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Abstract

A higher-order approximation is made to the bias of the modified LIML (MLIML) estimator
due to Fuller. It is demonstrated via simulation that the asymptotic approximation can be used
to reduce estimation bias, including in cases where instrument strength is relatively weak, and
that the approximation also mirrors the behaviour of the true bias. It is possible to see via
the asymptotic approximation why MLIML estimation bias is often found to be very small in
two equation models where the order of overidentification is small, and to predict, in simple
models where the approximation is specialised, how the order of overidentification will relate
nonlinearly to the bias. An asymptotic approximation is also obtained for the pseudo-bias of
the LIML estimator. Finally, the bias-corrected MLIML estimator is used to re-examine the
effect on the US college graduate wage premium of shifts in the relative supply of young college
workers, following Fortin (2006).

1 Introduction

In simultaneous equation models it is well known that Ordinary Least Squares (OLS) is a biased
and inconsistent estimator, and a good deal of research has been conducted to explore the nature
of the bias and to develop less biased and consistent estimators. In particular the Two Stage Least
Squares (2SLS) estimator, which is consistent but still biased in small samples emerged as the
natural successor and has been in widespread use over many years. Its small sample properties
were explored in the seminal paper by Nagar (1959), which has served to generate a great deal
of research. The original Limited Information Maximum Likelihood (LIML) estimator, whose
unconditional distribution has been studied recently by Giovanni and Jiang (2019), is consistent but
does not have finite moments of any order. Anderson et al. (2011) show that it performs relatively
well in terms of median bias and approaches normality faster than 2SLS when the number of
instruments is large, but as a consequence of the moments issue LIML itself has not been in general
use. However a modification of the estimator proposed by Fuller (1977) which we shall refer to as
the Modified Limited Information Maximum Likelihood (MLIML) estimator is also consistent and
has all necessary moments, while it was shown by Fuller to be unbiased to order T−1.1 Although

1We note that there have been other LIML estimators since with finite moments as well besides the MLIML
estimator considered here, for example LIML using an alternative normalisation by Anderson (2010) and regularised
LIML by Carrasco and Tchuente (2015).
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the conventional LIML estimator does not have a finite expectation, it is still possible to find an
approximation to its central value, which has the interpretation of being an approximation to the
mean of a distribution very close to that of the LIML estimator and so can be interpreted as a
pseudo bias; this bias is not zero to order T−1. Hence the MLIML estimator can be said to be less
biased than LIML (and, of course, 2SLS).

In Mikhail (1972), the 2SLS bias approximation was extended to include higher order terms
and an approximation to order T−2 was presented. It was shown that, in the case that the order of
overidentification is L = 1, the bias is zero to order T−2. However, when L > 1 the bias is of order
T−1 and the higher order terms may be important, as was shown in Liu-Evans and Phillips (2019)
so that in such cases bias correction should take account of this. Given that the 2SLS bias to
order T−2 is known there is the opportunity to do this. But there is no possibility to do so for the
MLIML or LIML estimators since there is, as yet, no bias approximation to order T−2 although
there is, in each case, a known bias to order T−1. Of course, having such an approximation is also
important more generally; the MLIML estimator, in particular, is seen as an especially important
alternative to 2SLS, so the more we know of its properties the better. The main purpose of this
paper is to find approximations to the MLIML and LIML biases to order T−2, which will be
compared to the counterpart for 2SLS.

2 The Simultaneous Equation Model

The model we shall analyze is the classical static simultaneous equation model containing G equa-
tions given by

Byt + Γzt = ut, t = 1, 2, ......, T, (1)

in which yt is a G × 1 vector of endogenous variables, zt is a K × 1 vector of strongly exogenous
variables and ut is a G× 1 vector of structural disturbances with G×G positive definite covariance
matrix Σ. The matrices of structural parameters, B and Γ are, respectively, G×G and G×K. It
is assumed that B is non-singular so that the corresponding reduced form equations are

yt = −B−1Γzt +B−1ut = Πzt + vt, (2)

where Π is a G ×K matrix of reduced form coefficients and vt is a G × 1 vector of reduced form
disturbances with a G×G positive definite covariance matrix Ω. With T observations we may write
the system as

Y B′ + ZΓ′ = U. (3)

Here, Y is a T × G matrix of observations on endogenous variables, Z is a T × K matrix of
observations on the strongly exogenous variables, and U is a T×Gmatrix of structural disturbances.
The first equation of the system will be written as

y1 = Y2β + Z1γ + u1 (4)

where y1 and Y2 are, respectively, a T × 1 vector and a T × g1 matrix of observations on g1 + 1
endogenous variables. Z1 is a T × r1 matrix of observations on r1 exogenous variables, β and γ are,
respectively, g1 × 1 and r1 × 1 vectors of unknown parameters, and u1 is a T × 1 vector of normally
distributed disturbances with covariance matrix E(u1u

