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ABSTRACT

The Sharpe-ratio-maximizing portfolio becomes questionable under non-Gaussian returns, and

it rules out, by construction, systemic risk, which can negatively a¤ect its out-of-sample perfor-

mance. In the present work, we develop a new performance ratio that simultaneously addresses

these two problems when building optimal portfolios. To robustify the portfolio optimization and

better represent extreme market scenarios, we simulate a large number of returns via a Monte

Carlo method. This is done by �rst obtaining probabilistic return forecasts through a distribu-

tional machine learning approach in a big data setting, and then combining them with a �tted

copula to generate return scenarios. Based on a large-scale comparative analysis conducted on

the US market, the backtesting results demonstrate the superiority of our proposed portfolio se-

lection approach against several popular benchmark strategies in terms of both pro�tability and

minimizing systemic risk. This outperformance is robust to the inclusion of transaction costs.

Keywords: Portfolio optimization; probability forecasting; quantile regression neural network;

extreme scenarios; big data.

�The authors would like to thank very much the Editor Professor Dick van Dijk and two anonymous reviewers for

their very useful comments.
yDepartment of Finance, NEOMA Business School (Rouen). Address: 1 Rue du Maréchal Juin, Mont-Saint-

Aignan, 76130, France. E-mail: weidong.lin@neoma-bs.fr
z Corresponding author. Department of Economics, University of Liverpool Management School. Address:

Chatham St, Liverpool L69 7ZH. E-mail: Abderrahim.Taamouti@liverpool.ac.uk.

1



Portfolio Selection Under Non-Gaussianity
And Systemic Risk: A Machine Learning

Based Forecasting Approach

Abstract

The Sharpe-ratio-maximizing portfolio becomes questionable under non-Gaussian
returns, and it rules out, by construction, systemic risk, which can negatively affect its
out-of-sample performance. In the present work, we develop a new performance ratio
that simultaneously addresses these two problems when building optimal portfolios.
To robustify the portfolio optimization and better represent extreme market scenarios,
we simulate a large number of returns via a Monte Carlo method. This is done by
first obtaining probabilistic return forecasts through a distributional machine learning
approach in a big data setting, and then combining them with a fitted copula to
generate return scenarios. Based on a large-scale comparative analysis conducted on
the US market, the backtesting results demonstrate the superiority of our proposed
portfolio selection approach against several popular benchmark strategies in terms
of both profitability and minimizing systemic risk. This outperformance is robust to
the inclusion of transaction costs.

Keywords: portfolio optimization; probability forecasting; quantile regression neural
network; extreme scenarios; big data

1



1 Introduction

1.1 Motivation of the new performance measure

Deciding the best performance measure to use for constructing optimal portfolios is an

evergreen question in asset allocation. Following the work of Roy (1952), Sharpe (1966)

established the popular Sharpe ratio, initially termed as a reward-to-variability ratio, mea-

suring the tradeoff between mean return and risk. However, this ratio suffers from several

drawbacks as it inherently depends on the normality assumption of the return distribution.

Such drawbacks include ignoring higher order moments of returns, but importantly using

an inadequate measure of risk, namely standard deviation.

Although the Sharpe ratio has always been seen as a reward-to-risk performance mea-

sure, it is essentially a dispersion-type of ratio since its risk measure (i.e. standard devia-

tion) only quantifies uncertainty. As argued by Rachev et al. (2008), risk is an asymmetric

concept that needs to consider downside and upside outcomes of an investment differently.

Thus, the Sharpe ratio becomes unsuitable for assessing risk-adjusted performance once the

normality assumption is relaxed. To overcome this, alternative ratios under non-Gaussian

(asymmetric) distributions have been developed; see Sortino and Satchell (2001) and Orto-

belli et al. (2005). For example, to better measure downside risk in a non-Gaussian setting,

the standard deviation can be replaced by either Value-at-Risk (VaR), Expected Shortfall

(ES), or partial moments of different orders; see Biglova et al. (2004). Among the existing

reward-to-risk ratios, the Rachev ratio of Biglova et al. (2004) is an advanced alternative

since it is fully compatible with non-Gaussian (asymmetric) return distributions.

Recently, other challenges have been pressing investors and portfolio managers to pre-

vent their investments against extreme market events. For instance, the portfolio perfor-

mance is not only affected by the individual risks of portfolio assets, but also by the systemic
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risk of the entire financial market. Hence, relevant performance ratios cannot only con-

sider the realistic aspects of return distributions (asymmetry and heavy-tailedness, etc.),

but also incorporate the potential impacts of market distress. Unfortunately, none of the

above-surveyed measures including the Rachev ratio addresses this concern. In the present

paper, we address this issue by extending the unconditional Rachev ratio to account for

non-Gaussian returns and allow for the occurrence of systemic events.

Systemic risk can be defined as the possibility of breakdown of the whole financial

system, which is opposed to the risk relevant to individual entities within the system.

The 2007-2008 financial turmoil and the subsequent crises (e.g. the euro crisis and the

COVID-19 pandemic) are examples that illustrate the consequence of ignoring this type

of risk. While the macroprudential literature has made substantial progress in developing

monitoring tools for assessing the underlying systemic risk within the financial system,

investors and asset managers still lack explicit guidance for controlling their portfolios’

systemic risk. There are only a few studies that have examined the implications of systemic

risk for investment decisions.

Biglova et al. (2014) studied the portfolio selection problem under systemic risk by

proposing a conditional Rachev ratio (CoRRBiglova), where systemic risk takes place when

all portfolio assets are distressed. However, CoRRBiglova does not connect systemic risk

with market distress and is not an ex-ante measure. Instead, it evaluates portfolio perfor-

mance conditional on the occurrence of idiosyncratic (individual) risk events. Moreover,

CoRRBiglova takes the expected portfolio’s active return as a reward measure conditional

on all asset prices co-moving in the right tail. And this assumption is hard to be satisfied

in practice and might lead to an empty set if the number of portfolio assets is sufficiently

large. Another effort was recently made by Lin et al. (2023), where the authors studied the

tradeoff between reward and risk under systemic risk by introducing a conditional Sharpe

ratio (CoSR). However, CoSR cannot account for non-Gaussian (asymmetric) returns. In
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this work, we extend the unconditional Rachev ratio by explicitly incorporating the oc-

currence of systemic events to account for both individual risk and systemic risk under

non-Gaussian (asymmetric) return distributions.

Last but not least, the out-of-sample performance of optimal portfolios also depends on

the quality of inputs of portfolio optimization. In general, portfolio selection models require

estimating reward and risk measures using either historical or simulated return samples.

The former approach has been often criticized under the mean-variance framework since

the sample-based estimators are subject to substantial estimation errors that can lead

to extreme portfolio weights. This is sometimes referred to as the error maximization

(Michaud 1989). Nevertheless, reducing estimation error is of great importance not only to

the Gaussian-based mean-variance model where the estimates of the first two moments of

returns are required but also to other reward-to-risk models that work under more general

distributional assumptions. In this paper, we adopt the latter approach by employing a

distributional machine learning (ML) method for return prediction, where the resulting

probabilistic return forecasts can help mitigate the estimation error of inputs to portfolio

optimizers as discussed below.

1.2 Motivation of using ML techniques for return prediction

To obtain more robust estimators for portfolio optimization, ML models seem to be promis-

ing tools in obtaining more robust estimators for the input parameters of portfolio opti-

mizers, see for example Kaczmarek and Perez (2021). In the past decades, the rapid

development of computer technology combined with the availability of big data enables

us to train more complicated models via ML algorithms, see Messmer (2017). Gu et al.

(2020) define ML as a set of high-dimensional predictive statistical models, associated with

regularization approaches for mitigating overfitting problems and efficient algorithms for

hyperparameter tuning, respectively. With such advantages and an ever-increasing num-
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ber of predictors, the ML techniques have become the favourite approach for improving

stock return predictability in a big data setting; see Abe and Nakayama (2018), Feng et al.

(2018), Chen et al. (2019), Jan and Ayub (2019), Gu et al. (2020, 2021) and Feng et al.

(2021) among others.

Since the ML techniques have shown to be superior to the traditional statistical meth-

ods in terms of stock return prediction, many researchers have applied them to portfolio

optimization and generated satisfying results; see Zhang et al. (2020), Babiak and Baruńık

(2020) and Huang et al. (2021) among others. However, to our knowledge, there is no ex-

isting work that explores the potential economic gains of utilizing ML-based probabilistic

return forecasts in portfolio selection. The existing applications in FinTech literature focus

mostly on obtaining point forecasts of stock returns without accounting for any predictive

distributional information. Moreover, so far the efficiency of ML-based portfolios has been

tested mainly for characteristic-sorted portfolios (e.g. long-short decile portfolios) without

involving any portfolio optimization strategy. All these motivate us further to investigate

the potential benefit of using a distributional ML approach in portfolio optimization.

Specifically, we solve the portfolio selection problem via a three-stage supervised learn-

ing model. We start by predicting conditional quantiles of cross-sectional returns using a

distributional ML model, i.e., smooth pinball neural network (SPNN), based on which we

estimate the conditional return densities of portfolio assets and the market. Next, we use

t-copula to model the dependence among portfolio assets and the market, and generate

scenarios for future returns. Lastly, based on the simulated returns, we solve the portfo-

lio optimization problem dynamically by maximizing an ex-ante conditional Rachev ratio

(CoRR), which accounts for systemic risk and non-Gaussianity.

