp is a fixed-price rule if and only if fppv1, v2q “ p for

v1 ă p ă v2, and fppv1, v2q “ 0, otherwise.15

Theorem 8. Let us consider a bilateral trading environment and fix any p P ra, bs.

An SCF f is implementable in vNM stable sets by a rights structure if and only if

f “ fp.

The rights structure employed in the proof is such that S “ Z and trade occurs

15This rule is not efficient. Sometimes trade would be Pareto improving but will not take place
at the pre-specified price. This no-trade situation also happens under incomplete information
(Myerson and Satterthwaite, 1983).
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according to γ only if both parties agree. In such an environment, the vNM stable

set outcome equals the one-price Bayesian Nash equilibrium, as defined by Gibbons

(1992).

 Correspondences and Farsighted Rational-

ity

So far, we have focused on implementing SCFs in vNM stable sets. In this

section, we study the implementation of SCCs in vNM stable sets, which may

consist of multiple outcomes. Thus, the objective of the planner is to ensure that

the set of vNM stable outcomes coincides with F pRq for every R.

. Implementation in vNM Stable Sets

This section shows that NSD and an auxiliary condition, INDEPENDENCE OF

IRRELEVANT ALTERNATIVES (IIA, henceforth), are sufficient for implementation

in vNM stable sets. However, since Harsanyi (1974) criticized the vNM stable set

for being myopic, this sufficiency result is an intermediate step for addressing the

so-called Harsanyi (1974)’s critique in our framework. Section 4.3 shows that

NSD and a strengthening of IIA are sufficient for implementation in strict vNM

stable sets as put forward by Harsanyi (1974).

A condition that is easy to check can be stated as follows. Before stating it, it is

worth mentioning that this condition is a necessary condition for implementation

in some preference domains, such as the universal domain and single-crossing

domain.16

Definition 10. (IIA) F : R Ñ Z satisfies INDEPENDENCE OF IRRELEVANT ALTER-

NATIVES (IIA, henceforth) provided that for all R,R1 P R and all x, x1 P F pRq,

x P F pRq , x1 R F pRq , and H ‰ K
`

R, x, x1
˘

Ď K
`

R1, x, x1
˘

ùñ x1 R F
`

R1
˘

.

IIA simply requires that if those agents who strictly prefer x to x1 at R when

x is F -optimal at R but x1 is not also strictly prefer x to x1 at R1, then x1 cannot

16Details available from authors upon request.
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be F -optimal at R1. Note that the condition does not require that x remains

F -optimal at R1. IIA recasts the well-known independence of irrelevant alterna-

tives condition, introduced by Kenneth Arrow in his seminal paper on Arrow’s

impossibility theorem (Arrow, 1950). One can show17 that the fixed price rule in

bilateral trading, as defined in Section 3.4, satisfies IIA.

Theorem 9. If F : R Ñ Z satisfies IIA and NSD w.r.t. Y “ Z, then it is

implementable in vNM stable by a rights structure.

The next section provides examples of SCCs implementable in vNM stable sets

in light of Theorem 9.

To study implementation in vNM stable sets, one can focus on the implemen-

tation in externally stable Core. The reason is that the externally stable Core is

the unique vNM stable of any social environment. However, we do not follow this

route here because our main objective is to address the Harsanyi (1974)’s critique

of myopia, and the externally stable Core is subject to this criticism. However,

it may be worth noting that IIA and NSD implies Winner Monotonicity, which

is a necessary condition for implementation in externally stable Core.18 More-

over, when agents’ preferences are described by linear orderings and the domain

of preferences is full, denoted by L˚, Winner monotonicity fully characterizes the

class of SCCs that are implementable in externally stable Core (see Section 3.3).

Therefore:

Corollary 5. If F : L˚ Ñ Z satisfies IIA and NSD w.r.t. Y “ Z, then it is

implementable in externally stable Core by a rights structure.

. Applications

.. Strict Majority Rule

Suppose that there are only two outcomes x and x1, so that Z “ tx, x1u. Let us

also assume that each agent (voter) i pP Nq’s preferences over Z are represented

17Details available from authors upon request.
18Details available from authors upon request.
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by a transitive and complete preference relation Ri. The preference domain is

denoted by R with R as a typical preference profile. Given R, let qR px, x1q “

ti P N |xPix
1u. Then, qR px, x1q is the fraction of voters striclty preferring x to x1

at R. F SM : R Ñ Z is the strict majority rule if

F SM pRq “

$

’

’

’

&

’

’

’

%

txu if qR px, x1q ě |N |
2

` 1

tx1u if qR px1, xq ě |N |
2

` 1

Z otherwise.

for all R P R.

Theorem 10. The strict majority rule F SM : R Ñ Z is implementable in vNM

stable set by a rights structure.

.. Unanimity with Status-Quo

Let x˚ P Z denote the status-quo outcome. Our preference domain places

a restriction on agents’ preferences over outcomes in Z. Fix an agent i P N .

We assume that agent i’s preference relation over Z has a form of trichotomy.

Formally, Ri P Ri is trichotomous for agent i if there exists a set of desirable

outcomes Di pRiq Ď Z with x˚ R Di pRiq such that (i) aIib for all a, b P Di pRiq,

(ii) aPix
˚ for all a P Di pRiq, (iii) x˚Pia for all a P Zz pDi pRiq Y tx˚uq, and

(iv) aIib for all a, b P Zz pDi pRiq Y tx˚uq. In other words, Ri is trichotomous

for i if there exists a set of desirable outcomes Di pRiq for i such that Ri ranks

every desirable outcome in its top indifference class, the status-quo in the second

indifference class, and all remaining outcomes in its third indifference class. Let

R px˚q denote the set of profiles of trichotomous preferences where x˚ is the status-

quo outcome. F : R px˚q Ñ Z is the unanimity with status-quo rule if there exists

an outcome x˚ such that for all R P R px˚q,

F pRq “

$

&

%

Ş

iPN Di pRiq if
Ş

iPN Di pRiq ‰ H

tx˚u otherwise.

This SCC is implementable in vNM stable set because it satisfies NSD and IIA.
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Theorem 11. The unanimity with status-quo rule F : R px˚q Ñ Z is imple-

mentable in vNM stable set by a rights structure.

.. Collusion-Proof Stable Rule

A matching problem is a quadruplet pM,W,P,Mq where M and W are non

empty sets of men and women respectively; P P L is a profile of linear orderings so

that (i) every man m P M ’s preference relation is represented by a linear ordering

Pm over W Ytmu and (ii) every woman w P W ’s preference relation is represented

by a linear ordering Pw over M Y twu; M is a collection of all matchings, with µ

as a typical element. µ : M YW Ñ M YW is a bijective function, matching every

agent i P M Y W either to a partner of the opposite sex or with himself/herself.

If an agent i is matched with himself/herself, we say that this i is single under µ.

We refer to pM,W,L,Mq as a class of matching problems, with pM,W,P,Mq

as a typical matching problem. Note that M Y W “ N and Z “ M .

To apply the above partial characterization to matching problems, we extend

agent i’s linear ordering Pi P Li to the preference ordering Ái on M as follows:

for all µ, µ1 P M and all Pi P Li, µ ÁPi
µ1 ô either µ piqPiµ

1 piq or µ piq “ µ1 piq .

LetR denote the preference domain overM derived from L with Á as a typical

element.

A matching µ is blocked by agent i at ÁPP R if iPiµ piq. A matching µ is

blocked by a pair pm,wq P M ˆ W at ÁPP R if mPwµ pwq and wPmµ pmq. A

matching µ is stable at ÁP R if it is not blocked by any agent or any pair of a

man and a woman at Á. Given a matching problem, the stable solution, denoted

by St, can be defined, for each ÁP R, by St pÁq ” tµ P M|µ is stable at Áu .

Following Kimya (2022b), let us define when a matching µ is a collusion-proof

matching. For all µ P M and allK P N0, let µ pKq “ ti P N : µ pjq “ i for some j P Ku.

Definition 11. A matching µ1 can be obtained from a matching µ through

collusion by K P N0 at Á if the following requirements hold: (1) Either K Ď M

or K Ď W ; (2) K Ď K pÁ, µ1, µq; (3) µ1 piq P µ pKq for all i P K; (4) µ1 piq “ µ piq

if i R K and µ piq R µ pKq.
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If µ1 can be obtained from µ through collusion by some coalition K at Á, then

we say that µ1 is obtainable from µ through collusion at Á. A matching µ is

collusion-proof at Á if there does not exist any matching µ1 that is obtainable

from µ through collusion at Á. In other words, a matching µ1 can be obtained

from a matching µ through collusion at Á if a same-sex coalition can reallocate

their mates obtained under µ among themselves so that each of its member is

strictly better off under µ1.

Given a matching problem, the collusion-proof solution, denoted by CP , can

be defined, for each ÁP R, by CP pÁq ” tµ P M|µ is collusion-proof at Áu .

A matching µ is a collusion-proof stable matching at Á if µ P CP pÁqXSt pÁq.

Kimya (2022b, Lemma 2) has shown that if CP pÁq is not empty at Á, then

there exists a unique stable matching at Á. Kimya (2022b, Lemma 5) shows that

the preference domain satisfying the so-called top coalition property of Banerjee,

Konishi and Sonmez (2001) , denoted by RTC , guarantees the existence of the

collusion-proof stable matching—for all ÁP RTC , CP pÁq X St pÁq ‰ H, which is

the top-coalition matching of the matching problem. Given P P L, its extension

ÁPP RTC satisfies the top coalition property if for all K P N0, either a) there exists

pm,wq P MˆW with m,w P K such that m P argmaxPw
K and w P argmaxPm

K,

or b) there exists i P N such that i P argmaxPi
K. This pair or singleton is called

the top coalition in K at ÁP . The top coalition matching at ÁP is µ˚ pÁP q “

tS1, S2, ..., Snu, where S1 is the top coalition in N at ÁP , S2 is the top coalition

in NzS1 at ÁP , and so on.