′

1) = σ11IT .
The reduced form of the system includes

Y1 = ZΠ1 + V1, (5)
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in which Y1 = (y1 : Y2), Z = (Z1 : Z2) is a T ×K matrix of observations on K exogenous variables
with an associated K × (g1 +1) matrix of reduced form parameters given by Π1 = (π1 : Π2), while
V1 = (v1 : V2) is a T × (g1 + 1) matrix of normally distributed reduced form disturbances. The
transpose of each row of V1 is independently and normally distributed with a zero mean vector and
(g1 + 1)× (g1 + 1) positive definite matrix Ω1 = (ωij). We also make the following assumption:

Assumption 1. (i): The T ×K matrix Z is strongly exogenous and of rank K with limit matrix
limT→∞ T−1Z ′Z = Σzz, which is K ×K positive definite, and (ii): Equation (4) is over-identified
so that K > g1 + k1 , i.e. the number of excluded variables exceeds the number required for the
equation to be just identified. In cases where second moments are analyzed we shall assume that K
exceeds g1 + k1 by at least two. These over-identifying restrictions are sufficient to ensure that the
Nagar expansion is valid in the case considered by Nagar and that the first two estimator moments
for 2SLS exist: see Sargan (1974).

3 Large T-approximations for the bias of k-class Estimators

The k-class estimator was introduced by Nagar (1959) and in the context of (4) it is given by

(

β̂k

γ̂k

)

=

(

Y
′

2Y2 − kV̂2V̂2 Y
′

2Z1

Z
′

1Y2 Z
′

1Z1

)−1(
Y

′

2y1 − kV̂
′

2y1
Z

′

1y1

)

(6)

When k = 1 we have the 2SLS estimator while the Limited Information Maximum Likelihood
(LIML) estimator is obtained when k = λ ≥ 1, where λ is the smallest root of the determinantal
equation

∣

∣

∣
Y

′

1 (I − PZ1
)Y1 − λY

′

1 (I − PZ)Y1

∣

∣

∣
= 0. (7)

Note that λ is stochastic and, under the assumptions employed here, Tλ is asymptotically dis-
tributed as χ2

k2−g1
, see Fuller(1977), where k2 = K − k1 is the number of exogenous variables

excluded from (4).
We shall find it convenient to rewrite (4) as

y1 = R1α+ u1 (8)

where R1 = (Y2 : Z1) and α = (β
′

, γ
′

)
′

. In this context the k−class estimator will be written as α̂k.
In his seminal paper, Nagar (1959) presented approximations for the first and second moments

of the k−class of estimators where k = 1+θ/T and θ is non-stochastic and may be any real number.
Notice that (1− k) is of order T−1. The main result for estimator bias is given as follows.

If we denote α̂k as the k−class estimator for α in (8) then, defining L as the degree of overiden-
tification, the approximate bias is given by

E(α̂k − α) = [L− θ − 1]Qq + o(T−1), (9)

where the degree of overidentification may be defined as

L = k2 − g1, (10)

and k2 = K − k1 is the number of exogenous variables excluded from the equation of interest.
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Noting that Y2 = Ȳ2 + V2 where Ȳ2 = ZΠ2, we define

Q =

[

Ȳ ′

2 Ȳ2 Ȳ ′

2Z1

Z ′

1Ȳ2 Z ′

1Z1

]

−1

. (11)

Further, we may write that V2 = W ∗ + u1π
′ where u1 and W ∗ = (W : 0) are independent and

1

T

(

E(V ′

2u1)
0

)

= σ2

(

π
0

)

= q (12)

Moreover, defining VZ = [V2 : 0] we have

C = E[
1

T
V ′

ZVZ ] =

[

(1/T )E(V ′

2V2) 0
0 0

]

= C1 + C2, (13)

where C1 =

[

σ2ππ′ 0
0 0

]

= σ2qq′ and C2 = 1
T
E(W ∗′W ∗) =

[

1/TE(W ′W ) 0
0 0

]

.

The approximations for the 2SLS estimator are found by setting θ = 0 in the first expression
above so that, for example, the 2SLS bias approximation is given by

E(α̂− α) = (L− 1)Qq + o(T−1). (14)

The 2SLS bias approximation above was extended by Mikhail (1972) to

E(α̂− α) = (L− 1)[I + tr(QC)I − (L− 2)QC]Qq + o(T−2). (15)

Notice that this bias approximation contains the term (L − 1)Qq which, as we have seen, is the
approximation to order 1/T whereas the remaining term, (L − 1)[tr(QC)I − (L − 2)QC]Qq, is of
order T−2. This higher order approximation is of considerable importance for this paper. Note that
the T−2 term includes a component −(L − 1)(L − 2)QCQq which may be relatively large when
L is large, a fact that will be commented on again later. It is also of particular interest that the
approximate bias is zero to order T−2 when L = 1, i.e. when K − (g1 + k1) = k2 − g1 = 1. Finally,
in a two-equation model tr(QC)Qq = QCQq, so that in this special case the higher order bias term
becomes −(L − 1)(L − 3)QCQq; hence the higher order term also vanishes for L = 3 while the
corresponding term of O(T−1) remains.