To show the superiority of our portfolio selection approach, we perform a large-scale

comparative study using nearly 600 US equities with 37 years of history from January

1985 to December 2021. Our set of predictors includes 94 firm-specific characteristics, 14
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macroeconomic variables, and 74 industry dummies. We use the SPNN model to forecast

monthly return quantiles for portfolio assets and the market index. Thereafter, at the

beginning of each out-of-sample month, we use generated return scenarios to solve the

portfolio optimization problems with CoRR and other performance measures. Finally, we

measure the out-of-sample performance of all portfolio candidates by various metrics in

terms of both profitability and systemic risk.

1.3 Contribution and paper structure

Our paper contributes to the literature in multiple ways. Firstly, we shed new light on

reward-risk portfolio optimization by introducing a new performance measure that ac-

counts for both non-Gaussianity (asymmetry) and systemic risk. This is achieved by ex-

plicitly incorporating the occurrence of systemic events into the portfolio’s Rachev ratio.

This proposed ratio is able to quantify the tradeoff between conditional expected reward

and loss, where the conditional information is the market distress. The optimal portfolio

obtained by maximizing this new measure is expected to deliver a resilient performance

during crisis periods. Secondly, we enrich the asset pricing literature by utilizing a distri-

butional ML model for predicting cross-sectional returns. We demonstrate its superiority

in generating significant economic gains through a comparative backtesting analysis. Con-

trary to the majority of FinTech applications that focus on predicting conditional mean

return, this paper takes advantage of the predictive information implied by the whole con-

ditional distribution that is obtained using probabilistic return forecasts via a distributional

ML approach. Lastly, we build a bridge between the literature on performance strategy

and systemic risk. More specifically, the risk measure in our proposed performance ratio

can be interpreted as the portfolio-level Conditional Expected Shortfall (CoES), which can

be viewed as an extension of Conditional Value-at-Risk (CoVaR) as argued by Adrian and

Brunnermeier (2016). The portfolio’s CoES relative to the whole financial system refers to
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the ES of the portfolio’s active return conditional on extreme market scenarios. Interest-

ingly, if we consider portfolio loss instead of return by putting a minus sign, the resulting

CoES becomes a reward measure.

The remaining paper is structured as follows. Section 2 formulates the return quantile

prediction using the SPNN model. Section 3 defines the portfolio selection problem using

our proposed performance criterion. Section 4 conducts a large-scale comparative study

based on a high-dimensional dataset on the US market, in which we assess the out-of-sample

portfolio performance of all candidate strategies. Section 5 concludes. The simulation

algorithm for generating return scenarios can be found in Appendix A, while Appendix B

describes how we estimate our proposed measure based on simulated returns. Appendices

C, D and E contain some supplementary information on SPNN modelling. Figures and

tables are included in Appendix F.

2 Smooth pinball neural network

Before we specify our model, let us first set some notations. We denote by R = (R1, ..., RV )

the 1× V vector of predictand (monthly realized return) of V training samples, and X =

(X1, ...,XV ), with Xv = (x1,v, ..., xP,v)
T , for v = 1, ..., V , the corresponding P × V matrix

of P one-month lagged predictors, including firm-level features, interactions of each feature

with macroeconomic variables, and industry dummies. Note that in the above notations,

we do not use any subscript to distinguish between different entities (e.g. individual firms

and the market portfolio), but we will do so in Section 3.

2.1 Model specification

Recently, Hatalis et al. (2019) proposed an advanced variant of the traditional quantile

regression neural network (QRNN) of Taylor (2000), namely the smooth pinball neural
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network (SPNN). Formally, the cost function of SPNN is defined as

L =
1

M

1

V

M∑

m=1

V∑

v=1

ρ(A)
τ

[(
Rv − Q̂Rv

(τm|Xv)
)]

+ p+ λ||β||1, (1)

where the M prespecified quantiles are equally spaced as τm = m
M+1

, the conditional quan-

tiles are represented by a QRNN model f(·) with a set of parameters β = {β(τm)}m=1,...,M

such that Q̂Rv
(τm|Xv) = f(Xv, β̂(τm)), ρ

(A)
τ is the smoothed pinball loss proposed by Zheng

(2011). In particular, p is the penalty term added for satisfying the non-crossing constraint

Q̂Rv
(τ1|Xv) ≤ · · · ≤ Q̂Rv

(τM |Xv), ∀v, which is defined as

p = c
1

MV

M∑

m=1

V∑

v=1

[
max

(
0, ϵ−

(
Q̂Rv

(τm|Xv)− Q̂Rv
(τm−1|Xv)

))]2
, (2)

where Q̂Rv
(τ0|Xv) is initialized to zero, ϵ denotes the minimum magnitude between two

adjacent quantiles, and c denotes the penalty parameter. If all constraints are satisfied,

then p = 0. Otherwise, once Q̂Rv
(τm|Xv) < Q̂Rv

(τm−1|Xv), the squared difference between

them is incorporated as a penalty into the objective function. Finally, the LASSO penalty

term λ||β||1 is added to mitigate the overfitting problem, where || · ||1 refers to the L1-norm

and λ denotes the regularization parameter.

2.2 Related literature

SPNN is a further extension of the composite QRNN (CQRNN) proposed by Xu et al.

(2017), by which we can estimate multiple conditional quantiles simultaneously and effi-

ciently. CQRNN inherits one of the same capabilities as linear composite quantile regression

(CQR) of Zou and Yuan (2008), i.e., combining multiple quantile regressions to better cap-

ture complex nonlinear relationships between the predictors and the predictand. CQRNN

is a flexible model not only because it allows uncovering complex nonlinear patterns among

8



variables taking advantage of ANN, but also because it helps enhance the process of esti-

mation and prediction thanks to the property of CQR (Xu et al. 2017).

Although CQRNN improves the model efficiency and prediction accuracy, it fails to

prevent the quantile crossover problem. Quantile crossing violates the requirement that the

cumulative distribution function (CDF) should be monotonically increasing. To mitigate

this issue, Cannon (2018) developed a monotonic CQRNN (MCQRNN) model that imposes

monotonicity constraints on a standard multi-layer perceptron and integrates the model

architecture of CQRNN to achieve simultaneous estimation. However, the stacked matrix

of covariates complicates the network by adding overmuch parameters, which makes the

estimation computationally inefficient and induces the propensity of overfitting. Instead,

SPNN can be seen as an efficient alternative to MCQRNN.

3 Portfolio selection under non-Gaussianity and sys-

temic risk

In this section, we first propose a new performance measure that allows for non-Gaussianity

and accounts for systemic risk. Next, we formulate the portfolio selection problem using

our proposed ratio.

3.1 Conditional Rachev ratio

Unlike Biglova et al. (2014), where they define systemic event (SE) by idiosyncratic (indi-

vidual) risk events, in our paper, SE occurs when the market return goes below a certain

threshold C over the next month, i.e., SE = {Rm < C}.1 This definition is in line with

the systemic risk literature, see, for example, Adrian and Brunnermeier (2016), Brownlees

and Engle (2016), and Acharya et al. (2017). We assume that there exists a benchmark

1 In this subsection, we omit the subscript t for simplicity.
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systemic risk index (e.g. S&P 500 Index), that reflects broad market conditions. And the

investors aim to maximize an ex-ante Rachev ratio conditional on a SE. By implement-

ing our investment strategy, one can find portfolios that deliver the best tradeoff between

reward and risk under non-Gaussianity and systemic risk.

In order to construct our new performance measure, we first briefly review a well-known

systemic risk measure namely CoVaR proposed by Adrian and Brunnermeier (2016). The

CoVaR corresponds to the value-at-risk (VaR) of firm i’s return obtained conditioning on

some SE denoted by C(Rm), say CoVaRi|C(Rm)
α , is implicitly defined as

Pr(Ri ≤ −CoVaRi|C(Rm)
α ) = α, α ∈ (0, 1). (3)

Following the similar idea of Capponi and Rubtsov (2022), we replace Ri with the portfolio’s

active return (Rp−Rb) and C(Rm) with SE, and obtain the CoVaR of our portfolio denoted

by CoVaRp|SE
α . Given the above, we now define the conditional measure of risk (hereafter

CoETL) which is used to build our performance measure:

CoETL(Rp;α) := −E(Rp −Rb|Rp −Rb ≤ −CoVaRp|SE
α ). (4)

The CoETL quantifies the conditional expected tail loss of a portfolio relative to a bench-

mark strategy when the market is in distress. Thus, CoETL can be used to measure

portfolio-level systemic risk. Notice that CoETL can be interpreted as the portfolio’s

CoES, where CoES was initially mentioned by Adrian and Brunnermeier (2016) and later

extended to the context of portfolio choice by Capponi and Rubtsov (2022). Here, if we

denote X = (Rb − Rp) as benchmark underperformance, then −X = (Rp − Rb) stands

for the active portfolio return. Consequently, the conditional measure of reward (hereafter
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CoETP) can be formulated as

CoETP(Rp;α) := E(Rp −Rb|Rp −Rb ≥ CoVaR
p|SE
1−α), (5)

which measures the mean gains that are greater than the (1− α)-conditional percentile of

(Rp − Rb). Finally, based on the terms (4) and (5), the conditional Rachev ratio (CoRR)

is defined as

CoRR(Rp;α, β) :=
CoETP(Rp;α)

CoETL(Rp; β)
, (6)

where the two performance levels α and β can be set to different values, and more discus-

sions about the choice of these numbers will be provided in empirical analysis.