For the class of matching problems
`

M,W,RTC ,M
˘

, the collusion-proof stable

rule fCP´St : RTCÑ M is the collusion-proof stable rule if fCP´St pÁq “ CP pÁqX

St pÁq for all ÁP RTC .

We show below that for the class
`

M,W,RTC ,M
˘

, the collusion-proof stable

rule is implementable in vNM stable sets.

Theorem 12. For the class of matching problems
`

M,W,RTC ,M
˘

, the collusion-

proof stable rule fCP´St : RTCÑ M is implementable in vNM stable set
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. Implementation in Strict vNM Stable Sets

Harsanyi (1974) criticized the vNM stable set for being myopic. He argued that

when agents are farsighted, an alternative might be “unstable” even if it belongs

to a vNM stable set. The following example reproduces the Harsanyi’s critique in

our environment.

Example 7. There are two agents t1, 2u, three outcomes tx, y, zu and two pref-

erence profiles R,R1 P R. The table in Figure 4 specifies agents’ preferences.

R R1

1 2 1 2
x z y x, y

y x x z

z y z

x y

z

{1}

{2}

{2}

Figure 4: An implementing rights structure suffering the Harsanyi’s critique.

The SCC F : tR,R1u Ñ tx, y, zu is such that F pRq “ tx, zu and F pR1q “ ty, zu.

The SCC satisfies IIA and NSD w.r.t. Y “ Z, and hence according to Theorem 9

is implementable in vNM stable sets. The right-hand side of Figure 4 illustrates

the implementing rights structure employed by the planner. Thus, tx, zu and ty, zu

are respectively vNM stables sets at R and R1. Consider the profile R1 and note

that z is dominated by x. However, in the idea of von Neumann and Morgenstern

(1944), a deviation from z to x is not credible since the alternative x is, in turn,

dominated by y, which belongs to the vNM stable set. Harsanyi (1974) pointed

out that this argument works only when y is not preferred to z by the coalition

that moves from z to x, which is not the case. Indeed, if agent 2 is farsighted,

then he deviates to x only to reach y and be better off.

Example 7 shows that when the planner ignores the Harsanyi’s critique, he

may fail in his economic deign exercise since the vNM stable set is no longer
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a valid prediction when agents are farsighted. A natural question then arises:

Can the planner design a rights structure such that agents select the socially

desirable alternatives, irrespective of whether they are farsighted? In the case of

Example 7, the goal can be achieved by giving only to agent 1 the power to move

from x to y, and back to x.

To find a general solution to this problem, we borrow from Harsanyi (1974)

the notions of indirect dominance and strict vNM stable sets.

Indirect dominance is a way to incorporate farsightedness in models with bind-

ing agreements. Given a social environment xΓ, Ry, a state s1 indirectly dominates

s if there exists a path from s to s1 such that every coalition effective on this path

prefers the final state of the path s1 to the state they replace.

Definition 12 (Indirect Dominance19). For a given social environment xΓ, Ry,

a state s is indirectly dominated by s1 under γ, denoted by s1 ÏpΓ,Rq s, if there

are states s0, s1, ..., sm and corresponding coalitions K1, ..., Km where s “ s0 and

s1 “ sm such that for all ℓ “ 1, ...,m, (1) Kℓ P γpsℓ´1, sℓq, and (2) hps1qPKℓhpsℓ´1q.

Following Harsanyi (1974), we define the so called strict vNM stable set.

Definition 13. Let xΓ, Ry be a social environment. The set V pΓ, Rq Ď S is a

strict vNM stable set of Γ at R if it satisfies the following conditions:

Indirect Internal Stability: for all s, s1 P V pΓ, Rq, not s1 ÏpΓ,Rq s

External Stability: for all s R V pΓ, Rq, there exists s1 P V pΓ, Rq such that

s1 ąpΓ,Rq s.

Note that a strict stable set is immune to the Harsanyi’s critique. To define

implementation in strict vNM stable set, let us denote by SvNMpΓ, Rq the union

of all strict vNM stable sets at xΓ, Ry.

19Harsanyi (1974) introduced two notions of indirect dominance. One is based on the idea of
a monotone chain: x indirectly dominates y if there is a sequence connecting x and y such that
the deviating agents do not only prefer x to the status-quo, but in addition, their deviation must
also be preferred to the status-quo. Another definition, later formalized by Chwe (1994), is the
one that we employ here: Alternatives along the sequence are not required to directly dominate
each other.
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Definition 14 (Implementation in strict vNM stable sets). A rights structure Γ

implements F : R Ñ Z in strict vNM stable sets if F pRq “ h ˝ SvNM pΓ,Rq for

all R P R. If such a rights structure exists, F : R Ñ Z is implementable in strict

vNM stable sets by a rights structure.

Our implementing condition relies on the following notion of indirect indepen-

dence of irrelevant alternatives, which strengthens the notion of IIA.

Definition 15. (SIIA) F : R Ñ Z satisfies STRONG INDEPENDENCE OF IRRELE-

VANT ALTERNATIVES (SIIA, henceforth) provided that for all R,R1 P R and all x, x1, x2 P

F pRq such that x1 ‰ x2,

x P F pRq , x1 R F pRq and H ‰ K
`

R, x, x1
˘

Ď K
`

R1, x2, x1
˘

ùñ x1 R F
`

R1
˘

.

Remark 4. SIIA implies IIA. It is plain by setting x “ x2.

SIIA simply states that if those agents who strictly prefer x to x1 at R when x is

F -optimal at R but x1 is not F -optimal at R and they also strictly prefer to x2 to x1

at R1, then x1 cannot be F -optimal R1. The condition does not require that x must

be F -optimal at R1. In IIA, the comparison between x and x1 is direct, while in SIIA

the comparison can happen indirectly through a third outcome x2. Examples20

of social choice rules satisfying SIIA are the one in Example 7, the fixed price

rule in a bilateral trading environment, the strict majority rule (Section 4.2.1),

and the unanimity with status-quo rule (Section 4.2.2). The main result of this

section can be stated as follows.

Theorem 13. If F : R Ñ Z satisfies SIIA and No Simultaneous Domination

w.r.t. Y “ Z, then it is implementable in strict vNM stable sets.

We conclude this section by pointing out that the Harsanyi’s critique does not

exhaust the problem of farsightedness in coalition theory. The notion of indirect

dominance provided the input for a plethora of solution concepts, each of them

captures different aspects of farsighted rationality. In light of this observation,

one can show that the implementing rights structure in the proof of Theorem 13

20Details available from authors upon request.
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also implements in the following solutions as put forward by Chwe (1994): the

farsighted Core21, the largest consistent set22, and the farsighted stable set23.

Corollary 6. If F : R Ñ Z satisfies NSD and SIIA, then there exists a rights

structure implementing F : R Ñ Z in strict vNM stable sets, farsighted Core,

largest consistent set and farsighted stable set.

Corollary 6 is in line with recent contributions studying dominance in-

variance in coalitional games (Mauleon, Molis, Vannetelbosch and Vergote, 2014;

Kimya, 2022a). A social environment satisfies dominance invariance if direct and

indirect dominance are equivalent. Kimya (2022a) shows that dominance invari-

ance plays a fundamental role in eliminating differences among various farsighted

solutions. Our result shows that SIIA and NSD are sufficient for designing a rights

structure that exhibits dominance invariance when it is restricted to the set of

F -optimal states. This fact sheds new light on the role played by dominance

invariance to harmonize different solutions, myopic and farsighted.

 Concluding Remarks

Social Choice Correspondences: In this paper, we fully identified the class

of SCFs that are implementable in vNM stable sets. This characterization extends

immediately to SCCs when the planner views the outcomes selected by the SCC

F as equally good (Abreu and Sen, 1991). Under this interpretation that multiple

outcomes express the planner’s indifference or neutrality, implementing an SCC

can be formulated as implementing an SCF. It also extends immediately when a

social choice set represents the planner’s goal.24 Indeed, say that a social choice

set F “ tf |f : R Ñ Zu is implementable in vNM stable sets if and only if for

21The farsighted Core of xΓ, Ry is the set of states CpΓ, Rq Ď S that are indirectly undominated
by any states, that is CpΓ, Rq “ S ´ DompΓ,R,ÏqpSq.

22Given xΓ, Ry, a set of states Y Ď S is consistent if the following statement holds: s P
Y ðñ @s1 P S,K P γps, s1q there is an s2 P Y such that either (s2 “ s1) or (s2 ÏpΓ,Rq s1) and
not hps2qPKhpsq. The largest consistent set is the maximal consistent set with respect to set
inclusion.

23The farsighted stable set of xΓ, Ry is the set of states F pΓ, Rq Ď S that are indirectly
undominated by any states in F pΓ, Rq, that is F pΓ, Rq “ S ´ DompΓ,R,ÏqpF pΓ, Rq).

24The concept of social choice set is prevalent in the literature of incomplete information; see,
for instance, Jackson (1991).
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each f P F , a rights structure implements f in vNM stable sets.25 Then, in these

situations, the necessary and sufficient conditions for SCFs can be directly applied

to provide necessary and sufficient conditions for fully implementing both an SCC

and a social choice set.

In contrast, the analysis would change significantly if we wanted to derive

general necessary and sufficient conditions for SCCs. The crux of the matter is

how to build connections between states so that external stability breaks down

when we move from R to R1 with F pRq ‰ F pR1q. Guidance is given by vNM

MONOTONICITY for SCFs. Roughly speaking, this condition suggests that we can

allocate power to coalitions of the type KpR, f pRq , zq, with z ‰ f pRq “ x, in

designing the implementing rights structure to guarantee external stability at R.