The higher order bias approximation for the consistent fixed k−class estimator was given by
Iglesias and Phillips (2008) as

E(α̂k − α) =

(

L− 1− θ + θ
K

T

)

Qq + (L− 1− 2θ)tr(QC)Qq

− [(L− 1)(L− 2)− θ(2(L− 2)− θ)]QCQq + o(T−2)

It is seen that if θ is chosen equal to L − 1 in the k−class bias approximation in (16), the bias
disappears to order T−1 (though not to order T−2). Hence when k = 1 + L−1

T
we have Nagar’s

unbiased estimator.
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4 The Modified Limited Information Maximum Likelihood
Estimator

A modification of the LIML estimator, which we call the Modified Limited Information Maximum
Likelihood (MLIML) Estimator, was introduced by Fuller (1977). First note that from (6) the
LIML estimator may be written in the form of a k-class estimator where k is stochastic as follows:

(

β̂LIML

γ̂LIML

)

=

(

Y
′

2Y2 − λV̂ ′

2 V̂2 Y
′

2Z1

Z ′

1Y2 Z
′

1Z1

)−1(
Y

′

2y1 − λV̂
′

2y1
Z

′

1y1

)

(16)

but the estimator has the drawback that it does not have finite moments of any order. To overcome
this problem Fuller (1977) presented a Modified Limited Information Maximum Likelihood Estima-
tor (MLIML) where λ is replaced by λ− α

T−K
and α is a chosen positive integer. The estimator

has (at least) finite first and second moments. Hence the MLIML estimator is

(

β̂F

γ̂F

)

=

(

Y
′

2Y2 − (λ− α
T−K

)V̂ ′

2 V̂2 Y
′

2Z1

Z
′

1Y2 Z
′

1Z1

)

−1(

Y
′

2y1 − (λ− α
T−K

)V̂
′

2y1
Z

′

1y1

)

(17)

When α = 1 is chosen, the estimator has small bias whereas when α = 4 the estimator has
smallest MSE but its bias is typically larger than when α = 1. A number of studies have found
that MLIML may have good finite sample properties. Hahn, J., Hausman, J. & Kuersteiner, G.
(2004) in particular suggest “that the Fuller estimator receive more attention and use than it seems
to have received to date”, and favourable Monte Carlo results are presented in Flores-Lagunes
(2007).

It has been shown that the estimator has a relatively small bias when α = 1, see Fuller (1977),
where the bias is o(T−1), however in a number of Monte Carlo experiments the MLIML bias has
been so small absolutely as to suggest that it may be of even smaller order, see, for example, Phillips
G.D.A. and Yongdeng Xu (2017). In this paper an expression is found for the second order bias
of the MLIML estimator and, while the bias is not zero to O(T−2), conditions are found under
which the bias is very small, thus explaining the fact that very small biases are sometimes found in
simulation studies.

5 Fuller Expansion to order T
−2

Applying the Nagar expansion approach to the above (19) yields an asymptotic expansion of the
estimation error

eF =

[

Q−1 + (X ′VZ + V ′

ZX) + (1− λ+
1

T −K
)V ′

Z(I −M∗)VZ + V ′

ZM
∗VZ

]

−1

×

[

X ′u+ (1− λ+
1

T −K
)V ′

Z(I −M∗)u+ V ′

ZM
∗u )

]

=

[

I +Q{(X ′VZ + V ′

ZX + (1− λ+
1

T −K
)V ′

Z (I −M ∗)VZ + V ′

Z M∗V )}

]

−1

Q

×

[

(X ′u+ (1− λ+
1

T −K
)V ′

Z(I −M∗)u+ V ′

ZM
∗u)

]
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where M∗ = Z(Z ′Z)−1Z ′. To order T−2 this yields

eF = QX ′u+QV ′

ZM
∗u+Q(1− λ+

1

T −K
)V ′

Z(I −M∗)u

−Q(X ′VZ + V ′

ZX)QX ′u−Q(X ′VZ + V ′

ZX)QV ′

ZM
∗u

−Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

−QV ′

ZM
∗VZQX ′u−Q(1− λ+

1

T −K
)V ′

Z(I −M∗)VZQX ′u

+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)QX ′u−QV ′

ZM
∗VZQV ′

ZM
∗u

−QV ′

ZM
∗VZQ(1− λ+

1

T −K
)V ′

Z(I −M∗)u

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQV ′

ZM
∗u

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(1− λ+
1

T −K
)V ′

Z(I −M∗)u

+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)QV ′

ZM
∗u

+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

+QV ′

ZM
∗VZQ(X ′VZ + V ′

ZX)QX ′u+Q(X ′VZ + V ′

ZX)QV ′

ZM
∗VZQX ′u

+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)QX ′u

+Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQX ′u

+Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(X ′VZ + V ′

ZX)QX ′u+ op(T
−2) (18)