To indicate the severity of SE, different choices of C can be adopted. In our paper,

we follow Adrian and Brunnermeier (2016) and Acharya et al. (2017) and set C as the

negatively signed VaR of market return, i.e.,

SE =
{
Rm < −VaRα(Rm)

}
. (7)

In the empirical analysis, we adopt two threshold values namely VaR1%(Rm) (hereafter C1)

and VaR5%(Rm) (hereafter C2). In terms of the choice of the benchmark rate, we follow

Lin et al. (2023) and consider Rb = Rm.
2

3.2 Portfolio selection problem

Suppose that there are N risky assets in our economy. Hereafter, we formulate the asset

allocation problem based on the maximization of some performance measures. Before we

describe our portfolio problem, let us first define some notations that will be used later on.

2 Maximizing the absolute performance of the portfolio (i.e. Rb = 0) using CoSR and CoRR measures
tends to result in extreme portfolio compositions since the absolute portfolio return is hard to be positive
under extreme market conditions. Therefore, we focus on the case where our investors aim to benchmark
to the market index (i.e. Rb = Rm) with the proposed approach.
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LetRt = (R1,t, ..., RN,t)
T be the vector of monthly returns over month t, Rm,t be the market

return over month t, and Wt = (ω1,t, ..., ωN,t)
T be the vector of portfolio weights held over

month t+1. The portfolio return over next month is denoted by Rp,t+1 = W T
t Rt+1. 0 and

1 denote the column vector of zeros and ones, respectively.

A generic portfolio optimization problem when an investor’s objective function is given

by a performance measure ρ(·) can be described as follows

W ∗
t = arg max

Wt

ρ(Rp,t+1), s.t. 1TWt = 1, (8)

where the different candidates of ρ(·) result in different optimal portfolios. In particular,

the portfolio selection problem under CoRR is given by ρ(Rp,t+1) = CoRR(Rp,t+1;α, β).

In practice, it is often the case for investors to place additional constraints on the

optimization. For instance, we might want to restrict the portfolio weights such that none

of them is greater than a certain amount of the overall wealth invested in the portfolio, or

we might want to prohibit short selling by allowing only long positions. The latter scenario

is realistic in settings characterized by systemic risk in which financial regulators ban short-

selling to reduce short-term investment with speculative motives. Hence, we consider no

short-sale constraint (W ≥ 0) in our later exercise.

We consider three different types of benchmark strategies. The first includes CoRR

portfolios constructed based on CQR of Zou and Yuan (2008) (hereafter CQR-CoRR). The

second contains two different optimization criteria using SPNN, one is the unconditional

Sharpe ratio (hereafter SPNN-SR), another is the conditional Sharpe ratio (CoSR) proposed

by Lin et al. (2023) (hereafter SPNN-CoSR). The last consists of the well-diversified equal-

weighted portfolio (1/N), which does not rely on any model estimation.
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4 Empirical analysis

4.1 Data

Our empirical analysis is conducted on a monthly cross-sectional US dataset that spans

from January 1985 to December 2021. Following Gu et al. (2020), we adopt 94 monthly

firm characteristics. In addition, we consider 14 macroeconomic variables. Among those 8

are adopted by Gu et al. (2020), including dividend-price ratio (macro dp), earnings-price

ratio (macro ep), book-to-market ratio (macro bm), net equity expansion (macro ntis),

Treasury-bill rate (macro tbl), term spread (macro tms), default spread (macro dfy), and

stock variance (macro svar); 6 are uncertainty indices proposed by Ludvigson et al. (2021),

which covers total real uncertainty index (macro TRU), economic real uncertainty in-

dex (macro ERU), total macro uncertainty index (macro TMU), economic macro uncer-

tainty index (macro EMU), total financial uncertainty index (macro TFU), and economic

financial uncertainty index (macro EFU). Furthermore, we also include 74 industry dum-

mies following Gu et al. (2020). In summary, the dimension of our predictor set is

94× (14 + 1) + 74 = 1484.

The sample period of Gu et al. (2020) spans from March 1957 to December 2016.

However, their original data involves a large number of variables with missing values.3

After deleting missing data, the remaining sample spans from January 1985 to December

2021. To alleviate the computational burden associated with network training, we further

restrict our data to firms existing throughout the whole sample period. The resulting

balanced data panel contains 256,632 monthly observations with 577 firms in total.

3 All data before January 1985 contains at least one variable with a large portion of missing observations.
Thus, filling in those missing variables with the monthly cross-sectional medians as implemented by
Gu et al. (2020) is impractical. We thus decide to only focus on the sample period without missing
observations.
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4.2 Asset choice

As argued by Lin et al. (2023), big financial institutions are preferred in systemic risk-

based portfolio analysis since they are more exposed to market distress than non-financial

counterparts. Their pre-analysis results have shown that the SE-based objective function

is more relevant when the universe of portfolio assets covers large financial institutions

that are potentially systemic, though not necessarily classified as Systemically Important

Financial Institutions (SIFIs). Note that our aim is not to only minimize the systemic

risk of a portfolio but also to maximize its profit under stressed market conditions. Those

systemic firms might also exhibit positive active returns, so it may be profitable to invest

in them as well. Therefore, we consider large financial firms in our portfolio analysis.

Following the same filter criterion of Lin et al. (2023), we obtain a list of 38 portfolio assets

including 17 SIFIs and 21 non-SIFIs. These firms are listed in Table 1.

4.3 SPNN modelling

We forecast return quantiles using a recursive window method. To achieve this, we first

divide our original sample into two disjoint but consecutive subsamples. The first subsample

- known as in-sample - is further decomposed into a training subsample L1 and a validation

subsample L2 that we use to estimate and select the best SPNN model, respectively. The

second subsample - known as out-of-sample - represents a testing subsample L3 on which we

make final forecasts. The starting window covers 180 monthly observations, which spans

from January 1985 to December 1999. The incremental size of estimation windows is a

one-month period, resulting in an out-of-sample that includes 264 monthly observations

spanning from January 2000 to December 2021.

It is well known that the ML models are prone to overfit the data, so it is critical

to tune hyperparameters. Following Gu et al. (2020), we use the validation subsample
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L2 to do the model selection. Specifically, for every iteration, we use as a validation

subsample L2 the last one-year/12-month cross-sectional data of each in-sample for all 577

firms and the market. We estimate our SPNN model on L1 using different combinations

of hyperparameters. The subsequent validation subsample L2 is exploited for determining

optimal hyperparameters through evaluating the predicted conditional quantiles based on

fitted models obtained on L1 with respect to each hyperparameter set. In particular, the

hyperparameters are tuned by minimizing the quantile score (QS) over L2.

As for data preprocessing, we normalize covariates so each is scaled within the range

[0, 1]. We first normalize the data on L1 when selecting optimal hyperparameters and then

normalize all observations within the in-sample (L1+L2) when making final forecasts. Due

to the computational intensity of ML-based approaches, instead of recursively estimating

the model for each month, we do it on an annual basis (i.e. every 12 months) and keep the

estimates to make predictions for the following year.

4.4 Portfolio formation

After fitting SPNN models, we obtain quantile forecasts of monthly returns, based on which

we estimate the conditional marginal return distributions following the method discussed

in Appendix A.1. Combining the distributional forecasts with the fitted t-copula model,

we generate 30,000 return scenarios at the beginning of each out-of-sample month. The

portfolio optimization problem defined in (8) is solved on a monthly basis by maximizing the

ex-ante CoRR measure based on generated return scenarios. To obtain a robust estimator

of our CoRR measure, we follow Biglova et al. (2014) and set α = β = 10%.

We perform three steps to compute the final wealth and cumulative return at the k-th

rebalancing, for k ∈ {0, ..., 263}. We first generate return scenarios based on the algorithms

described in Appendix A, and obtain the optimal weights W ∗
k+1 for each of the performance
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measures under consideration. Then, we compute the final wealth as

FWk+1 = FWk(1 +W ∗T
k Rk+1), (9)

where Rk+1 is the vector of realized returns over period k + 1 and FW0 = 1. Lastly, the

cumulative return is computed as

CRk+1 = CRk + ln(1 +W ∗T
k Rk+1), (10)

where CR0 = 0. Note that the latter equation reports the cumulative performance of

the portfolio net of wealth. That is, expression (9) implies that FWK+1 = FW0

K

Π
k=0

(1 +

W ∗T
k Rk+1). Taking logs of both sides of the latter equation, we obtain (ln FWK+1 −

ln FW0) =
K∑
k=0

ln(1 + W ∗T
k Rk+1). Therefore, the growth in wealth due to the cumulative

return on the portfolio is given by expression (10). By repeatedly computing FWk+1 and

CRk+1 for different strategies, we obtain the ex-post paths of final wealth and cumulative

return over the evaluation period.

4.5 Results

In this section, we first evaluate return quantile forecasts using standard diagnostic tests.

Then we examine the predictive power of predictors using two variable importance measures

namely mean squared sensitivity (MSS) and quantile causality measure (QC). Thereafter,

we display backtesting results with and without accounting for transaction costs. Lastly,

we calculate the portfolio’s long-run marginal expected shortfall (LRMES) and CoES to

compare the systemic risk of candidate strategies.
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4.5.1 Evaluation of quantile forecasts

To present some insights on return quantile forecasts obtained from SPNNmodels, in Figure

1 we display the realized returns and the prediction intervals obtained using SPNN1. To

conserve space, we only show relevant results for the market portfolio and three portfolio

assets (CMA, WFC and JPM).4 From Figure 1, we see that the SPNN1-based return

quantile forecasts are able to capture most of the variation of realized returns, especially

during crisis episodes.