Indeed, in our implementing rights structure, the set Sx “ ts P S|h psq “ xu is

the unique vNM stable at every profile R2 such that f pR2q “ x. In each of these

profiles, external stability is guaranteed by allocating to coalitionKpR, x, h psqq the

power to move from s to a state in Sx. Moreover, vNM MONOTONICITY says that

Sx cannot be a vNM stable at R1 by breaking down its external stability at R1 via

a preference reversal. Indeed, to make Sx externally unstable at R2, the condition

requires the existence of an outcome z such that K pR2, x, zq Ę K pR1, x, zq for all

profile R2 such that Sx is a vNM stable set at R2. When the goal of the planner is

represented by an SCC, we lose this guidance and it remains unclear how to design

a rights structure that breaks down the external stability of the vNM stable set

at R when agents’ preferences are represented by R1.

Game Forms: The design of a rights structure is more flexible than the design of

a game form: It is always possible to represent a game form as a rights structure,

but the converse is not always true.26 However, our full characterization result

relies on constructing a rights structure that cannot be represented as a game

form. A rights structure to represent a game form must be individually transitive.

Individual transitivity requires that when agent i has the power to move from a

25In this notion of implementation, the implementing rights structure depends on the function
selected from the social choice set. A similar notion of implementation has been proposed by
Bergemann, Morris and Tercieux (2011) by using game forms.

26See Koray and Yildiz (2018) for a discussion.
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state s to another state s1 and the power to move from s1 to a third state s2, then

agent i must have the power to move from s to s2 directly. Thus, any state agent

i can obtain via a chain of movements among states should be able to obtain it

directly. Our implementing rights structure is not individually transitive. Let us

clarify this point.

As discussed in the previous paragraph, when the profile changes from R to

R1 where f pRq “ x ‰ f pR1q, vNM MONOTONICITY allows us to make the set

Sx externally unstable at R1 via a preference reversal. Specifically, to make Sx

externally unstable at R1, the condition requires the existence of an outcome z such

that K pR2, x, zq Ę K pR1, x, zq for every profile R2 such that Sx is a vNM stable

set at R2. This outcome z allows us to define a state s such that its outcome is z

and s is not dominated by any state in Sx at R1, though it is dominated by a state

in Sx when agents’ preferences are R2 P f´1 pxq. To rule out the possibility that

s becomes an unwanted stable state at R1, we follow a result due to Richardson

(1946, 1953) and Harary et al. (1966), according to which a vNM stable set exists

when no odd cycle exists. By using the TEST CYCLE condition, we embed s into

an odd cycle of states, s1, ..., s2k`1 with s “ sj for some j, where the same agent

i can have a right and an incentive to move between any two consecutive states.

Therefore, the TEST CYCLE condition allows us to insert s as a feasible state of

our rights structure without generating an unwanted stable state. This, however,

comes at the expense of individually intransitivity of our rights structure. It is

still an open question on how to devise an individually transitive rights structure

implementing in vNM stable set.

Appendix

Proof of Theorem 1 Suppose that Γ “ pS, g, γq implements F in vNM stable

sets. Let Y “ thpsq|s P Su. Clearly, F pRq Ď Y . Since the proof is an immediate

consequence of the external stability of the vNM stable set, we omit it here. ■

The following lemmata has been used in the proofs of Theorem 2 and The-

orem 3.
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Lemma 1. Suppose that f is implementable in vNM stable sets via a rights struc-

ture. If x P fpRqzfpR1q for some R1 P R, then for all x˚ P If px,R1q, x˚ ‰ fpR1q.

Proof of Lemma 1. Fix any x˚ P If px,R1q. Suppose toward a contradiction

that x˚ “ fpR1q. Since x P fpRq, it holds that x P If px,R1q. Then, by definition

of If px,R1q we have that xI 1
Nx

˚ or, in other terms, KpR1, x˚, xq “ H. Since f is

implementable and since x ‰ fpR1q “ x˚, we have that vNMpΓ, R1qq “ Sx˚

‰ Sx.

Then, by external stability of Sx˚

, for any s P Sx (where hpsq “ x) and some

s˚ P Sx˚

(where hps˚q “ x˚), it must be the case that KpR1, hps˚q, hpsqq ‰ H,

which is a contradiction. ■

Proof of Theorem 2. Suppose that Γ “ pS, h, γq implements f in vNM stable

sets. Let hpSq “ Y Ď Z, where hpSq “ thpsq P Z|s P Su. Recall that, for all y P Y ,

Sy “ ts P S|hpsq “ yu denotes the set of states where the outcome is y. Fix any

px,R1q P Z
Ś

R with x P fpRqzfpR1q. Let SIf px,R1q be defined by SIf px,R1q “ ts P

S | hpsq P If px,R1qu. For all x˚ P If px,R1q and all R P f´1px˚q, since Γ “ pS, h, γq

implements f in vNM stable sets, it follows that vNMpΓ,Rq “ Sx˚

. Moreover, for

all x˚ P If px,R1q, Sx˚

Ď SIf px,R1q. Since x P fpRqzfpR1q, Lemma 1 implies that

fpR1q R If px,R1q. It follows from the implementability of f that SIf px,R1q is not

a vNM stable set at R1. Note that at R1, since SIf px,R1q is internally stable, then

SIf px,R1q must violate external stability. Then, there exists s P SzSIf px,R1q such

that for all s1 P SIf px,R1q and all K Ď KpR1, hps1q, hpsqq, it holds that K R γps, s1q.

Since for all x˚ P If px,R1q and all R P f´1px˚q, vNMpΓ,Rq “ Sx˚

Ď SIf px,R1q,

and since for all x˚ P If px,R1q and all R P f´1px˚q, there exists s̄ P Sx˚

and a

coalition K such that K P γps, s̄q, it follows that KpR, x˚, hpsqq Ę KpR1, x˚, hpsqq

for all x˚ P If px,R1q and all R P f´1px˚q. Thus, f satisfies vNM MONOTONICITY.

■

The following lemma will be used in the proof of Theorem 3.

Lemma 2. (Richardson, 1953) If a vNM stable set does not exist, then there is

an odd cycle.

Proof of Theorem 3. Suppose that Γ implements f in vNM stable sets. Fix
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any R1 P R and any x P f pRq zf pR1q. Suppose that xP 1
if pR1q for some i P N .

Since x P f pRq, it holds that x P If px,R1q.

Let SIf px,R1q “
␣

s P S|h psq P If px,R1q
(

. Since f pR1q ‰ x, Lemma 1 implies

that vNM pΓ, R1q “ SfpR1q ‰ SIf px,R1q. Moreover, let

S 1 “
!

s1 P SzSIf px,R1q|s ąpΓ,R1q s
1 for all s P SIf px,R1q

)

Since vNM pΓ, R1q ‰ SIf px,R1q, and since SIf px,R1q is internally stable at R1,

it must be that SIf px,R1q violates external stability at R1, and so S 1 ‰ H. By

construction, h pS 1q Ď Mf px,R1q and SIf px,R1q Y S 1 is externally stable at R1.

However, since by implementability of f , vNM pΓ, R1q ‰ SIf px,R1q Y S 1, it follows

that SIf px,R1q Y S 1 is not internally stable at R1.

Suppose that there exists s1 P S 1 such that s1 ąpΓ,Rq s for some s P SIf px,R1q.

Then, there exists K P γ ps, s1q such that h ps1qP 1
Khpsq. Since s P SIf px,R1q and

preferences are transitive, it holds that h ps1qP 1
Kx

˚ for all x˚ P If px,R1q. Fix

any l P K, so that hps1qP 1
lx

˚ for all x˚ P If px,R1q. Let us proceed according to

whether f pR1q “ hps1q or not.

Suppose that f pR1q “ hps1q. Since s1 P S 1 and since hps1q P Mf px,R1q, it

follows that fpR1q P Mf px,R1q. This shows that part (iii) of the TEST CYCLE

condition is satisfied.

Suppose that f pR1q ‰ hps1q. Since f satisfies NSD, there exists j P N such that

f pR1qP 1
jhps1q. Since, by our initial assumption, there exists an agent i P N such

that xP 1
ifpR1q and agent i’s preferences are transitive, it follows that x˚P 1

ifpR1q for

all x˚ P If px,R1q. Since f pR1qP 1
jhps1q and since hps1qP 1

lx
˚ for all x˚ P If px,R1q,

we have that for all x˚ P If px,R1q, x˚P 1
if pR1qP 1

jhps1qP 1
lx

˚ some i, j, l P N . This

shows that part (i) of the TEST CYCLE condition is satisfied.

Otherwise, suppose that there does not exist any s1 P S 1 such that s1 ąpΓ,Rq s

for some s P SIf px,R1q. Then it has to be that S 1 is not internally stable at R1.

Hence, by definition of S 1, SIf px,R1q Y S 1 is not internally stable at R1 because

S 1 is not internally stable at R1. Given a rights structure Γ, a restriction of Γ

to S 1 Ď S, denoted by Γ|S1 “
`

S 1, h|S1 , γ|S1

˘

, is a rights structure such that for
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all s P S 1, h|S1 psq “ h psq, and for all s, s1 P S 1, γ|S1 ps, sq “ γ ps, s1q. Suppose

that vNM
`

Γ|S1 , R1
˘

‰ H. Then, by construction, SIf px,R1q Y vNM
`

Γ|S1 , R1
˘

“

vNM pΓ, R1q, which is a contradiction. Then it must be that vNM
`

Γ|S1 , R1
˘

“ H.