This incorporates the expansion for the 2SLS estimator plus additional terms which involve
(1-λ + 1

T−K
) and which represent the difference between the 2SLS and the MLIML expansions
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to Op(T
−2). Thus eF may be written as

eF = e1 +Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

−Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQX ′u

−QV ′

ZM
∗VZQ(1− λ+

1

T −K
)V ′

Z(I −M∗)u

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQV ′

ZM
∗u

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(1− λ+
1

T −K
)V ′

Z(I −M∗)u

+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

+Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQX ′u

+Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(X ′VZ + V ′

ZX)QX ′u+ op(T
−2). (19)

where e1 is the corresponding expansion for 2SLS.
The bias approximation to order T−2 for 2SLS has already been found so to find the cor-

responding result for the Fuller estimator we shall need to evaluate the expectations of the nine
additional terms to order T−2.

Since the assumption is that the disturbances are normally distributed, terms involving a product
of an odd number of normally distributed disturbances will have a zero expectation.

Examining the above we see that the orders of the nine additional terms are as follows:

1. Q(1-λ + 1
T−K

)V ′

Z(I −M∗)u is Op(T
−1) and has expectation −(L − 1)Qq +o(T−1). It does

not have terms of higher order T−2.

2. −Q(1-λ+ 1
T−K

)V ′

Z(I −M∗)VZQX ′u is Op(T
−

3

2 ). It has expectation zero and does not have

terms of higher order T−2.

3. −Q(X ′VZ +V ′

ZX)Q(1-λ+ 1
T−K

)V ′

Z(I−M∗)u is Op(T
−

3

2 ). Again it has expectation zero with

no terms of higher order T−2.

Thus terms 2. and 3. will not play a part in the approximation while the remaining terms 4. to 9.
are all Op(T

−2) and all have a role.
In the Appendix we have also evaluated the expectations of these terms as follows.

4. E[−QV ′

ZM
∗VZQ(1-λ+ 1

T−K
)V ′

Z(I −M∗)u]

= K(L− 1)QCQq + 2LQC1Qq + o(T−2)

5. E[−Q(1-λ+ 1
T−K

)V ′

Z(I −M∗)VZQV ′

ZM
∗u]

= K(L− 1)QCQq + 2LQCQq + o(T−2)
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6. E[−Q(1-λ+ 1
T−K

)V ′

Z(I −M∗)VZQ(1-λ+ 1
T−K

)V ′

Z(I −M∗)u]

= −(L2 + 1)QCQq + o(T−2)

7. E[+Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(1-λ+ 1
T−K

)V ′

Z(I −M∗)u]

= −(L− 1)(k + g + 2)QCQq − (L− 1)trQC.Qq + o(T−2)

8. E[+Q(X ′VZ + V ′

ZX)Q(1-λ+ 1
T−K

)V ′

Z(I −M∗)VZQX ′u]

= −(L− 1)[QCQq + trQC.Qq] + o(T−2)

9. E[+Q(1− λ+ 1
T−K

)V ′

Z(I −M∗)VZQ(X ′VZ + V ′

ZX)QX ′u]

= −(k + g + 1)(L− 1)QCQq + o(T−2)

Gathering terms we find that the sum of 4. to 9 to order T−2 is

(2(L− 1)(K − k − g − 1)− (L− 1)2 − 2(L− 1))QCQq − 2(L− 1)trQC.Qq + 2LQC1Qq

= ((L− 1)2 − 2(L− 1))QCQq − 2(L− 1)trQC.Qq + 2LQC1Qq

= ((L− 1)(L− 3))QCQq − 2(L− 1)trQC.Qq + 2LQC1Qq

= (L− 1)(L− 3)QCQq − 2(L− 1)trQC.Qq + 2LQC1Qq.

To find the bias approximation of the Fuller estimator to O(T−2) we need to add the higher
order terms from 2SLS,

(L− 1)trQC.Qq − (L− 1)(L− 2)QCQq,

which then gives the result in Theorem 1.

Theorem 1. The bias of the Fuller MLIML estimator is

E(eF ) = −(L− 1)QCQq − (L− 1)trQC.Qq + 2LQC1Qq + o(T−2) (20)

In a two equation model QCQq = trQC.Qq, see Hadri and Phillips (1999), so that the bias
approximation then reduces to

E(eF ) = −2(L− 1)QCQq + 2LQC1Qq = 2QCQq − 2LQC2Qq + o(T−2) (21)

which does not vanish when L = 1. It then becomes 2QC1Qq + o(T−2). In fact this result holds
when L = 1 for any number of equations in the model.