To further assess the quality of quantile estimates, we backtest predicted quantile series

using three kinds of tests, namely the Conditional Coverage (CC) test of Christoffersen

(1998) (hereafter LRCC), the Dynamic Quantile test of Engle and Manganelli (2004) (here-

after DQ), and the Dynamic Binary test of Dumitrescu et al. (2012) (hereafter DB). Tables

4 to 8 report the p values for all candidate tests obtained from SPNN1-based quantile esti-

mates, considering quantile levels 0.05, 0.25, 0.5, 0.75 and 0.95.5 Specifically, the DB1-DB7

are specifications proposed in Dumitrescu et al. (2012), while the DQ1-DQ3 and DQVaR1-

DQVaR3 specifications refer to the DQ tests with only lagged hits and with both lagged hits

and the contemporaneous VaRs as defined by Engle and Manganelli (2004), respectively.

Turning our attention to the results displayed in Tables 4 to 8, the first notable results

is that only a few number of p values are below 1% significance level (which suggests a

rejection of the CC hypothesis). This confirms the validity of our SPNN1-based conditional

quantile forecasts in most cases. Take τ = 0.05 for example, even for the BK asset with

some negative results, the majority of tests (8 out of 14) still favor our prediction model.

In addition, due to the dichotomic nature of the dependent variable, the DQ test might

not be an appropriate choice for the inference on the parameters and consequently on

the hypothesis of validity of the quantiles under linear regression models. Therefore, the

4 The results for the remaining portfolio assets are available upon request.
5 For saving space, here we only report the test results for a subset of portfolio assets. In practice, we

have also tested for other assets and overall this subset is representative of the whole sample.
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positive results of the nonlinear regression-based DB tests for BK are still supportive of our

model. The similar conclusion is also held for other quantile levels under consideration.

4.5.2 Variable importance

Next, we measure the variable importance within both training and testing subsamples.

Gu et al. (2020) highlighted the importance of analyzing the contributions of individual

predictors for better interpreting ML-based models. Unlike Gu et al. (2020) who computed

the change in out-of-sample R2 to measure the variable importance in the context of mean

regression, hereafter we adopt two measures that are directly related to measuring the

performance of quantile forecasts. As a first measure, we consider the Mean Squared

Sensitivity (MSS) that measures the sensitivity of m-th output neuron with respect to p-th

input variable (Zurada et al. 1994; Yeh and Cheng 2010):

MSSp,m =

√∑
t∈(L1+L2)

(
sp,m|Xt

)2

|L1|+ |L2|
, (11)

with

sp,m
∣∣
Xt

=
∂Q̂Rt+1

(τm|Xt)

∂xp,t

(Xt), (12)

where Xt = (x1,t, ..., xP,t)
T refers to the t-th observation of P predictors within the in-

sample (L1 + L2), sp,m
∣∣
Xt

denotes the sensitivity of m-th output neuron (which in our

case is the τm-th conditional quantile) with respect to p-th input neuron evaluated at Xt,

and |Li| denote the number of observations in set Li, for i = {1, 2}. The sensitivity term

(12) is calculated using the chain rule, see Pizarroso et al. (2020) for more computational

details. By computing MSS, we can measure the sensitivity of model estimation/prediction

to the changes in a candidate predictor. In practice, for each predictor xp, we compute the
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following average MSS

M̃SSp =
1

M

M∑

m=1

MMSp,m. (13)

It is worth noting that MSS defined above is able to identify and rank predictors of QRNN

models across all quantiles of interest.

Next, we consider the QRNN causality measure developed by Lin and Taamouti (2023),

which is an extension of the Quantile Causality (QC) measure proposed by Song and

Taamouti (2021). Specifically, for τ ∈ (0, 1), the QC of the p-th input variable in QRNN

model is defined as

QCp(τ) = ln

[
E
[
ρτ
(
Rt+1 −QRt+1

(τ |X t)
)]

E
[
ρτ
(
Rt+1 −QRt+1

(τ |Xt)
)]

]
, (14)

where X t denotes the information set of predictors available by month t, except for the

p-th predictor. QCp(τ) measures the degree of Granger causality from a certain predictor

p to the τ -th quantile of the predictand given the past of the latter. QC quantifies the

predictive information provided by the historical observations of p-th predictor regarding

the prediction of τ -th conditional return quantile. Similar to the average measure M̃SSp,

in our empirical analysis we compute the average QC for each predictor xp as

Q̃Cp = ln

[ 1
M |L3|

∑M
m=1

∑
t∈L3

ρτm
(
Rt+1 − Q̂Rt+1

(τm|X t)
)

1
M |L3|

∑M
m=1

∑
t∈L3

ρτm
(
Rt+1 − Q̂Rt+1

(τm|Xt)
)
]
, (15)

where the marginal contribution of each predictor xp is assessed using the out-of-sample

L3 only, whose data does not overlap with those of training or tuning samples.

Based on the SPNN1 model, Figure 2 reports the variable importance measured by

MSS for the 10 most influential firm-level predictors and all macroeconomic variables,

while Figure 3 displays the corresponding results for QC measure.6 Note that the variable

6 To save space, hereafter we only report the variable importance results obtained by SPNN1 model. The
corresponding results for other SPNN configurations are similar and are available upon request.
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importance is normalized to sum up to one, which makes it easier to interpret the relative

importance of the predictive power of each predictor compared to those of others. Variables

with the highest (lowest) importance are displayed on the top (bottom).

The top 10 most influential firm-level features measured by MSS as shown in the top

panel of Figure 2 can be grouped into five categories. The first group contains risk mea-

sures such as the total and idiosyncratic return volatility (retvol and idiovol); the second

one considers liquidity variables including the dollar volume (dolvol), the bid-ask spread

(baspread), the scaled average trading volume (turn), and the turnover-weighted number

of zero trading days (zerotrade); the third group contains a single momentum predictor

namely the short-term reversal (mom1m); the fourth group includes fundamental variables

of the fundamental performance indicator (ms) and the price-sales ratio (sp); the last group

consists of industry dummy (sic2). As for the macroeconomic variables, from the bottom

panel of Figure 2, we see that all of them contribute significantly to the model training,

but among those, the total financial uncertainty index (macro TFU) is ranked as the most

influential macro-level predictor.

Analogously, the rankings based on the QC measure as shown in Figure 3 draw similar

conclusions. The results reveal a fairly small set of dominant firm-level predictors, which

covers the risk measure retvol; the liquidity variable dolvol; the short-term reversal mom1m;

the industry dummy sic2; the fundamental variables of ms and the fundamental health score

(ps); the accounting variables of the number of years since first Compustat coverage (age),

the SG&A ratio (operprof), the tax income (tb), and the sum of returns around earnings

announcement (ear). For the macro variables, the results confirm again their predictive

power and place the greatest emphasis on the macro dp in this case.

To further illustrate the variable importance, Figures 4 to 6 display the time-varying

rankings of the predictors in SPNN1 as measured by MSS and QC respectively. In partic-

ular, these figures rank the importance of individual predictors according to their average
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contribution in terms of predictive power over all quantiles of returns and across all in-

sample and out-of-sample windows depending on the measure in use. Characteristics are

sorted based on their average ranks over all windows, with the most (least) influential ones

placed at the top (bottom). The results displayed in these figures again confirm the most

influential firm- and macro-level predictors as identified before.

4.5.3 Backtesting results

In this section, we use the return quantile forecasts obtained from the fitted SPNNmodels to

estimate conditional marginal return distributions, based on which we simulate returns us-

ing the copula method and solve the portfolio optimization problem thereafter. We perform

a backtesting analysis to evaluate the economic gains of applying SPNN-based probabilis-

tic return forecasts to portfolio selection under systemic risk. In particular, we compare

the out-of-sample performance of SPNN-CoRR portfolios with those of several benchmark

portfolios. The optimized portfolios were built recursively using different performance mea-

sures that are estimated from simulated returns obtained from different statistical models.

Note that all portfolios are monthly rebalanced.

The backtesting results obtained based on SPNN1 model are displayed in Figure 7.7

There are several noticeable features from these figures. Firstly, we observe that all port-

folios perform less well during the 2007-2008 financial crisis and the recent COVID-19

pandemic. The SPNN1-SR and 1/N strategies lose all their values during the global fi-

nancial crisis period, while the SPNN1-CoRR portfolios perform significantly better than

others, even though they lost around half of their values since the last peak in 2007. In par-

ticular, the SPNN1-CoRR with C1 delivers the best out-of-sample performance. Secondly,

the CQR-CoRR portfolios can be identified as strong competitors, where their performance

7 We omit the backtesting results obtained by other SPNN configurations since the portfolio performance
does not vary significantly. Our findings are in agreement with Gu et al. (2020), where the authors
argued that “shallow” learning outperforms “deep” learning. Increasing the model complexity is not
necessarily beneficial in terms of economic gains.
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is better than that of SPNN1-CoSR portfolios but worse than that of SPNN1-CoRR port-

folios. Thirdly, all portfolios that account for systemic risk in performance criteria show

a strong upward trend in profitability throughout the evaluation period. This strong per-

formance can be mainly attributed to their relatively stable performance during market

distress. In short, our backtesting results confirm the benefits of combining SPNN-based

return forecasts with the incorporation of systemic risk into the unconditional Rachev ratio

when constructing optimal portfolios.