Lemma 2 implies that there exists a sequence of states ps1, ..., skq in S 1 yielding

an odd cycle at R1. Since hpS 1q is contained in Mf px,R1q, this shows that part

(ii) of the TEST CYCLE condition is satisfied. ■

Proof of Theorem 4. Let us construct a rights structure that implements f

under the given conditions. We will denote outcome z in condition (i) of TEST

CYCLE by zpx,Rq, and outcome zh in condition (ii) of TEST CYCLE by zhpx,Rq.

Thus, whenever we speak of zpx,Rq, we mean that for the pair px,Rq it is condition

(i) of TEST CYCLE that is satisfied. Furthermore, we will denote the agent who

prefer zkpx,Rq to zk`1px,Rq at R in condition (ii) by jpx,R, k, k ` 1q modulo k.

Let f satisfy conditions (i)-(iii) with respect to Y Ď Z such that f pRq Ď Y .

In what follows, we construct an implementing Γ. Let S̄ be defined by

S̄ “
ď

RPR

ď

xPfpRq

!

`

y, If px,Rq
˘

|y P If px,Rq and f pRq ‰ x
)

Y Gr pfq

Furthermore, fix any x P f pRq and any R P R such that f pRq ‰ x. If either

(i), (ii), or (iii) holds, then we say that there exists a test cycle for px,Rq.

Suppose that there exists a test cycle for px,Rq. Let us define the following

sets of states according to whether condition (i), condition (ii), or condition (iii)

applies:

S ppx,Rq, iq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq

pu, px,Rq, iq satisfies condition (i) and

u P tf pRq , z px,Rqu Y If px,Rq

,

/

/

/

.

/

/

/

-

S ppx,Rq, iiq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq
`

zh px,Rq , px,Rq, ii
˘

satisfies condition (ii) and

h “ 1, ..., k

,

/

/

/

.

/

/

/

-
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S ppx,Rq, iiiq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq

pf pRq , px,Rq, iiiq satisfies condition (iii).

,

/

/

/

.

/

/

/

-

Let us define the set of states S by

S “ S̄ Y

$

&

%

ď

RPR

ď

xPfpRqztfpRqu

pS ppx,Rq, iq Y S ppx,Rq, iiq Y S ppx,Rq, iiiqq

,

.

-

.

Then, for all s P S, let us defined the outcome function h by h psq “ s1, where s1

is the outcome of the first entry of the tuple s. Finally, let γ be defined, for all

s, s1 P S and all i P N , by the following rules.

RULE 1: If s, s1 P S̄, then:

(a) if s, s1 P Grpfq, then tiu P γ ps, s1q.

(b) if s P S̄zGrpfq and s1 P Grpfq, then tiu P γ ps, s1q.

RULE 2: If s, s1 P S ppx,Rq, iq, then:

(a) if s “ pf pRq , px,Rq, iq and s1 “ px˚, px,Rq, iq, then tiu P γ ps, s1q.

(b) if s “ px˚, px,Rq, iq and s1 “ pz px,Rq , px,Rq, iq, then tiu P γ ps, s1q.

(c) if s “ pz px,Rq , px,Rq, iq and s1 “ pf pRq , px,Rq, iq, then tiu P γ ps, s1q.

RULE 3: If s P S ppx,Rq, iq and s1 “ pR1, yq P Gr pfq, then:

(a) if s “ px˚, px,Rq, iq, then K pR1, y, x˚q P γ ps, s1q.

(b) if s “ pz px,Rq , px,Rq, iq, then K pR1, y, z px,Rqq P γ ps, s1q.

RULE 4: If s “ pf pRq , px,Rq, iq P S ppx,Rq, iq, s1 “ pR1, yq P Gr pfq and y R If px,Rq,

then K pR1, y, f pRqq P γ ps, s1q.

RULE 5: If s, s1 P S ppx,Rq, iiq, s “
`

zh`1 px,Rq , px,Rq, ii
˘

and s1 “
`

zh px,Rq , px,Rq, ii
˘

for some h “ 1, ..., k and zh px,RqPiz
h`1 px,Rq, then tiu P γ ps, s1q, where

zk`1 px,Rq “ z1 px,Rq.
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RULE 6: If s P S ppx,Rq, iiq and s1 “ pR1, yq P Gr pfq, then K pR1, y, h psqq P γ ps, s1q.

RULE 7: If s P S ppx,Rq, iiiq and s1 “ pR1, yq P Gr pfq, then K pR1, y, h psqq P γ ps, s1q.

RULE 8: If s P
␣`

y, If px,Rq
˘

|y P If px,Rq and f pRq ‰ x
(

and s1 P S ppx,Rq, iiiq,

then tiu P γ ps, s1q.

RULE 9: Otherwise, γ ps, s1q “ H.

By construction, Γ is a rights structure. Let us show that Γ implements f in

single-payoff vNM stable sets. To this end, suppose that R is the true preference

profile, and let f pRq “ x. We show that Sx ” ts P S | hpsq “ xu is the unique

vNM stable set of pΓ, Rq.

Clearly, Sx satisfies internal stability. Then, let us show that Sx satisfies

external stability.

To this end, note that NSD implies that for all z P Y , xPiz for some i P N .

Thus, by construction of Γ, px,Rq dominates all states in S̄zSx by RULE 1, all

states in Sppy, R1q, iiqzSx by RULE 6, and all states in Sppy, R1q, iiiqzSx by RULE

7. The set SpR1, y, iq needs a more careful examination.

Suppose that Sppy, R1q, iq ‰ H. We proceed according to whether fpRq ‰ y or

not.

Suppose that fpRq ‰ y. By NSD, we have that fpRqPiy for some i P N .

RULE 3 implies that px,Rq dominates all states s P Sppy, R1q, iqzSx such that

hpsq P tzpR1, yqu Y Ipy, R1q. Suppose that fpRq “ fpR1q. Then, pfpR1q, py, R1q, iq P

Sx. Suppose that fpRq ‰ fpR1q. Suppose that fpRq Ď Ipy, R1q. Then, px,Rq

dominates pfpR1q, py, R1q, iq via RULE 2. Thus, let fpRq ‰ fpR1q and fpRq X

Ipy, R1q “ H. Since KpR, fpRq, fpR1qq ‰ H and since fpRq X Ipy, R1q “ H, we

have that px,Rq dominates pfpR1q, pu,R1q, iq via RULE 4.

Suppose that fpRq “ y. Then, fpRq ‰ fpR1q, fpRq X Ipy, R1q ‰ H and

pfpRq, py, R1q, iq P Sx. By NSD, we have that fpRqPiw for some i P N if w ‰

fpRq. Since for all s P Sppy, R1q, iq such that hpsq “ fpRq, it holds that s P Sx,

we need to focus only on the cases that both zpR1, yq ‰ y and y˚ ‰ y. Since

KpR, fpRq, zpR1qq ‰ H and since KpR, fpRq, y˚qq ‰ H, it follows that px,Rq
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dominates any state s P Sppy, R1q, iq such that either hpsq “ zpR1, yq or hpsq “ y˚

via RULE 3. Thus, we are left to show that pfpR1q, py, R1q, iqq is dominated by

a state in Sx. To this end, note that fpRq ‰ fpR1q, and so NSD implies that

fpRqPifpR1q for some i P N . Since pfpRq, py, R1q, iq P Sx and since fpRqPifpR1q

for some i P N , it follows from RULE 2(a) that agent i has the power and

incentive to move from pfpR1q, py, R1q, iq to pfpRq, py, R1q, iq. Thus, a state in Sx

dominates pfpR1q, py, R1q, iq.

We conclude that Sx is externally stable, and so Sx is a vNM stable set of

pΓ, Rq. Next, we show that this is the only stable set at R. Assume, to the

contrary, that there exists a nonempty set S˚ Ď S that is a vNM stable set of

pΓ, Rq such that Sx ‰ S˚. Note that at least one state of S̄ must be in S˚ by

external stability. The reason is that the rights structure Γ does not allow any move

from states inside the Grpfq to states outside of S̄. Moreover, RULE 1 implies

that if s P S˚ X Grpfq and hpsq “ z, then
␣

pz, R1q
ˇ

ˇ R1 P R, z “ fpR1q
(

Ď S˚.

Given that S˚ is externally stable and since S˚ X S̄ ‰ H, it follows from Rule 1

that s P S˚ X Grpfq. Fix any s P S˚ X Grpfq. We proceed according to whether

hpsq “ x or not.

Suppose that hpsq “ x. Thus, px,Rq P S˚, and so Sx Ď S˚. Since we have

already shown that Sx is a vNM stable set of pΓ, Rq and since S˚ is a vNM stable

set of pΓ, Rq, it follows that Sx “ S˚, yielding a contradiction.

Suppose that hpsq “ y ‰ x. Since S˚ is internally stable and since f is vNM

efficient, it follows from RULE 1 that tpz, R1q
ˇ

ˇR1 P R, fpR1q “ z P If py, Rqu “

S˚ X Grpfq. We proceed according to whether fpRqRNy or not.

Suppose that fpRqRNy. Since f is vNM efficient, there exists i P N such that

fpRqPiy. Since agent i has the power to move from s to px,Rq viaRULE 1(a) and

since S˚ is internally stable, it follows that px,Rq R S˚. Since fpRqRNy, it follows

that no agent has incentive to move from px,Rq to any state s̄ P S˚XGrpfq, though

they have the power to do so via RULE 1(a). Therefore, S˚ is not externally

stable, which is a contradiction.

Suppose that yPifpRq for some agent i P N . Since y P fpRqzfpRq, since
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yPifpRq for some agent i P N and since, moreover, f satisfies the TEST CYCLE

property, it follows that a test cycle for py, Rq exists. There are three cases to

be considered according to whether the test cycle for py, Rq is given either by

condition (i), or by (ii), or by (iii).