5.1 The bias of the LIML estimator

It is of interest to compare this result to the corresponding approximation for LIML which is
obtained when k = 1− λ. The required analysis is straightforward and proceeds from noting that
E(1− λ) = − L

T−K
+ o(T−1). The bias approximation is then found as follows.

For the LIML case, the corresponding first three terms are:
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1(a) Q(1-λ)V ′

Z(I −M∗)u is Op(T
−1) whereas

E(Q(1− λ)V ′

Z(I −M∗)u) = −LQq + o(T−2).

[Note: the corresponding term for the MLIML estimator replaces L with L− 1 and we shall
find this happens with all the terms 4(a)-9(a) below.]

2(a) −Q(1-λ)V ′

Z(I −M∗)VZQX ′u is Op(T
−

3

2 )

3(a) −Q(X ′VZ + V ′

ZX)Q(1-λ)V ′

Z(I −M∗)u is Op(T
−

3

2 ).

Both terms in 2(a) and 3(a) are shown to have expectation zero to order T−2 and so they play no
part in the bias approximation. We shall, however, evaluate the remaining terms from the results
in Appendix 1 for MLIML given the close relationship between LIML and MLIML. Thus we
have:

4(a) E[−QV ′

ZM
∗VZQ(1-λ)V ′

Z(I −M∗)u]

= KLQCQq + 2LQC1Qq + o(T−2)

5(a) -Q(1-λ)V ′

Z(I −M∗)VZQV ′

ZM
∗u

= KLQCQq + 2LQCQq + o(T−2)

6(a) −Q(1-λ)V ′

Z(I −M∗)VZQ(1-λ)V ′

Z(I −M∗)u

= −L2QCQq + o(T−2)

7(a) +Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(1-λ)V ′

Z(I −M∗)u

= −L(k + g + 2)QCQq − LtrQC.Qq + o(T−2)

8(a) +Q(X ′VZ + V ′

ZX)Q(1-λ)V ′

Z(I −M∗)VZQX ′u

= −L[QCQq + trQC.Qq] + o(T−2)

9(a) +Q(1-λ)V ′

Z(I −M∗)VZQ(X ′VZ + V ′

ZX)QX
′

′u

= −(k + g + 1)LQCQq

Adding the terms 4(a) to 9(a) we have

2L2QCQq − 3LQCQq + 2LQCQq + 2LQC1Qq − L2QCQq − LQCQq − 2LtrQC.Qq

= L2QCQq − 2LQCQq − 2LtrQC.Qq + 2LQC1Qq

= L(L− 2)QCQq − 2LtrQC.Qq + 2LQC1Qq (22)

Adding to this the 2SLS approximation higher order terms, (L−1)trQC.Qq−(L−1)(L−2)QCQq,
as well as the difference in the O(T−1) terms, yields the LIML higher order bias as follows:
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Theorem 2. The bias of the LIML estimator is

E(αLIML) = −Qq − (L+ 1)trQC.Qq + (L− 2)QCQq + 2LQC1Qq + o(T−2) (23)

In the case of the two equation model, trQC.Qq = QCQq and then the higher order part of the
bias approximation becomes

−3QCQq + 2LQC1Qq

So finally the bias of the LIML estimator in a two equation model, to O(T−2), is

E(eLIML) = −Qq − 3QCQq + 2LQC1Qq + o(T−2) (24)

which is likely to exceed the Fuller bias of 2QCQq − 2LQC1Qq in absolute terms because of the
presence of the term of order O(T−1).

Interestingly the higher order part of the bias of LIML is seen to be close to the negative of
that of MLIML.

Lemma 1. Suppose that AT , BT are each of order one, i.e. Op(1), while AT = E(AT ) + (AT −

E(AT )) where (AT − E(AT ) is Op(T
−

1

2 ) and, similarly, BT = E(BT ) + (BT − E(BT )), where the
expectations exist, then it follows that

E(ATBT ) = E(AT )E(BT ) + o(T−
1

2 )

Clearly this is easily generalised.

Good use will be made of Lemma 1 in the subsequent analysis of the bias approximation that
appears in the Appendix.
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6 Numerical and Simulation Results

The bias of the MLIML estimator with α = 1 is illustrated here and compared with the bias of an
analytically corrected MLIML, which uses the O(T 2) approximation in (21) and an initial MLIML
estimation. We then consider the special case of L = 1, where the bias approximation is able to
predict further aspects of the bias. All numerical results are for T = 100, and 100000 replications
are used for the Monte Carlo.