To further illustrate the outperformance of our approach against other benchmark

strategies under investigation, we consider an additional exercise where we compare the

performance of optimized portfolios using the same criterion based on different models

and using the same model based on different criteria. Let us first focus on the first case,

where we maximize the same CoRR criterion using different statistical models (CQR and

SPNN1). The corresponding backtesting results are displayed in the top panel of Figure 8,

from which we confirm the outperformance of the SPNN1 model against the CQR model,

with the latter being considered as an advanced variant of quantile-based models. Next,

we compare different performance criteria under the same model. Specifically, we consider

three different performance measures under SPNN1, namely SR, CoSR and CoRR. As we

can see from the bottom panel of Figure 8, the backtesting results demonstrate the supe-

riority of our CoRR measure against other criteria under the same SPNN1 model. Thus,

the results of these two cases consistently favor our approach.

Table 2 reports the values of several statistics that are used to measure ex-post portfolio

performance. The results vary among different strategies depending on the performance

criteria and statistical models used in portfolio optimization, with the exception being the

1/N portfolio which does not rely on any optimization or model estimation. Overall, the

SPNN1-CoRR portfolios perform the best in terms of out-of-sample profitability. Moreover,

the SPNN1-CoRR portfolio with C1 outperforms CQR-CoRR and SPNN1-CoSR portfolios
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by a wide margin, with the latters being considered as robust benchmarks. Specifically, us-

ing the SPNN1-CoRR portfolio with C1, investors would multiply their wealth by 41.9878,

which is near twice that of the SPNN1-CoSR portfolio with C1 (17.4357). Unsurprisingly,

the naive 1/N portfolio offers the lowest final wealth of 9.5409 and an annual return of

0.1080. The results for the Sharpe ratio, Sortino ratio and Calmar ratio again demon-

strate the superiority of our proposed approach, where the SPNN1-CoRR portfolio with

C2 delivers the highest values of Sharpe ratio (0.7690), while the SPNN1-CoRR portfolio

with C1 presents the highest Sortino ratio (1.2714) and Calmar ratio (0.3740) among all

competitors.

Besides the above-mentioned performance ratios, investors may consider alternative

measures to gain deeper insights into their trading strategies. Therefore, we add maxi-

mum drawdown (MDD), average turnover rate (TO), and Farinelli-Tibiletti (FT) ratio as

alternative metrics. Formally, the MDD is calculated as

MDD = max
t0≤t1≤t2≤T0

{rp,t0:t1 − rp,t0:t2} , (16)

where rp,t0:ti , for i ∈ {1, 2} denotes the cumulative portfolio return from time t0 to ti, with

t0 and T0 being the first and last month of evaluation period. The average TO is defined

as

TO =
1

T

T∑

t=1

( N∑

i=1

∣∣∣∣ωi,t+1 −
ωi,t(1 +Ri,t+1)

1 +
∑N

j=1 ωj,tRj,t+1

∣∣∣∣
)
, (17)

where ωi,t is the desired weight of portfolio asset i at time t. The FT ratio was proposed

by Farinelli and Tibiletti (2008) to capture the asymmetric information of portfolio return

distribution. Unlike the Sharpe ratio, which measures the tradeoff between reward and risk

via two-sided type measures (by which the asymmetric deviations from the benchmark are

equally weighted), the FT ratio is a one-sided type measure that describes the volatility
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above and below a benchmark. Formally, the FT ratio is given by

FT(Rp; p, q) =

(
E(Rp −Rb)

p
+

)1/p
(
E(Rb −Rp)

q
+

)1/q , (18)

where (X)+ = max(X, 0), and p ≥ 1, q ≥ 1 are the orders of the corresponding partial

moments. The FT ratio is an alternative reward-risk measure that is compatible with

skewed return distributions, see for example Bouaddi and Taamouti (2013). Note that the

FT ratio implicitly embraces some well-known indices in the literature. For example, for

p = q = 1, FT represents the Omega ratio of Keating and Shadwick (2002), while for p = 1

and q = 2, FT corresponds to the Upside Potential ratio of Sortino et al. (1999).

Table 2 reports the values of the above-mentioned alternative measures as well. Overall

speaking, the SPNN1-CoRR portfolios possess the lowest MDD among all candidate strate-

gies. In particular, the SPNN1-CoRR portfolio with C1 presents the lowest MDD of 0.4951,

while the SPNN1-CoRR portfolio with C2 delivers the second lowest MDD of 0.5027. In

terms of the FT ratios, the SPNN1-CoRR portfolio with C1 dominates other strategies in

all cases. This indicates that our proposed approach achieves better performance under

different asymmetric preferences depending on different choices of partial moment orders.

4.5.4 Effect of transaction costs

The calculation of transaction cost (TC) is based on TO as defined in (17). After accounting

for a proportional TC of c, the portfolio return is now calculated as follows:

R̃p,t+1 = (1 +Rp,t+1)

(
1− c

N∑

i=1

∣∣∣∣ωi,t+1 −
ωi,t(1 +Ri,t+1)

1 +
∑N

j=1 ωj,tRj,t+1

∣∣∣∣
)
−1. (19)

Given the major role that momentum predictors played in ML models, it is expected that

SPNN-based trading strategies are characterized by relatively high TO, see Gu et al. (2020).

Promisingly, as we can see from Table 2, the SPNN1-CoRR portfolio with C1 has a TO
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of 0.1194, which is lower than that of the CQR-CoRR portfolio with C1 (0.2117) and the

SPNN1-CoSR portfolio with C1 (0.1772). The SPNN1-SR portfolio possesses the highest

TO of 0.2779. Unsurprisingly, the 1/N portfolio delivers the lowest TO (0.0242) due to its

well-diversified property.

Although the ML-based portfolios with relatively high TO are more flexible to adapt to

the changes in market conditions than other benchmarks, their values are likely to decrease

due to the higher rebalancing TC. To analyze the effect of TC, we set a moderate level of

c = 20 basis points (bps) and recompute the ex-post paths of final wealth and cumulative

return for all portfolios under consideration. Figure 9 illustrates the ex-post paths of final

wealth and cumulative return after taking into account TC, whereas Table 3 reports the

updated values of performance metrics. In short, we find that the inclusion of proportional

TC does not alter our main conclusions. The SPNN1-CoRR portfolios still outperform all

other competitors in terms of profitability and performance metrics. Remarkably, the final

wealth of the SPNN1-CoRR portfolio with C1 (37.0063) is more than one and a half times

that of the CQR-CoRR portfolio with C1 (21.7091) and is more than two and a half times

that of the SPNN1-CoSR portfolio with C1 (14.4584).

4.5.5 Portfolio-level systemic risk

In this section, we define two portfolio-level systemic risk measures. The first one is the

portfolio’s LRMES (Lin et al. 2023):

LRMESp =
N∑

i=1

ωi LRMESi, (20)

where LRMESi indicates the expected loss of asset i over next month. The LRMESp can

be interpreted as the expected percentage drop in portfolio value under stressed market

conditions, which we estimate using generated return scenarios. In the same spirit, we
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extend the CoES measure to a portfolio-level version as follows

CoESp|SE
α =

N∑

i=1

ωi CoES
i|SE
α , (21)

where CoESi|SE
α = E(Ri|Ri ≤ CoVaRi|SE

α ) refers to the expected tail loss of asset i con-

ditional on market distress.8 Compared to the portfolio’s LRMES defined previously, the

portfolio’s CoES considers a more extreme scenario where both portfolio assets and the

market can be in a low-return environment.

Figure 10 illustrates the time-varying portfolio’s LRMES and CoES over the evaluation

period. Overall speaking, the SPNN1-CoRR portfolios offer the best performance in terms

of both systemic risk measures. The relatively low values of their LRMES and CoES

indicate that they tend to suffer from less potential losses during crisis periods. Specifically,

the SPNN1-CoRR portfolio with C1 provides the lowest LRMES over the first third of the

evaluation period, while the SPNN1-CoRR portfolio with C2 becomes hard to beat over

the rest of the period. The SPNN1-CoSR portfolio with C2 is a serious competitor that

presents slightly higher LRMES in the middle of the evaluation period. Similarly, the

SPNN1-CoRR portfolio with C1 delivers the lowest CoES among all candidate competitors

throughout the out-of-sample period.

5 Conclusions

In this paper, we propose a novel performance ratio that simultaneously takes into account

systemic risk and non-Gaussianity when building optimal portfolios. The proposed mea-

sure extends the unconditional Rachev ratio by explicitly incorporating the occurrence of

extreme events. To robustify the portfolio optimization and better represent the extreme

8 It is worth noting that CoES is subadditive and is able to account for distributional aspects within the
conditional tail.
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market events, we generate a large number of return scenarios via a Monte Carlo method.