Case 1: The test cycle is given by condition (i). Then, for some i, j, k P K, it

holds that y˚Pif pRqPjz py, RqPky
˚ for some z py, Rq P Mf py, Rq and all y˚ P

If py, Rq. Moreover, vNM MONOTONICITY implies that for all y˚ P If py, Rq and

all R2 P f´1 py˚q, it holds that K pR2, y˚, z py, Rqq Ł K pR, y˚, z py, Rqq. Suppose

that pz py, Rq , py˚, Rq, iq R S˚ for some y˚ P If py, Rq. Since S˚ satisfies external

stability, it follows that there exists K P γ ppz py, Rq , py˚, Rq, iq , tq for some t P

S˚. By construction of Γ, since K can move only to a state in S˚ X Grpfq via

RULE 3, we have that t “ pR2, zq P S˚ for some z P Y and R2 P f´1 pzq and

K “ KpR2, z, zpy, Rqq.

Since S˚ X Grpfq “
␣

pR1, zq |f pR1q “ z P If py, Rq
(

, it follows that t “ pR2, zq

is such that z P If py, Rq. Since z P If py, Rq and since, for all y˚ P If py, Rq

and all R2 P f´1 py˚q, K pR2, y˚, z py, Rqq Ł K pR, y˚, z py, Rqq, it follows that S˚

violates external stability at R, which is a contradiction. Therefore, it must be

the case that pz py, Rq , py˚, Rq, iq P S˚ for all y˚ P If py, Rq.

Suppose that py˚, py, Rq, iq R S˚ for some y˚ P If py, Rq. Again, since S˚ satis-

fies external stability, there exists a coalition K such that K P γ ppy˚, py, Rq, iq , tq

for some t P S˚. Since y˚ P If py, Rq, it follows from Γ that K can move only

to a state in S˚ X Grpfq via RULE 3. This implies that t “ pR2, zq P S˚

for some z P Y and R2 P f´1 pzq and that K “ K pR2, z, y˚q. Again, since

S˚ X Grpfq “
␣

pR1, zq |f pR1q “ z P If py, Rq
(

, it follows that t “ pR2, zq is such

that z P If py, Rq. Since z P If py, Rq, we have that the state t “ pR2, zq P S˚

cannot dominate at R the state py˚, py, Rq, iq, in violation of the external stabil-

ity of S˚. We conclude that py˚, py, Rq, iq P S˚ for all y˚ P If py, Rq. Fix any

y˚ P If py, Rq. Then, py˚, py, Rq, iq P S˚ and pz py, Rq , py˚, Rq, iq P S˚. Since, by

condition (i) of TEST CYCLE, there exists k P N such that z py, RqPky
˚ and since

RULE 2(b) implies that k P γ ppy˚, py, Rq, iq , pz py, Rq , py˚, Rq, iqq, it follows that
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S˚ violates internal stability at R, which is a contradiction.

Case 2: The test cycle is given by condition (ii). The states that are designed as a

test cycle for py, Rq are pz1py, Rq, py, Rq, iiq, pz2py, Rq, py, Rq, iiq, . . . , pzkpy, Rq, py, Rq, iiq.

Note that, by construction, if pzhpy, Rq, py, Rq, iiq R S˚, then we can move

only to states of the type pz, R1q P S˚ with z P If py, Rq. Fix any h “ 1, ..., k.

Suppose that pzhpy, Rq, py, Rq, iiq R S˚. Then, vNM MONOTONICITY implies that

KpR2, y˚, zhpy, Rqq Ę KpR, y˚, zhpy, Rq for all y˚ P If py, Rq and all R2 P f´1py˚q.

This implies that S˚ is not externally stable, which is a contradiction. Therefore, it

must be the case that pz1py, Rq, py, Rq, iiq, pz2py, Rq, py, Rq, iiq, . . . , pzkpy, Rq, py, Rq, iiq P

S˚. Since condition (ii) of the TEST CYCLE implies that there is a cycle at R of

odd length among the outcomes z1py, Rq, ...zkpy, Rq, it follows from RULE 5 that

S˚ is not internally stable, which is a contradiction.

Case 3: The test cycle is given by condition (iii). Then, fpRq P Mf py, R1q.

By definition of the rights structure Γ, only states in S̄ can dominate the state

pfpRq, py, Rq, iiiq (via RULE 7). Since fpRq P Mf py, R1q, no state in S˚ X S̄

dominates the state pfpRq, py, Rq, iiiq by vNM MONOTONICITY; the reason is that

fpRq P Mf py, R1q, and so KpR2, y˚, fpRqq Ę KpR, y˚, fpRqq for all y˚ P If py, Rq

and all R2 P f´1py˚q. Thus, it must be the case that pfpRq, py, Rq, iiiq P S˚.

Since s P S˚ X Grpfq and hpsq “ y, it follows that py, If py, Rqq P S˚. Since

py, If py, Rqq P S˚ and since, by NSD, there exists an agent i such that fpRqPiy, it

follows that the internal stability of S˚ is violated because agent i has the incentive

and the power (via RULE 8) to move from py, If py, Rqq to pfpRq, py, Rq, iiiq.

Since the choice of state s P S˚ X Grpfq was arbitrary, we conclude that S˚ is

not a vNM stable set of pΓ, Rq, which is a contradiction. ■

Proof of Theorem 5. Suppose preferences are continuous, money monotone,

and that the preference domain R is finite. Suppose that f satisfies NSD and vNM

MONOTONICITY with respect to Y . We show that f satisfies TEST CYCLE.

Fix any R1 P R and any x P Y . Suppose that x P fpRqzfpR1q and that

xP 1
ifpR1q for some i P N . Since f satisfies vNM MONOTONICITY, it follows that

there exists a z P Y such that for all R P f´1pxq and for all x˚ P If px,R1q,
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KpR, x˚, zq Ę KpR1, x˚, zq. Thus, z P Mf px,R1q. We proceed according to

whether z “ fpR1q or not.

Suppose that z “ fpR1q. Then, the requirement (iii) of the TEST CYCLE

property is satisfied.

Suppose that z ‰ fpR1q. Let z “ pd, tq. Since agents’ preferences are continu-

ous, it follows that there exists ε̂ ą 0 such that for allR P f´1 pxq, all x˚ P If px,R1q

and all i P K pR, x˚, zq zK pR1, x˚, zq, it holds that x˚
i Pi pd, ti ` ε̂q. Moreover, since

preferences are money monotonic and transitive, we have that for all R P f´1 pxq,

all x˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq, pd, ti ` ε̂qP 1
ix

˚
i . Therefore,

for all R P f´1 pxq, all x˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq, it holds

that x˚
i Pi pd, ti ` ε̂q and pd, ti ` ε̂qP 1

ix
˚
i .

Since R is finite and since, moreover, f is vNM efficient and agents’ preferences

are continuous, it follows that there exists ε1 ą 0 such that for all R̄ P R and all

i P N such that fi
`

R̄
˘

P̄izi, it holds that fi
`

R̄
˘

P̄i pd, ti ` ε1q.

Let ε “ mintε̂,ε1u
2

. By construction, we have that:

1. For all R P f´1 pxq, all x˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq,

it holds that x˚
i Pi pd, ti ` εq and pd, ti ` εqP 1

ix
˚
i .

2. For all R̄ P R and all i P N such that fi
`

R̄
˘

P̄i pd, tiq, it holds that fi
`

R̄
˘

P̄i pd, ti ` εq.

Let us define z1 by

z1
i “

$

&

%

pd, ti ` εiq if i P YRPf´1pxq Yx˚PIf px,R1q K pR, x˚, zq

zi otherwise.

By construction of z1, we have that if i P YRPf´1pxq Yx˚PIf px,R1q K pR, x˚, zq, then

i P K pR, x˚, z1q X K pR1, z1, x˚q and that for all R̄ P R and all i P N such that

fi
`

R̄
˘

P̄izi, it holds that fi
`

R̄
˘

P̄iz
1
i. Moreover, by construction, we also have

that f satisfies NSD and vNM MONOTONICITY with respect to Y Y tz1u, that

z1 P Mf px,R1q and that z1 ‰ f pR1q.

Since z1 ‰ f pR1q and since f is vNM efficient with respect to Y Y tz1u,

it follows that f pR1qP 1
kz

1 for some k P N . Since, by our initial supposition,
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xP 1
if pR1q for some i P N , and since R1

i is transitive, we have that for all x˚ P

If px,R1q, x˚P 1
if pR1q for some i P N . Thus, we have that for all x˚ P If px,R1q,

x˚P 1
if pR1qP 1

kz
1 for some i, k P N , with z1 P Mf px,R1q. Fix any j P K pR, x˚, zq zK pR1, x˚, zq

for some R P f´1 pxq and some x˚ P If px,R1q. Then, by construction, j P

K pR, x˚, z1qXK pR1, z1, x˚q, and so z1P 1
jx

˚. Therefore, we have that x˚P 1
if pR1qP 1

kz
1P 1

jx
˚

for some i, j, k P N , with z1 P Mf px,R1q. Since the previous argument holds for

all x˚ P If px,R1q, we have that there exists z1 P Mf px,R1q such that for all

x˚ P If px,R1q, there exists i, j, k P N such that x˚P 1
if pR1qP 1

kz
1P 1

jx
˚. Thus, f

satisfies requirement (i) of TEST CYCLE.

Since the above arguments hold for any pR1, xq P RˆF pRq such that f pR1q ‰

txu and xP 1
if pR1q for some i P N , it follows that we can construct a set Y 1, with

Y Ď Y 1, such that f satisfies NSD and vNM MONOTONICITY with respect to Y 1,

and so f satisfies TEST CYCLE with respect to Y 1. ■

Proof of Theorem 6. Fix any R1 P L and suppose that x P fpLqzfpR1q and

that xP 1
ifpR1q for some i P N . Since preferences are linear orders, If px,R1q “ txu.