The bias of the MLIML estimator is explored thoughout in a simple simultaneous equation
model:

y1,t = β1y2,t + u1,t, (25)

y2,t = β2y1,t + γ′zt + u2,t (26)

for t = 1, 2, . . . T , where zt is a p × 1 vector of exogenous variables, and where the interest is in
estimation of β1. A similar model has been considered in Hahn, Hausman and Kuersteiner (2004)
and others, most recently in Liu-Evans and Phillips (2018) for the 2SLS estimator. As in the
latter, fixed exogenous data for each element zjt of zt, j = 2, 3, . . . , was drawn from an AR(1)

model zjt = 0.9zj,t−1 + νt with νt
i.i.d.
∼ N(0, 1), while z1t was a constant for all t. The structural

disturbances (u1,t, u2,t)
′ were jointly Normally distributed with mean 0 and covariance matrix Σ.

As noted in the former, the MLIML estimator for this two-equation model may be written as

β̂1,MLIML =
y′2Py1 − (λ− α

T−p
)y′2My1

y′2Py2 − (λ− α
T−p

)y′2My2
.

The analytical bias correction using (22) requires estimates of Q, q, C and C1. From (10), Q
reduces to the scalar (Ȳ ′

2 Ȳ2)
−1 where Ȳ2 = ZΠ2, and we estimate the reduced form parameters Π2

by ordinary least squares, yielding

Q̂ = (Π̂′

2Z
′ZΠ̂2)

−1. (27)

The following were used for the other terms using similar reductions:

q̂ =
1

T
V̂ ′

2,OLS û1,MLIML (28)

Ĉ =
1

T
V̂ ′

2,OLS V̂2,OLS (29)

Ĉ1 =
T

û′

1,MLIMLû1,MLIML

q̂q̂′ (30)

Table 1 presents Monte Carlo results for the performance of the analytically corrected MLIML
estimator vs the uncorrected MLIML estimator. This is for the case α = 1, where the approximation
has been developed in Section 5. The results in the table correspond to the following collection of
models, which includes models with varying degrees of overidentification L and varying instrument
strength:

Model Collection 1 (L = 3, 4, 5, 6 and various instrument strength)

β1 = 2.73, β2 = −16.39, γ = (12.00, 12.00, cι′)) , dim(ι) ∈ {2, 3, 4, 5},

Σ =

(

38.11 −11.78
−11.78 92.11

)

, c ∈ {0.1, 4, 5}

11



The number of instruments considered ranges from four to seven, so that the degree of overi-
dentification L ranges from 3 to 6. The structural coefficient on each additional instrument, c in
each case, ranges from 0.1 to 5, with lower values of c corresponding to lower instrument strength.
As a measure of overall instrument strength, the table reports the expected R2 from a regression
of the endogenous variable y2t on the instruments in zt, which is denoted by E[ρ̂]. Some experi-
mentation was required to find parameterisations where the overall instrument strength would not
be too weak, but where including additional instruments would not increase the overall instrument
strength too quickly.

It can be seen from the table that the bias correction works quite well in all cases, with a small
or moderate increase in root mean squared error. The results in the final four rows, corresponding
to cases with weaker instruments where c = 0.1 for L = 3, 4, 5, 6, illustrate that there is still a
bias correction but that this is accompanied by a larger increase in RMSE. The extent of the
bias correction appears to decline as L rises, and the root mean squared error of the corrected
MLIML estimator becomes more similar to the original estimator. It was found in other simulation
experiments not reported here that this pattern continues for larger L, with the bias and RMSE of
the corrected estimator becoming increasingly similar to the original estimator.

Table 1: T = 100 MLIML and corrected, Model Collection 1

MLIML Bias-corrected MLIML O(T−2) approx.
L E[ρ̂] % Bias RMSE % Bias RMSE % Bias

c = 4 3 0.125 -3.09 0.68 -0.73 0.86 -1.32
4 0.127 -4.57 0.69 -2.45 0.80 -1.79
5 0.130 -5.83 0.69 -4.20 0.75 -2.18
6 0.160 -3.21 0.68 -2.41 0.71 -1.34

c = 5 3 0.135 -2.42 0.67 -0.50 0.80 -1.20
4 0.135 -3.71 0.68 -1.87 0.79 -1.53
5 0.137 -4.82 0.69 -3.35 0.74 -1.86
6 0.173 -2.17 0.67 -1.54 0.69 -1.00

c = 0.1 3 0.095 -6.96 0.69 -2.25 1.30 -2.55
4 0.104 -6.98 0.70 -4.11 0.96 -2.56
5 0.114 -6.99 0.70 -5.16 0.77 -2.56
6 0.123 -6.98 0.70 -5.77 0.73 -2.52

The table presents the bias and RMSE for the MLIML estimator and an analytically corrected

version. The corrected estimator uses estimates of the parameters via an initial MLIML estima-

tion, as detailed in this section. The final column presents the O(T−2) approximate bias, which

is computed using true parameter values. The scalar c is given in Model Collection 1. E[ρ̂] is the

expected R2 from a regression of the endogenous variable y2t on the instruments in zt.