This is done by first obtaining probabilistic return forecasts via a quantile regression neu-

ral network (regarded as a distributional machine learning approach), and then simulating

returns via a fitted t-copula model. Thereafter, a large-scale comparative analysis using

US data is conducted to compare the out-of-sample performance of the proposed portfo-

lio selection approach against benchmark strategies. The backtesting results demonstrate

the superiority of our approach in terms of profitability, with its outperformance staying

robust after the inclusion of moderate transaction costs. Furthermore, we compare the

portfolio-level systemic risk among all candidates using LRMES and CoES measures. Our

SPNN-CoRR portfolio is not only characterized by the highest profitability, but it also

delivers the lowest systemic risk throughout the evaluation period.
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Online Appendix

A - Simulation algorithm

Although CoRR has no closed-form expression when the non-short-selling constraint is

imposed, we can still apply a Monte-Carlo simulation-based procedure to solve the portfolio

optimization problem. In practice, CoRR can be estimated using its empirical analogue

that we can calculate from simulated returns over the subset of SE scenarios.

In this section, we discuss how we estimate the conditional marginal distributions (den-

sities) of monthly returns. In particular, we consider a nonparametric estimation approach

for predictive densities using conditional quantiles obtained from SPNN models. After fit-

ting the marginal densities, we apply t-copula to model the dependence between assets and

market returns. Lastly, we describe an algorithm for simulating return scenarios.

A.1 - Estimation of predictive densities

Let Xj,t = {xj,p,t}p=1,...,P ; t=1,...,T for j ∈ {i,m} with i = 1, ..., N be the P -dimensional

predictor set for monthly return of firm i or market index available at month t. Hereafter,

we show how the conditional quantiles of returns obtained from SPNN, i.e. q̂j,t+1(τm) =

Q̂Rj,t+1
(τm|Xj,t), can be utilized to approximate the conditional density pj,t = p(Rj,t+1|Xj,t).

Formally, to recover the predictive probability density p̂j,t(·) based on conditional quantiles,

we distinguish between the following three cases:

• If q̂j,t+1(τ1) ≤ Rj,t+1 < q̂j,t+1(τM) and τm and τm+1 are such that q̂j,t+1(τm) ≤ Rj,t+1 <

q̂j,t+1(τm+1), then

p̂j,t =
τm+1 − τm

q̂j,t+1(τm+1)− q̂j,t+1(τm)
. (22)
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• If Rj,t+1 < q̂j,t+1(τ1), we assume a lower exponential tail

p̂j,t = z1 exp
(
−
|Rj,t+1 − q̂j,t+1(τ1)|

e1

)
, (23)

where z1 = (τ2 − τ1)/(q̂j,t+1(τ2)− q̂j,t+1(τ1)) and e1 = τ1/z1.

• If Rj,t+1 ≥ q̂j,t+1(τM), we assume an upper exponential tail

p̂j,t = zM exp
(
−
|Rj,t+1 − q̂j,t+1(τM)|

eM

)
, (24)

where zM = (τM − τM−1)/(q̂j,t+1(τM)− q̂j,t+1(τM−1)) and eM = τM/zM .

The specifications (22) to (24) that can be viewed as a sort of semiparametric approach for

estimating densities were proposed by Quinonero-Candela et al. (2005) and later exploited

by other papers on distributional prediction and uncertainty analysis, see Cannon (2011),

Ovadia et al. (2019), and Hüttel et al. (2022) among others. For the interior points of the

support, this approach estimates the predictive density by interpolating the neighboring

quantiles. While for the extreme points of the support (lower and upper tails), due to the

lack of observations at the extremes, this approach uses some parametric functional forms

(e.g. exponential function) to better estimate the tails of the predictive density of returns.

Notice that the usage of exponential tails helps ensure that the estimated density function

integrates to one.

In practice, the resulting estimated predictive densities can also be used to estimate

CDF and its inverse (i.e. quantile function), see the documentation of R package qrnn

(Cannon 2011).
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A.2 - Dependence modelling and scenario generation

Once the predictive margins of portfolio assets and the market are obtained, we next model

the joint return distribution via copula. An (N + 1)-dimensional copula C is a multivari-

ate distribution function on [0, 1]N+1, with standard uniform margins. Following Sklar’s

theorem (Sklar 1959), any multivariate distribution, which in our case is the multivariate

distribution function of individual firm and market monthly returns, can be resolved into

univariate margins and a certain copula function

FR1,...,RN+1
(u1, ..., uN+1) = C

(
FR1

(u1), ..., FRN+1
(uN+1)

)
, (25)

where uj ∼ U(0, 1) for j = 1, ..., N + 1, RN+1 = Rm, and FRj
denotes the marginal CDF

of monthly return on an individual asset or market index.

In our empirical analysis, we adopt t-copula to model the dependence among monthly

returns. The t-copula function is given by

Cν,P(u1, ..., uN+1)=

∫ t−1
ν (u1)

−∞

· · ·

∫ t−1
ν (uN+1)

−∞

Γ(ν+N+1
2

)

Γ(ν
2
)
√
(νπ)N+1|P |

(
1 +

x′P
−1x

ν

)− ν+N+1

2

dx,

(26)

where Γ denotes the Gamma function, P represents the correlation matrix, and ν refers to

the degrees of freedom. We now generate return scenarios according to the following steps:

• Given historical monthly returns on firms and market, i.e, {Rj,t}j=1,...,N+1; t=1,...,T , we

estimate the empirical CDF, say F̂νj,t , of return series {Rj,t}, i.e. Rj,t ∼ F̂νj,t .

• Convert historical monthly returns over each estimation window into standard uni-

forms using probability transformation: uj,t = F̂νj,t(Rj,t), where uj,t ∼ U(0, 1).

• Given {uj,t}j=1,...,N+1, we use moment method to estimate the degrees of freedom ν

and the correlation matrix P of the t-copula, see McNeil et al. (2015).
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• Simulate dependent standard uniform vectors u
(s)
t+1 =

(
u
(s)
1,t+1, · · · u

(s)
N+1,t+1

)
for s =

1, ..., S, where S is the simulation sample size.

• Convert u
(s)
t+1 to return scenarios via quantile transformation: R

(s)
j,t+1= F̂−1

Rj,t+1
(u

(s)
j,t+1),

where F̂−1
Rj,t+1

is the inverse CDF of the fitted j-th marginal empirical distribution

deduced from p̂j,t for j ∈ {i,m}. From this, we obtain S simulated return samples

over month t+1 that possess the same dependence structure as the in-sample dataset.

B - CoRR estimation

Suppose that we have generated S return scenarios for each portfolio asset and market

index. Let Rsim
i,t+1 = (R1

i,t+1, ..., R
S
i,t+1)

T , i ∈ {1, ..., N} and Rsim
m,t+1 = (R1

m,t+1, ..., R
S
m,t+1)

T

denote the S × 1 column vectors of simulated returns for asset i and market portfolio,

respectively. Thereafter, Rsim
t+1 = [Rsim

1,t+1 Rsim
2,t+1 · · · Rsim

N,t+1] denotes the S × N matrix

storing simulated returns for all portfolio assets. Furthermore, #SE =
∑S

s=1 I{R
s
m,t+1 <

−V̂aRq(Rm,t+1)} is the number of SE scenarios based on the estimated market VaR.

To estimate the CoRR based on simulated returns, we first estimate the VaR of the

market return. The one-month ahead VaR at coverage rate q is estimated using the em-

pirical qth-quantile of the simulated market returns, say V̂aRq(Rm,t+1), for q = 1%, 5%.9

Analogously, the CoVaR of the portfolio return can be implicitly estimated by the α-th

empirical quantile of the conditional probability distribution of portfolio active return:

Pr(R̃sim
p,t+1|SE ≤ −ĈoVaR

p|SE

α ) := Pr(Rsim
t+1|SEWt −Rsim

m,t+1|SE ≤ −ĈoVaR
p|SE

α ) = α, (27)

where Rsim
t+1|SE and Rsim

m|SE denote #SE×N matrix and #SE×1 column vector of the simu-

lated returns for portfolio assets and market portfolio that satisfy SE condition (hereafter

9 Specifically, if the generated S market return scenarios are sorted in ascendant order, then the
V̂aRq(Rm,t+1) is calculated as the [(1 − q)S − 1]-th observation, which is just the empirical quantile
of the simulated market return distribution.
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we use the word “filtered” to refer to SE-truncated scenarios), respectively.

Let R̃sim
p,t+1|SE = (R̃1

p,t+1|SE, ..., R̃
#SE
p,t+1|SE)

T refer to the #SE× 1 vector of filtered return

scenarios of portfolio active return, and #TLE =
∑#SE

s=1 I{R̃s
p,t+1|SE ≤ −ĈoVaR

p|SE

α } is the

number of scenarios out of #SE that represents the conditional tail loss event (TLE). Using

the above, the CoETL in (4) can be estimated as

ĈoETLt(Rp,t+1;α) = −

∑#SE
s=1 R̃s

p,t+1|SEI{R̃
s
p,t+1|SE ≤ ĈoVaR

p|SE

α }

#TLE
. (28)

Similarly, let #TPE =
∑#SE

s=1 I{R̃s
p,t+1|SE ≥ ĈoVaR

p|SE

1−α} be the number of scenarios that

indicate conditional tail profit event (TPE). The CoETP can then be estimated as

ĈoETPt(Rp,t+1;α) =

∑#SE
s=1 R̃s

p,t+1|SEI{R̃
s
p,t+1|SE ≥ ĈoVaR

p|SE

1−α}

#TPE
. (29)

Combining the above estimators, we obtain the following estimator of CoRR at each month

t:

ĈoRRt(Rp,t+1;α, β) =
ĈoETPt(Rp,t+1;α)

ĈoETLt(Rp,t+1; β)
. (30)