By vNM MONOTONICITY, for all R P f´1pxq, we have thatKpR, x, zq Ę KpR1, x, zq

for some outcome z P Mf px,R1q. If z “ fpR1q, then requirement (iii) of the TEST

CYCLE condition is satisfied. In what follows, let z ‰ fpR1q. Since KpR, x, zq

is non empty, take any j P KpR, x, zqzKpR1, x, zq. Then, xPjz and zR1
jx. Since

xPjz, it follows that x ‰ z. Since R1
j is a linear order, it follows that zP 1

jx. Since,

by our initial supposition, xP 1
ifpR1q for some i P N , we have that zP 1

jxP
1
ifpR1q

for some i P N , and some j P KpR, x, zqzKpR1, x, zq. Since fpR1q ‰ z and since

f satisfies NSD, it follows that there exists k P N such that fpR1qP 1
kz. We have

established that zP 1
jxP

1
ifpR1qP 1

kz for some i, j, k P N and some z P Mf px,R1q.

Thus, f satisfies requirement (i) of TEST CYCLE. ■

Proof of Theorem 7. Suppose that f : L Ñ Z satisfies NSD and vNM MONO-

TONICITY w.r.t Y Ď Z. First, we show that f satisfies monotonicity w.r.t. Y .

Take any R,R1 P R, denote fpRq “ x, and assume that Lipx,Rq Ď Lipx,R
1q holds

for all i P N . We need to show that x is selected at R1 to verify the claim. Sup-

pose, toward a contradiction, that x ‰ fpR1q. Since x “ fpRq and x ‰ fpR1q, then
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by vNM MONOTONICITY there exists a z P Y such that KpR, x, zq Ę KpR1, x, zq.

Thus, there exists an agent j P N who experiences a preference reversal when pref-

erences move from R to R1, that is xRjz and zR1
jx. Therefore, Ljpx,Rq Ę Ljpx,Rq,

which contradicts the premises. We conclude that f must satisfy monotonicity

w.r.t. Y .

Next, we show that f satisfies NSD w.r.t. Y . Take any x P Y and let assume

that for any R P L, it holds that xRiy for all i P N and all y P Y . Suppose toward

a contradiction that x ‰ fpRq for some R P L. Let y “ fpRq P Y . Then, by NSD

of f there exists an agent j P N such that yRjx, a contradiction. We conclude

that that f must satisfy unanimity w.r.t. Y . ■

Proof of Theorem 8. First, we show that if f is implementable in vNM

stable sets, then f is a fixed price rule. For any v1 P ra, bs, let f be an SCF

implementable in vNM stable sets. Suppose toward a contradiction that f is

not a fixed price rule, that is, for some v2 and v1
2
with v2 ą v1

2
, f is such that

fpv1, v2q ‰ fpv1, v
1
2
q ” p1 ą 0. Take any z P Z. Note that if trading with

price p1 is more profitable than z to a buyer of type v1
2
, then it is more profitable

to a buyer of type v2 too. Since the argument holds for any z P Z, we have

that Kppv1, v
1
2
q, p1, zq Ď Kppv1, v2q, p

1, zq holds for all z P Z which contradicts vNM

MONOTONICITY of f . Therefore, if f is implementable in vNM stable sets, then for

any v1 P ra, bs, the function fv1 ” fpv1, ¨q must be a fixed price rule, conditionally

on v1. To complete the proof, it remains to show that f is a fixed price rule

unconditionally on v1.

Fix any v1 P ra, bq,27 such that the price p of the fixed price rule fpv1, xq satisfies

b ą p ą 0. Notice that by individual rationality, this implies p ą v1. If v1 does

not exist, then f must be the zero price rule f0, a particular case of a fixed price

rule. To show that f is the fixed price rule fp (unconditionally on v1), we must

verify that fv1

1
is the fixed price rule with a price p for any v1

1
ă p, and the zero

price rule for any v1
1

ě p. We study the two cases separately.

Suppose towards a contradiction that v1
1

ă p but fv1

1
is not the fixed price rule

27The rule fb is equivalent to the zero price rule since trade never takes place.
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with a price p. Take any value of the buyer v2 P rp, bq. Recall that f is imple-

mentable in vNM; hence it must satisfy vNM MONOTONICITY by Theorem 2.

However, it is straightforward to see that Kppv1, v2q, p, zq Ď Kppv1
1
, v2q, p, zq holds

for all z P Z- a contradiction. Hence fv1

1
is indeed the fixed price rule with a price

p for any v1
1

ă p as claimed.

Next, suppose towards a contradiction that v1
1

ě p, but fv1

1
is not the zero price

rule. One can easily see that this case follows directly from the previous case. Let

p1 ą 0 be the fixed price of the rule fv1

1
. By individual rationality p1 ą v1

1
ě p.

However, by the previous argumentation, fv1 must be a fixed price rule with a

price p1 too - a contradiction.

Finally, it is easy to see that any fixed price rule fp is implementable in vNM

stable sets. A simple rights structure (code of rights) Γ “ pS, γq, where S “ t0, pu,

γp0, pq “ tt1, 2uu (trade must be accepted by both), and γpp, 0q “ tt1u, t2uu (trade

can be rejected by either), implements it. ■

Proof of Theorem 9. Suppose that F satisfies IIA and NSD w.r.t. Y “ Z. Let

Γ “ pS, h, γq be defined as follows. Let

S “ tpx,Rq P Z ˆ R|x P F pRqu “ Gr pF q .

Let h : S Ñ Z be defined by h px,Rq “ x for all px,Rq P S. Finally, let γ :

S ˆ S Ñ N be defined by the following two rules. For all px,Rq , px1, R1q P S,

1. if x1 R F pRq, then K pR, x, x1q P γ ppx1, R1q , px,Rqq;

2. otherwise, γ ppx1, R1q , px,Rqq “ H.

By construction, we have that γ ppx1, Rq , px,Rqq “ H for all x, x1 P F pRq, and

so the states px1, Rq and px,Rq are not connected.

Fix any R P R. Let us show that F pRq “ h ˝ vNM pΓ, Rq. To this end, let

S pF pRqq “ ts P S|h psq P F pRqu . (1)

Let us first show that F pRq Ď h ˝ vNM pΓ, Rq. To this end, it suffices to show
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that S pF pRqq is a vNM stable set of pΓ, Rq; that is, S pF pRqq is externally and

internally stable at pΓ, Rq.

S pF pRqq is externally stable. To see it, take any px1, R1q P S such that px1, R1q R

S pF pRqq. Since F satisfies No Simultaneous Domination, it follows that there

exist x P F pRq and i P N such that xPix
1. Since xPix

1, it holds that K pR, x, x1q ‰

H. Since px,Rq P S pF pRqq and px1, R1q P S, and since x1 R F pRq, it also follows

that K pR, x, x1q P γ ppx1, R1q , px,Rqq, and so px,Rq ąpΓ,Rq px1, R1q. Since the

choice of px1, R1q was arbitrary, it follows that S pF pRqq is externally stable.

S pF pRqq is internally stable. Assume, to the contrary, that it is not internally

stable; that is, there are px1, R1q , px2, R2q P S pF pRqq such that px2, R2q ąpΓ,Rq

px1, R1q. This implies that there exists K P N0 such that K P γ ppx1, R1q , px2, R2qq

and K Ď K pR, x2, x1q. By definition of γ, it follows that K “ K pR2, x2, x1q and

x1 R F pR2q. Since px2, R2q P S, it holds that x2 P F pR2q. Since px2, R2q ąpΓ,Rq

px1, R1q, it also holds that K pR2, x2, x1q Ď K pR, x2, x1q. IIA implies that x1 R

F pRq, which is a contradiction. Thus, S pF pRqq is internally stable.

Finally, let us show that h˝vNM pΓ, Rq Ď F pRq. To this end, take any S̄ Ď S

and suppose that it is a vNM stable set of pΓ, Rq. To show that S pF pRqq “ S̄,

we proceed in two steps.

Step 1: S pF pRqq Ď S̄. Take any px1, R1q P S pF pRqq. Assume, to the contrary,

that px1, R1q R S̄. Since S̄ is externally stable, it follows that exists px2, R2q P S̄

such that px2, R2q ąpΓ,Rq px1, R1q. This implies that there exists K P N0 such that

K P γ ppx1, R1q , px2, R2qq and K Ď K pR, x2, x1q. By definition of γ, it follows that

K “ K pR2, x2, x1q and x1 R F pR2q. Since px2, R2q P S, it holds that x2 P F pR2q.

Since K Ď K pR, x2, x1q, it also holds that K pR2, x2, x1q Ď K pR, x2, x1q. IIA

implies that x1 R F pRq, and so px1, R1q R S pF pRqq, which is a contradiction.

Step 2: S̄ Ď S pF pRqq. Assume, to the contrary, that S̄ Ę S pF pRqq. Step 1

implies that S pF pRqq Ď S̄. Then, S pF pRqq is a proper subset of S̄; that is, there

exists px1, R1q P S̄ such that px1, R1q R S pF pRqq. Since S pF pRqq is a vNM stable

set of pΓ, Rq and since px1, R1q R S pF pRqq, the external stability of S pF pRqq

implies that there exists px2, R2q P S pF pRqq such that px2, R2q ąpΓ,Rq px1, R1q.
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Then, S̄ is not internally stable, which is a contradiction.