The MLIML bias appears to decrease in magnitude across c for each value of L, and this is
expected as the overall instrument strength increases with c. More curiously, for each c the bias
increases over L = 3, 4, 5 then decreases at L = 6. The approximate bias is conservative but mirrors

12



this pattern. To understand the pattern further, note that for the simple model in this section the
approximate MLIML bias in (21) can be reduced to the following:

−2LQC2Qq + 2QCQq = 2(C − LC2)Q
2q

with

Q =
(1− β1β2)

2

γ′Z ′Z ′γ

If we assume that the coefficients in γ are all the same and equal to c, then

γ′Z ′Z ′γ = c2ι′k2
Z ′Zιk2

where ιk2
is a k2×1 vector of ones. We note that Zιk2

= k2c̃z with the T×1 vector c̃z =
∑k2

j=1 zj/k2
and write γ′Z ′Z ′γ = c2k22 c̃

′

z c̃z. Further, with c̃z2 = c̃′z c̃z/T this leads to

γ′Z ′Z ′γ = c2k22 c̃z2T

and the bias can be written

2(C − LC2)Q
2q = 2(C − LC2)q ×

(1− β1β2)
4

c4(L+ 1)4c̃2
z2T 2

(31)

using k2 = L+1. It can be seen from this that the effect on the bias of increasing L will eventually
be dominated by the denominator, but that for relatively low L the magnitude of the bias can
increase with L, for example if C ≈ C2 with C and C2 sufficiently large. It can also be seen that
the bias falls quickly with c for each order of overidentification L.

Table 2 presents simulation and numerical results for L = 1 cases. From Section 5 we know that
MLIML still has a bias to order O(T−2) in the case where L = 1, unlike 2SLS, though from the
above we would still anticipate the numerical values for the bias being relatively small. In order
to investigate further the ability of the bias approximation to predict the behaviour of the bias in
special cases, we consider models in the following form for a range of values of c with Σ as earlier:

Model Collection 2 (L = 1, equal coefficients, various instrument strength)

β1 = 2.73, β2 = −16.39, γ = (c1, c2)) , c1 = c2 for c ∈ {10, 12, 14, 16, 18, 20}

The bias approximation in the L = 1 case reduces to

2(C − LC2)q ×
(1− β1β2)

4

c4(L+ 1)4c̃2
z2T 2

= C1q ×
(1− β1β2)

4

8c4c̃2
z2T 2

= σ2qq′q ×
(1− β1β2)

4

8c4c̃2
z2T 2

= (E[v2tut])
3 ×

(1− β1β2)
4

8c4σ4c̃2
z2T 2

(32)
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and therefore the sign of the bias should be equal to the sign of E[v2tut]. It can be seen that the
biases in Table 2 are negative, coinciding with E[v2tut] being negative: E[v2tut] = E[e′2B

−1utu1t] =

e′2B
−1

(

σ2

σ12

)

= −13.90, where B =

(

1 −2.73
16.39 1

)

, σ2 = 38.11 and σ12 = −11.78. Moreover,

the bias values should be approximately the same for positive and negative c, which is seen to be
the case in the table where we compare columns 1 and 2. If zt is scaled to 2−

1

4 zt, the bias should
also approximately double via the term c̃2

z2 , and this can also be seen in the table.

Table 2: T = 100 MLIML bias, further investigation, Model
Collection 2 (L = 1 cases)

(Original zt) 2−
1

4 × zt
% Bias % Bias

|c| c > 0 c < 0 E[ρ̂] c > 0 c < 0 E[ρ̂]

10 -14.48 -14.49 0.057 -24.58 -24.52 0.043
12 -6.97 -7.06 0.075 -14.03 -14.04 0.058
14 -3.29 -3.40 0.097 -7.60 -7.68 0.074
16 -1.62 -1.72 0.121 -4.03 -4.14 0.091
18 -0.84 -0.95 0.147 -2.18 -2.29 0.110
20 -0.47 -0.58 0.173 -1.23 -1.33 0.131

The scalar c here is, as described in Model Collection 2, the coefficient

on each element of the 2 × 1 vector zt. For each |c| the values in

columns c > 0 and c < 0 are for the bias where c is positive and

negative, respectively. E[ρ̂] was computed using c > 0. For the final

three columns, the exercise is repeated where z is replaced by 2−
1

4 ×zt

in the data generation and estimation, where it is predicted by (27)

that the bias doubles.

7 Application: college wage premia, Fortin (2006)

We use the higher-order MLIML and LIML bias approximations obtained in Section 5 to re-examine
the effect on the US college graduate wage premium, originally estimated in Fortin (2006), of shifting
the relative supply of young college workers. A similar exercise was carried out in Liu-Evans and
Phillips (2018) in the context of 2SLS and allowing for the effect of asymmetric disturbances on
the bias, though the estimated skewnesses were small in the case we consider here. Moreover, the
estimated 2SLS biases were large in one case, making it interesting to revisit using the low bias
(α = 1) MLIML estimator.