C - SPNN configuration

We follow the same choice of neural network architectures as in Gu et al. (2020). The

number of neurons within each layer is set in accordance with the geometric pyramid rule

(Masters 1993). Specifically, we consider the following model configurations: (1) SPNN

with a single hidden layer (32) (hereafter SPNN1); (2) SPNN with two hidden layers (32,

16) (hereafter SPNN2); (3) SPNN with three hidden layers (32, 16, 8) (hereafter SPNN3);

(4) SPNN with four hidden layers (32, 16, 8, 4) (hereafter SPNN4); and (5) SPNN with

five hidden layers (32, 16, 8, 4, 2) (hereafter SPNN5).
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D - Training and regularization methods

The training of neural networks is very time-consuming due to the high degree of compu-

tational complexity involved in tuning a big number of parameters and processing a large

amount of data. To improve the generalization power of fitted SPNN models and reduce

the training cost, in addition to the LASSO penalization, we consider additional techniques

including batch training, batch normalization, early stopping, and forecast averaging.10

E - Hyperparameters

We use a two-dimensional grid search to tune hyperparameters by minimizing the QS

among all possible SPNN configurations over the validation set L2. The tuning parameters

are the L1 penalty parameter λ1 and the learning rate of Adam optimizer lr. For the grid of

values we keep following Gu et al. (2020) and set λ1 ∈ [10−5, 10−3] and lr ∈ [10−3, 10−2].11

Our goal of model selection is modest in the sense of fixing a variety of hyperparam-

eters ex-ante to reduce the computational cost, though tuning on a more extensive set of

hyperparameters might help in terms of accuracy.12 Unlike Gu et al. (2020) who set the

batch size as 10,000, we apply a relatively small batch size of 32. Although a large batch

size tends to give more precise estimates of the gradients, a small batch size ensures that

each training iteration is fast and reduces memory usage as well. For the remaining hy-

perparameters, we follow the same choice of Gu et al. (2020). Specifically, the number of

epochs is set to 100, the patience in early stopping is set to 5, and the number of ensemble

models is set to 10.

10 As argued by Gu et al. (2020), L2-penalty provides similar regularization effect as early stopping.
Therefore, we only apply L1-penalty to the loss function as defined in (1).

11 For the CQR benchmark model, we tune on λ1 ∈ [10−5, 10−3] only.
12 We also tested for different combinations of L1-penalty, learning rate, dropout rate, and patience in

early stopping, and the current setting is found to be most effective.
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Figure 1: Predicted conditional return quantiles of S&P 500 Index (market portfolio) and
three portfolio assets (CMA, WFC and JPM) obtained from SPNN1 throughout the out-
of-sample period.
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Figure 1: (continued)
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Variable Importance for 14 Macroeconomic Variables by SPNN1

Figure 2: Top and bottom panels display the variable importance of top-10 most influential
firm-level predictors and all macroeconomic variables measured by MSS based on SPNN1,
respectively. Variable importance is an average across all quantiles and over all training
samples. Variable importance is normalized to sum to one.
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Figure 3: Top and bottom panels display the variable importance of top-10 most influential
firm-level predictors and all macroeconomic variables measured by QC based on SPNN1,
respectively. Variable importance is an average across all quantiles and over all testing
samples. Variable importance is normalized to sum to one.
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Figure 4: Time-varying variable importance of the top-5 most influential firm-level predic-
tors measured by MSS (top panel) and QC (bottom panel) based on SPNN1, respectively.
Predictors are ordered based on the average MSS value over recursive training, with the
most influential features at the top and the least influential at the bottom. Columns cor-
respond to the year-end of each in-sample window, and color gradients within each column
indicate the most influential (dark blue) to least influential (white) variables.
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Figure 5: Time-varying variable importance of the top-50 most influential predictors of interactions between each firm characteristic
with macroeconomic variables measured by MSS based on SPNN1. Columns correspond to the year-end of each in-sample window,
and color gradients within each column indicate the most influential (dark blue) to least influential (white) variables.
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Figure 6: Time-varying variable importance of the top-50 most influential predictors of interactions between each firm characteristic
with macroeconomic variables measured by QC based on SPNN1. Columns correspond to the year-end of each in-sample window,
and color gradients within each column indicate the most influential (dark blue) to least influential (white) variables.
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Figure 7: Ex-post paths of final wealth (top panel) and cumulative return (bottom panel)
obtained using different strategies. The shaded areas indicate the NBER recession periods.

46



1
9
9
9
/1

2
/3

1

2
0
0
0
/1

2
/3

1

2
0
0
1
/1

2
/3

1

2
0
0
2
/1

2
/3

1

2
0
0
3
/1

2
/3

1

2
0
0
4
/1

2
/3

1

2
0
0
5
/1

2
/3

1

2
0
0
6
/1

2
/3

1

2
0
0
7
/1

2
/3

1

2
0
0
8
/1

2
/3

1

2
0
0
9
/1

2
/3

1

2
0
1
0
/1

2
/3

1

2
0
1
1
/1

2
/3

1

2
0
1
2
/1

2
/3

1

2
0
1
3
/1

2
/3

1

2
0
1
4
/1

2
/3

1

2
0
1
5
/1

2
/3

1

2
0
1
6
/1

2
/3

1

2
0
1
7
/1

2
/3

1

2
0
1
8
/1

2
/3

1

2
0
1
9
/1

2
/3

1

2
0
2
0
/1

2
/3

1

2
0
2
1
/1

2
/3

1

0

5

10

15

20

25

30

35

40

45
Ex-post final wealth paths

1
9
9
9
/1

2
/3

1

2
0
0
0
/1

2
/3

1

2
0
0
1
/1

2
/3

1

2
0
0
2
/1

2
/3

1

2
0
0
3
/1

2
/3

1

2
0
0
4
/1

2
/3

1

2
0
0
5
/1

2
/3

1

2
0
0
6
/1

2
/3

1

2
0
0
7
/1

2
/3

1

2
0
0
8
/1

2
/3

1

2
0
0
9
/1

2
/3

1

2
0
1
0
/1

2
/3

1

2
0
1
1
/1

2
/3

1

2
0
1
2
/1

2
/3

1

2
0
1
3
/1

2
/3

1

2
0
1
4
/1

2
/3

1

2
0
1
5
/1

2
/3

1

2
0
1
6
/1

2
/3

1

2
0
1
7
/1

2
/3

1

2
0
1
8
/1

2
/3

1

2
0
1
9
/1

2
/3

1

2
0
2
0
/1

2
/3

1

2
0
2
1
/1

2
/3

1

0

5

10

15

20

25

30

35

40

45
Ex-post final wealth paths

Figure 8: The top panel displays ex-post final wealth paths obtained using different models
under the same CoRR measure, while the bottom panel displays ex-post final wealth paths
obtained using different criteria under the same SPNN1 model.
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Figure 9: Ex-post paths of final wealth (top panel) and cumulative return (bottom panel)
obtained using different strategies with 20 bps proportional TC. The shaded areas indicate
the NBER recession periods.
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Figure 10: Portfolio-level LRMES (top panel) and CoES (bottom panel) based on SPNN1.
The shaded areas indicate the NBER recession periods.
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Table 1: List of portfolio assets

Ticker Firm name
SNV Synovus Financial Corp.
JEF Jefferies Financial Group Inc.
CINF Cincinnati Financial Corporation
CMA Comerica Incorporated
L Loews Corporation
VNO Vornado Realty Trust
FITB Fifth Third Bancorp
RF Regions Financial Corporation
MTB M&T Bank Corporation
BEN Franklin Resources, Inc.
WFC Wells Fargo & Company
HBAN Huntington Bancshares Incorporated
MMC Marsh & McLennan Companies, Inc.
HST Host Hotels & Resorts, Inc.
CNA CNA Financial Corporation
JPM JPMorgan Chase & Co.
HUM Humana Inc.
LNC Lincoln National Corporation
BK The Bank of New York Mellon Corporation

Ticker Firm name
AFL Aflac Incorporated
NTRS Northern Trust Corporation
AXP American Express Company
BAC Bank of America Corporation
PNC The PNC Financial Services Group, Inc.
AON Aon plc
GL Globe Life Inc.
CI Cigna Corporation
PGR The Progressive Corporation
PSA Public Storage
KEY KeyBank
USB U.S. Bancorp
SLM SLM Corporation
AIG American International Group, Inc.
SEIC SEI Investments Company
TFC Truist Financial Corporation
STT State Street Corporation
ZION Zions Bancorporation
UNH UnitedHealth Group Incorporated
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Table 2: Backtesting results