Since the choice of S̄ Ď S was arbitrary, we conclude that any vNM stable set

S̄ of pΓ, Rq coincides with S pF pRqq. In other words, S pF pRqq is the unique vNM

stable set of pΓ, Rq. Since S pF pRqq “ vNM pΓ, Rq, it follows from definition of

S pF pRqq that h ˝ vNM pΓ, Rq Ď F pRq. ■

Proof of Theorem 10. It suffices to show that the strict majority rule F SM

satisfies IIA and NSD under the specification that Y “ Z. Since it is plain that

F SM satisfies NSD, we only show that it satisfies IIA. To this end, take any R,R1 P

R. Suppose that x P F SM pRq and x1 R F SM pRq. Then, it must the case that

qR px, x1q ě |N |
2

` 1. Moreover, suppose that K pR, x, x1q Ď K pR1, x, x1q. Since

K pR, x, x1q Ď K pR1, x, x1q, it follows that qR1 px, x1q ě |N |
2

` 1. It follows from

definition of F SM that F SM pR1q “ txu, and so x1 R F SM pR1q. Thus, F SM satisfies

IIA. Lemma 9 implies that F SM is implementable in vNM stable set by a rights

structure. ■

Proof of Theorem 11. It suffices to show that the unanimity with status-

quo rule satisfies IIA and NSD under the specification that Y “ Z. To see that

it satisfies NSD, fix any R P R px˚q and suppose that x1 P ZzF pRq. Then, x1 R
Ş

iPN Di pRiq. We proceed according to whether
Ş

iPN Di pRiq ‰ H or not.

Suppose that
Ş

iPN Di pRiq ‰ H. Since x1 R
Ş

iPN Di pRiq and
Ş

iPN Di pRiq ‰

H, there exist x P
Ş

iPN Di pRiq and i P N such that xPix
1.

Suppose that
Ş

iPN Di pRiq “ H. Then, F pRq “ tx˚u. Since
Ş

iPN Di pRiq “

H, there exists i P N such that x1 R Di pRiq. Since x1 ‰ x˚, it follows that x1

belongs to the third indifference class for i at Ri, and so x˚Pix
1.

Let us show that F satisfies IIA. To this end, fix any R,R1 P R px˚q such that

x P F pRq, x1 R F pRq and K pR, x, x1q Ď K pR1, x, x1q. Since x1 R F pRq and

x P F pRq, it follows that K pR, x, x1q ‰ H. We proceed according to whether
Ş

iPN Di pRiq ‰ H or not.

Suppose that
Ş

iPN Di pRiq ‰ H. Then, x ‰ x˚. Fix any i P K pR, x, x1q.

Then, xPix
1, and so xP 1

ix
1. It follows that x1 R Di pR1

iq. Clearly, x1 R F pR1q if
Ş

iPN Di pR1
iq ‰ H. Otherwise, suppose that

Ş

iPN Di pR1
iq “ H, so that F pR1q “
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tx˚u. If x1 ‰ x˚, then x1 R F pR1q. Suppose that x1 “ x˚. Since
Ş

iPN Di pRiq ‰ H

and x˚ belongs to the middle indifference class, it follows that N “ K pR, x, x˚q Ď

K pR, x, x˚q, and so x P
Ş

iPN Di pR1
iq, which is a contradiction.

Suppose that
Ş

iPN Di pRiq “ H. Then, F pRq “ tx˚u. Fix any i P K pR, x˚, x1q,

so that x˚Pix
1 and so x˚P 1

ix
1. It follows that x1 R Di pR1

iq. Since x
1 ‰ x˚, it follows

that x1 R F pR1q. Thus, F satisfied both NSD and IIA. ■

Proof of Theorem 12. Let
`

M,W,RTC ,M
˘

be given. We show that the

collusion-proof stable rule fCP´St : RTCÑ M satisfied NSD and IIA. Let us first

show that it satisfies NSD. Fix any ÁP RTC and any µ, µ1 P M. Suppose that

fCP´St pÁq “ µ and that µ1 ‰ fCP´St pÁq “ µ. Assume, to the contrary, that

µ1 Áj µ for all j P N . Since µ1 ‰ fCP´St pÁq “ µ, and so µ1 piq ‰ µ piq for

some i P N , it follows that µ1 ąi µ for some i P N . Fix any i P N such that

µ1 ąi µ. Since µ is stable at Á, it cannot be blocked by i at Á, and so µ1 piq ‰ i.

Since the pair pi, µ1 piqq cannot block µ at Á and since µ1 ąi µ and µ1 Áµ1piq µ,

it follows that µ1 pµ1 piqq “ µ pµ1 piqq. This implies that i “ µ1 pµ1 piqq “ µ pµ1 piqq,

and so µ1 piq “ µ piq, which is a contradiction. Thus, the collusion-proof stable

rule fCP´St satisfies NSD.

Let us show that fCP´St satisfies IIA. Fix any Á,Á1P RTC and any µ, µ1 P M.

Suppose that µ1 ‰ fCP´St pÁq “ µ and that K pÁ, µ, µ1q Ď K pÁ1, µ, µ1q. We show

that µ1 ‰ fCP´St pÁ1q. Since fCP´St satisfies NSD, it follows thatK pÁ, µ, µ1q ‰ H.

By definition of fCP´St, it follows that µ P CP pÁqXSt pÁq. We proceed according

to whether µ piq P K pÁ, µ, µ1q for some i P K pÁ, µ, µ1q or not.

Case 1: µ piq P K pÁ, µ, µ1q for some i P K pÁ, µ, µ1q. Suppose µ piq P K pÁ, µ, µ1q

for some i P K pÁ, µ, µ1q. We proceed according to whether i “ µ piq or not.

Suppose that i “ µ piq. Since i P K pÁ1, µ, µ1q, it holds that µ ą1
i µ

1. Then, i blocks

µ1 at Á1. Suppose that i ‰ µ piq. Since i, µ piq P K pÁ1, µ, µ1q, it follows that the

pair pi, µ piqq blocks µ1 at Á1. In both cases, µ1 R St pÁ1q, and so µ1 ‰ fCP´St pÁ1q.

Case 2: µ piq R K pÁ, µ, µ1q for all i P K pÁ, µ, µ1q. The proof of this case relies

on the following result. Without loss of generality, let us assume that m1 P

K pÁ, µ, µ1q—exactly the same reasoning holds if we assume that w1 P K pÁ, µ, µ1q.
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Claim 1. For all mi P M , if mi P K pÁ, µ, µ1q, then µ pmiq “ wi, µ
1 pµ pmiqq P

K pÁ, µ, µ1q and µ1 pµ pmiqq P Mz tmiu.

Proof. Since mi P K pÁ, µ, µ1q, it follows from our initial supposition that µ pmiq R

K pÁ, µ, µ1q. So, mi ‰ µ pmiq “ wi and µ1 Áwi
µ. Let us show that µ1 pwiq P

K pÁ, µ, µ1q. Assume, to the contrary, that µ1 pwiq R K pÁ, µ, µ1q, and so µ1 Áµ1pwiq

µ. We proceed according to whether µ1 pwiq “ wi or not.

Suppose that µ1 pwiq “ wi. Since µ pwiq ‰ wi and µ1 Áwi
µ, it follows that

µ1 ąwi
µ. Thus, wi blocks µ at Á.

Suppose that µ1 pwiq ‰ wi. Since µ1 pwiq R K pÁ, µ, µ1q and mi “ µ pwiq P

K pÁ, µ, µ1q, it holds that µ1 pwiq ‰ µ pwiq. Since µ1 pwiq ‰ µ pwiq and µ1 Áwi
µ, it

follows that µ1 ąwi
µ. Moreover, since µ1 pwiq ‰ mi and µ pmiq “ wi, it holds that

wi “ µ1 pµ1 pwiqq ‰ µ pµ1 pwiqq. Since µ1 Áµ1pwiq µ and µ1 pµ1 pwiqq ‰ µ pµ1 pwiqq, it

follows that µ1 ąµ1pwiq µ. Thus, the pair pwi, µ
1 pwiqq blocks µ at Á.

In both cases, µ R St pÁq, which is a contradiction. Thus, µ1 pwiq P K pÁ, µ, µ1q.

Finally, let us show that µ1 pwiq ‰ mi. Since wi R K pÁ, µ, µ1q and µ1 pwiq P

K pÁ, µ, µ1q, it holds that µ1 pwiq ‰ wi, and so µ1 pwiq P M . Suppose that µ1 pwiq “

mi. Then, µ1 pwiq “ mi “ µ pwiq, and so µ1 pmiq “ µ pmiq. However, since

mi P K pÁ, µ, µ1q, it follows that µ1 pmiq ‰ µ pmiq, which is a contradiction. Thus,

µ1 pwiq P K pÁ, µ, µ1q and µ1 pwiq P Mz tmiu.

Suppose that m1 P K pÁ, µ, µ1q. Then, by our initial supposition, µ pm1q R

K pÁ, µ, µ1q. Claim 1 implies that µ pm1q “ w1, µ
1 pw1q P K pÁ, µ, µ1q and µ1 pw1q “

m2 P Mz tm1u. Then, by our initial supposition, µ pm2q R K pÁ, µ, µ1q, and Claim

1 implies that µ pm2q “ w2, µ
1 pw2q P K pÁ, µ, µ1q and µ1 pw2q P Mz tm2u. We

proceed according to whether µ1 pw2q “ m1 or not.

Suppose that µ1 pw2q “ m1. Then, µ pm1q “ w1 ‰ µ1 pm1q “ w2 and µ pm2q “

w2 ‰ µ1 pm2q “ w1. Let K “ tm1,m2u, and so µ1 pKq “ tw1, w2u. Since K Ď

K pÁ, µ, µ1q and since K pÁ, µ, µ1q Ď K pÁ1, µ, µ1q, we have that K Ď K pÁ1, µ, µ1q.
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Let us define µ2 by:

µ2 pmiq “ µ pmiq “ wi and µ2 pwiq “ mi for all i “ 1, 2,

µ2 piq “ µ1 piq for all i P Nz pK Y µ1 pKqq .