Metric SPNN1-CoRR(C1) SPNN1-CoRR(C2) CQR-CoRR(C1) CQR-CoRR(C2) SPNN1-CoSR(C1) SPNN1-CoSR(C2) SPNN1-SR 1/N

Final wealth 41.9878 29.5068 27.1558 23.5262 17.4357 21.2523 18.8947 9.5409

Annual return 0.1852 0.1663 0.1619 0.1544 0.1388 0.1490 0.1429 0.1080

MDD 0.4951 0.5027 0.5363 0.6173 0.5617 0.5376 0.6197 0.6863

TO 0.1194 0.1522 0.2117 0.1430 0.1772 0.1094 0.2779 0.0242

Sharpe ratio 0.7545 0.7690 0.6800 0.6952 0.6357 0.7194 0.4953 0.4083

Sortino ratio 1.2714 1.2614 1.1491 1.0958 1.0277 1.1684 0.9074 0.6667

Calmar ratio 0.3740 0.3309 0.3019 0.2501 0.2470 0.2772 0.2306 0.1573

FT ratio(p=1,q=1) 1.0833 0.9672 1.0196 0.9370 0.9782 0.8638 0.9779 0.8861

FT ratio(p=1,q=2) 0.7682 0.6639 0.7387 0.6131 0.6197 0.5897 0.6959 0.5888

FT ratio(p=1,q=3) 0.5998 0.5015 0.5741 0.4573 0.4598 0.4477 0.5466 0.4425

FT ratio(p=1,q=4) 0.5005 0.4092 0.4726 0.3747 0.3747 0.3673 0.4588 0.3631

Table 3: Backtesting results with 20 bps proportional TC

Metric SPNN1-CoRR(C1) SPNN1-CoRR(C2) CQR-CoRR(C1) CQR-CoRR(C2) SPNN1-CoSR(C1) SPNN1-CoSR(C2) SPNN1-SR 1/N

Final wealth 37.0063 25.1234 21.7091 20.2266 14.4584 18.9336 14.0858 9.3000

Annual return 0.1784 0.1578 0.1502 0.1465 0.1291 0.1430 0.1278 0.1067

MDD 0.4998 0.5129 0.5412 0.6251 0.5700 0.5421 0.6395 0.6874

Sharpe ratio 0.7264 0.7274 0.6287 0.6575 0.5886 0.6885 0.4393 0.4027

Sortino ratio 1.2214 1.1911 1.0600 1.0358 0.9528 1.1178 0.8059 0.6581

Calmar ratio 0.3569 0.3077 0.2774 0.2343 0.2265 0.2638 0.1998 0.1552

FT ratio(p=1,q=1) 1.0891 0.9758 0.9810 0.9212 0.9598 0.8591 1.0054 0.8872

FT ratio(p=1,q=2) 0.7693 0.6677 0.7188 0.6073 0.6143 0.5866 0.7060 0.5901

FT ratio(p=1,q=3) 0.5999 0.5035 0.5616 0.4535 0.4565 0.4450 0.5516 0.4436

FT ratio(p=1,q=4) 0.5001 0.4104 0.4633 0.3717 0.3722 0.3649 0.4615 0.3640
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Table 4: p values of CC tests for SPNN1 forecasts (τ = 0.05)

Ticker DB1 DB2 DB3 DB4 DB5 DB6 DB7 LRCC DQ1 DQ2 DQ3 DQVaR1 DQVaR2 DQVaR3

JEF 0.9500 0.3982 0.3415 0.3160 0.9674 0.5172 0.6621 0.3482 0.2104 0.1316 0.1319 0.3452 0.2554 0.3542

CINF 0.4612 0.4297 0.4065 0.3896 0.2895 0.3559 0.4947 0.2844 0.2901 0.4234 0.5646 0.3425 0.3493 0.5084

L 0.8011 0.5643 0.5712 0.6780 0.9159 0.7275 0.8433 0.5186 0.6810 0.7581 0.8136 0.8409 0.9411 0.9718

BK 0.6758 0.0279 0.0580 0.0865 0.7680 0.0576 0.0996 0.0272 0.0012∗ 0.0029∗ 0.0035∗ 0.0036∗ 0.0020∗ 0.0048∗

TFC 0.6758 0.6094 0.7848 0.8843 0.7923 0.7552 0.8581 0.7113 0.7038 0.5896 0.7505 0.7967 0.8460 0.8406

ZION 0.4612 0.2921 0.6240 0.2985 0.6554 0.0060∗ 0.0071∗ 0.2844 0.2901 0.4234 0.3856 0.4793 0.7244 0.4041

NOTE: “∗” denotes rejection from the coverage test at 1% significance level.

Table 5: p values of CC tests for SPNN1 forecasts (τ = 0.25)

Ticker DB1 DB2 DB3 DB4 DB5 DB6 DB7 LRCC DQ1 DQ2 DQ3 DQVaR1 DQVaR2 DQVaR3

JEF 0.2059 0.1853 0.2948 0.1271 0.2388 0.2669 0.2387 0.1617 0.1668 0.2792 0.2770 0.2563 0.5004 0.5215

CINF 0.6350 0.2084 0.3335 0.4427 0.6609 0.2787 0.3777 0.2415 0.2304 0.3605 0.5035 0.3374 0.5798 0.7389

L 0.5777 0.2342 0.3659 0.3338 0.6676 0.3191 0.4384 0.1648 0.1578 0.2942 0.4046 0.2574 0.4788 0.5862

BK 0.7424 0.2224 0.3549 0.1870 0.4372 0.1654 0.2587 0.3880 0.3640 0.3980 0.4571 0.3733 0.4448 0.5280

TFC 0.6832 0.5864 0.6536 0.6773 0.8212 0.7141 0.8240 0.5075 0.4907 0.6999 0.7613 0.6635 0.8897 0.9517

ZION 0.6845 0.8556 0.6998 0.4849 0.4068 0.6825 0.0722 0.9105 0.9217 0.7278 0.7645 0.7253 0.5681 0.6916

Table 6: p values of CC tests for SPNN1 forecasts (τ = 0.5)

Ticker DB1 DB2 DB3 DB4 DB5 DB6 DB7 LRCC DQ1 DQ2 DQ3 DQVaR1 DQVaR2 DQVaR3

JEF 0.3429 0.2922 0.3631 0.4968 0.4795 0.4118 0.4873 0.4529 0.4520 0.3854 0.5432 0.5853 0.6357 0.7464

CINF 0.3429 0.3365 0.4380 0.5691 0.2502 0.3111 0.3061 0.4858 0.5397 0.5338 0.7002 0.5487 0.3545 0.4697

L 0.4666 0.3384 0.4689 0.6142 0.0017∗ 0.0045∗ 0.0062∗ 0.8284 0.7845 0.5517 0.7125 0.0044∗ 0.0164 0.0483

BK 0.3055 0.4728 0.6404 0.7541 0.4961 0.6167 0.0368 0.5823 0.5565 0.7436 0.8472 0.7474 0.8477 0.8400

TFC 0.2315 0.2349 0.3396 0.1172 0.1488 0.1668 0.2562 0.2385 0.2093 0.3704 0.2048 0.1541 0.3450 0.2973

ZION 0.5000 0.2189 0.1332 0.1706 0.0319 0.0115 0.0237 0.3938 0.3622 0.1253 0.1882 0.0165 0.0175 0.0475

NOTE: “∗” denotes rejection from the coverage test at 1% significance level.
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Table 7: p values of CC tests for SPNN1 forecasts (τ = 0.75)

Ticker DB1 DB2 DB3 DB4 DB5 DB6 DB7 LRCC DQ1 DQ2 DQ3 DQVaR1 DQVaR2 DQVaR3

JEF 0.3178 0.3772 0.5224 0.2773 0.4334 0.4970 0.4893 0.3997 0.4026 0.5717 0.4417 0.5247 0.7863 0.6709

CINF 0.5777 0.5437 0.1439 0.1529 0.2405 0.6571 0.7924 0.6225 0.5975 0.1730 0.1090 0.7462 0.3775 0.0936

L 0.5143 0.7110 0.7939 0.6846 0.2019 0.3627 0.5035 0.6700 0.6636 0.8394 0.6788 0.2711 0.5370 0.5368

BK 0.3178 0.3826 0.4059 0.5108 0.2452 0.2518 0.3534 0.3923 0.3811 0.3603 0.5171 0.2859 0.3624 0.5568

TFC 0.7423 0.0101 0.1242 0.0965 0.0499 0.0004∗ 0.0001∗ 0.2266 0.2428 0.2473 0.1386 0.0955 0.0444 0.0472

ZION 0.3178 0.0698 0.2826 0.3519 0.1204 0.2816 0.1575 0.4237 0.4159 0.2726 0.4115 0.2095 0.1998 0.3787

NOTE: “∗” denotes rejection from the coverage test at 1% significance level.

Table 8: p values of CC tests for SPNN1 forecasts (τ = 0.95)

Ticker DB1 DB2 DB3 DB4 DB5 DB6 DB7 LRCC DQ1 DQ2 DQ3 DQVaR1 DQVaR2 DQVaR3

JEF 0.6403 0.1014 0.1030 0.1632 0.1100 0.0807 0.0939 0.0935 0.0393 0.0591 0.0640 0.0360 0.0849 0.1137

CINF 0.2960 0.4872 0.4455 0.0980 0.2951 0.3642 0.5033 0.2417 0.3295 0.4947 0.0312 0.4212 0.5681 0.1208

L 0.0029∗ 0.0067∗ 0.0159 0.0320 0.0017∗ 0.0158 0.0268 0.0029∗ 0.0169 0.0427 0.0854 0.0403 0.1400 0.3039

BK 0.4612 0.0202 0.0433 0.0417 0.0693 0.0169 0.0280 0.0446 0.0257 0.0421 0.0445 0.0163 0.0054∗ 0.0147

TFC 0.0812 0.0071∗ 0.0000∗ 0.0000∗ 0.0214 0.0158 0.0048∗ 0.0742 0.1294 0.1003 0.0700 0.0675 0.1294 0.1356

ZION 0.0812 0.0273 0.0484 0.0879 0.0518 0.0396 0.0734 0.0742 0.1294 0.2433 0.3716 0.2052 0.4388 0.4845

NOTE: “∗” denotes rejection from the coverage test at 1% significance level.
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