It can be checked that parts 1)-4) of Definition 11 are satisfied, and so µ2 is

obtainable from µ1 through collusion at Á. This implies that µ1 R CP pÁq, and

so µ1 R fCP´St pÁq. Thus, suppose that µ1 pw2q “ m3 P Mz tm1,m2u. Since the

cardinality of M is finite, by repeating the above reasoning, we can see that there

exists K “ tm1, ...,mℓu Ď K pÁ, µ, µ1q such that

µ pmiq “ wi R K pÁ, µ, µ1q for all i “ 1, .., ℓ,

µ1 pwiq P K pÁ, µ, µ1q and µ1 pwiq “ mi`1 for i “ 1, ..., ℓ ´ 1,

µ1 pwℓq P K pÁ, µ, µ1q and µ1 pwℓq “ m1.

Moreover, it also holds that µ pm1q “ w1 ‰ µ1 pm1q “ wℓ and µ pmiq “ wi ‰

µ1 pmiq “ wi´1 for i “ 2, .., ℓ. Since K Ď K pÁ, µ, µ1q and since K pÁ, µ, µ1q Ď

K pÁ1, µ, µ1q, we have that K Ď K pÁ1, µ, µ1q. Let us define µ2 by:

µ2 pmiq “ µ pmiq “ wi and µ2 pwiq “ mi for all i “ 1, ..., ℓ,

µ2 piq “ µ1 piq for all i P Nz pK Y µ1 pKqq .

It can be checked that parts 1)-4) of Definition 11 are satisfied, and so µ2 is

obtainable from µ1 through collusion at Á. This implies that µ1 R CP pÁq, and so

µ1 R fCP´St pÁq. Thus, fCP´St satisfies IIA. ■

Proof of Theorem 13. Let the premises hold. Let Γ “ pS, h, γq be defined

as in the proof of Theorem 9. Fix any R P R. Let us show that F pRq “

h ˝ SvNM pΓ, Rq. Recall the definition of S pF pRqq provided in (1). Also, recall

that in the proof of Theorem 9, we showed that S pF pRqq is the unique vNM

stable set of pΓ, Rq; hence, S pF pRqq satisfies External Stability. It remains to

show that S pF pRqq satisfies Indirect Internal Stability. Its proof is based on the

following claim.
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Claim 2. For all s1 P S pF pRqq and all s2 P S, not s2 "pΓ,Rq s
1.

Proof of Claim 2. Fix any px1, R1q P S pF pRqq and any px2, R2q P S. Assume, to

the contrary, that px2, R2q "pΓ,Rq px1, R1q. Let us proceed according to whether

px2, R2q ąpΓ,Rq px1, R1q or not.

Case 1: px2, R2q ąpΓ,Rq px1, R1q. Since S pF pRqq is a vNM stable set, it must be

the case that px2, R2q R S pF pRqq. Since px2, R2q ąpΓ,Rq px1, R1q, it follows that

there exists K P N0 such that K P γ ppx1, R1q , px2, R2qq and K Ď K pR, x2, x1q. By

definition of Γ, Rule 1 implies that K “ K pR2, x2, x1q P γ ppx1, R1q , px2, R2qq and

x1 R F pR2q. Since x2 P F pR2q, x1 R F pR2q and K pR2, x2, x1q Ď K pR, x2, x1q, IIA

implies that x1 R F pRq, and so px1, R1q R S pF pRqq, which is a contradiction.

Case 2: not px2, R2q ąpΓ,Rq px1, R1q. Since px2, R2q "pΓ,Rq px1, R1q but not

px2, R2q ąpΓ,Rq px1, R1q, it follows that there exist s0, s1, ..., sn P S and K1, ..., Kn P

N0, with s0 “ px1, R1q and sn “ px2, R2q, such thatKj P γ psj´1, sjq and h psnqPKj
h psj´1q

for all j “ 1, ..., n. Let s1 “ px3, R3q. Rule 1 implies that K1 “ K pR3, x3, x1q P

γ ppx1, R1q , px3, R3qq and x1 R F pR3q. Since x2PK1
x1, it follows thatK1 “ K pR3, x3, x1q Ď

K pR, x2, x1q. Since x1, x2, x3 P F pRq and x3 ‰ x1, since x3 P F pR3q, x1 R F pR3q

and since K pR3, x3, x1q Ď K pR, x2, x1q, SIIA implies that x1 R F pRq. It follows

that px1, R1q R S pF pRqq, which is a contradiction.

By Claim 2 it descends that SpF pRqq satisfies the property of Indirect Internal

Stability. Therefore, S pF pRqq “ SvNM pΓ, Rq. ■

Proof of Corollary 6. Let the premises hold. Let Γ “ pS, h, γq be defined

as in the proof of Theorem 9. Fix any R P R. Recall that by Theorem 9, the

rights structure under consideration is implementing in vNM stable set.

Next, recall that, by Claim 2, SpF pRqq is the set of states that are not indi-

rectly dominated by any state in S, i.e., SpF pRqq ” S ´ DompΓ,R,ÏqpSq, where

DompΓ,R,ÏqpAq ” ts P S|Ds1 P A : s1 ÏpΓ,Rq su for all A Ď S. Therefore, SpF pRqq

is the farsighted Core of pΓ, Rq which is unique by definition. It follows that Γ

implements F in farsighted Core.

We now show that SpF pRqq is the largest consistent set (LCS) of xΓ, Ry. We

proceed in two steps.
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Step 1: S pF pRqq is a consistent set of pΓ, Rq. Take any px1, R1q P S pF pRqq and

any px2, R2q P S. Suppose that there existsK P N0 such thatK P γ ppx1, R1q , px2, R2qq.

Then, by definition of Rule 1, it must be the case that K “ K pR2, x2, x1q and

x1 R F pR2q. We proceed according to whether px2, R2q P S pF pRqq or not.

Suppose that px2, R2q R S pF pRqq. Since S pF pRqq is externally stable, it

follows that there exists px3, R3q P S pF pRqq such that px3, R3q ąpΓ,Rq px2, R2q.

The proof is complete if it holds that not x3PKx
1. Assume, to the contrary,

that x3PKx
1. It follows that px3, R3q "pΓ,Rq px1, R1q. Since px1, R1q P S pF pRqq,

px3, R3q "pΓ,Rq px1, R1q contradicts Claim 2.

Suppose that px2, R2q P S pF pRqq. Then, we are left to show that not x2PKpR2,x2,x1qx
1.

Assume, to the contrary, that x2PKpR2,x2,x1qx
1. It follows that K “ K pR2, x2, x1q P

γ ppx1, R1q , px2, R2qq andK pR2, x2, x1q Ď K pR, x2, x1q. This implies that px2, R2q ąpΓ,Rq

px1, R1q, which contradicts the fact that S pF pRqq is internally stable at pΓ, Rq.

Step 2: S pF pRqq “ LCS pΓ, Rq. Assume, to the contrary, that S pF pRqq ‰

LCS pΓ, Rq. Since S pF pRqq is a consistent set of pΓ, Rq by step 1, it follows

that there exists a consistent set S̄ of pΓ, Rq such that S pF pRqq is a proper

set of S̄. Then, there exists px1, R1q P S̄ such that px1, R1q R S pF pRqq. Since

px1, R1q R S pF pRqq, it follows that x1 R F pRq. No Simultaneous Domination

implies that there exist x P F pRq and i P N such that xPix
1. It follows that

i P K pR, x, x1q. Moreover, by definition of S pF pRqq, px,Rq P S pF pRqq. Since

x1 R F pRq, it follows that K pR, x, x1q P γ ppx1, R1q , px,Rqq, by Rule 1.Then, we

have that px1, R1q P S̄, px,Rq P S pF pRqq and K pR, x, x1q P γ ppx1, R1q , px,Rqq.

Since S̄ is a consistent set of pΓ, Rq, there exists px2, R2q P S̄ such that [either

px,Rq “ px2, R2q or px2, R2q "pΓ,Rq px,Rq] and not x2PKpR,x,x1qx
1. Since px,Rq P

S pF pRqq, Claim 2 implies not px2, R2q "pΓ,Rq px,Rq. Then, it must be the case

that px,Rq “ px2, R2q. Since K pR, x, x1q ‰ H, it also follows that xPKpR,x,x1qx
1,

which is a contradiction. Therefore, Γ implements F in farsighted Core.

Finally, let us show that Γ implements F in farsighted stable set. Recall that

the farsighted stable set extends the vNM to the indirect dominance relation.

Hence, a farsighted stable set at pΓ, Rq, denoted by F pΓ, Rq, is defined as the set
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of states that are not indirectly dominated by any states in the farsighted stable

set, i.e., F pΓ, Rq ” F pΓ, Rq ´DompΓ,R,ÏqpF pΓ, Rqq. Let FF pΓ, Rq be the union of

all farsighted stable set at xΓ, Ry. It is well known (e.g. Chwe, 1994, Proposition

3) that if a farsighted stable set exists, then it is weakly contained in the LCS

(Chwe, 1994) which is just proved to be equal to SpF pRqq. Then, FF pΓ, Rq Ď

SpF pRqq. To prove the claim it remains to show that SpF pRqq Ď FF pΓ, Rq which

must hold since any farsighted stable set at F pΓ, Rq cannot be a strict subset

of SpF pRqq, otherwise the indirect external stability of the farsighted stable set

would be violated. Then FF pΓ, Rq “ SpF pRqq and Γ, implements F in farsighted

stable set. ■
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