Our interest is in the estimation of α1 in the following inverse relative demand equation for state
s at time t, a 3-year pooled time period:

rst = α0 + α1qst + α2qst
O + α′

3Yst + Ss + Pt + εst

where rst = ln(wY
cst/w

Y
hst) is the college-high school wage gap for young workers, qst = ln(CY

st/H
Y
st)

is the relative supply of young workers with college education to those without, qOst is the same but
for old workers, Yst is a vector of observable demand variables, while Ss and Pt represent state and
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time effects, respectively. The coefficient α1 reflects the effect on the wage premium of shifting the
relative supply of young college workers.

The relative supply of new college graduates, qst, is likely to be influenced by εst, the inverse
relative demand shocks to the college wage premium, and one of the ways Fortin (2006) accounts
for this endogeneity is by using a feasible weighted 2SLS estimation, with a number of instruments
for qst. There are four instruments used in Panel C of Table 8 in the paper by Fortin: three supply-
related determinants of lagged enrollment rates in public colleges, along with a variable representing
the lagged level of enrollment in private colleges, making the order of overidentification L = 3.

The first column of Table 1 presents the estimates obtained by feasible weighted 2SLS (Fortin,
2006), MLIML, LIML and 2SLS, while the second column presents the corrected estimates. This
is done for two different samples, one corresponding to US states with relatively low enrollment in
private colleges, and one with high enrollment where the state educational policies under consider-
ation do not apply. The estimated biases for MLIML are lower in both cases than for 2SLS, but at
around 6% the estimated bias is still substantial for the High enrollment sample.

Table 3: Estimation of α1, and bias estimates

Estimate Corrected estimate

Private Enrollment

Low (N = 217) W2SLS (Fortin, 2006) -0.22 n/a
MLIML -0.318 -0.317
2SLS (LEP, 2018) -0.134 -0.143
LIML -0.365 -0.348

High (N = 126) W2SLS (Fortin, 2006) 0.11 n/a
MLIML -0.0215 -0.0229
2SLS (LEP, 2018) -0.0259 -0.0172
LIML -0.0141 -0.0230

Feasible Weighted 2SLS results are due to Fortin (2006), see in particular Panel C of Table

8. 2SLS and bias-corrected 2SLS results are due to Liu-Evans and Phillips (2018).

8 Conclusions

There has been a resurgence of interest in LIML related estimation approaches, and it is now fairly
common to see applications of the MLIML or “Fuller” estimator in empirical work, particularly when
the model may be weakly identified or where there are many instruments. While it is well known
that the MLIML bias is zero to order O(T−1), there has not been an expression for the higher-order
bias until now. A Nagar expansion of the MLIML estimation error can obtained in a similar way
to other k-class estimators, but the calculation of the higher-order bias for MLIML is complicated
by k being stochastic and driven by the smallest root of the LIML derminantal equation. With
the higher-order analytical bias approximation that is obtained, though, it is possible to predict
the behaviour of the bias well, and to suggest why very small biases are sometimes found in Monte
Carlo studies. Finally, it is shown that the higher-order bias approximation can be used to achieve
practical bias corrections.
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Appendix 1

Theorem 1

In this appendix we use the result in Lemma 1 in evaluating the terms 4-9 in section which form
the higher order bias of the MLIML estimator.

To proceed we consider the expectation of the term in 4 given by

E(−QV ′

ZM
∗VZQ(1− λ+

1

T −K
)V ′

Z(I −M∗)u)

= E[−QV ′

ZM
∗VZQ(1− λ+

1

T −K
)E(V ′

Z(I −M∗)u)] + op(T
−2),

which, using Lemma 1, is equal to −(T −K)E(QV ′

ZM
∗VZQ(1-λ+ 1

T−K
))q where E(V ′

Z(I −M∗)u)
is replaced by (T −K)q.

Hence we now need to evaluate E(QV ′

ZM
∗VZQ(1-λ+ 1

T−K
)) to order T−3 or effectively, E(V ′

ZM
∗VZ(1-

λ+ 1
T−K

)) to order T−1 where

(1− λ+
1

T −K
) =

u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
+ op(T

−1).

Noting that V ′

ZM
∗VZ = V ′

ZPZVZ = W ∗′PZW
∗ + qu′PZuq

′ + op(1), we need to find

E

(

W ∗′PZW
∗
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K

)

+ E

(

qu′PZuq
′

(

u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K

))

where W is independent of u.
We find

E(W ∗′PZW
∗(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)) = E(W ∗′PZW

∗)E(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)

=
−(L− 1)

T −K
KC2

E(qu′PZuq
′(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)) = qq′E[(u′PZu)(

u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
))

=
−(L− 1)

T −K
KC1 −

2LC1

T −K
.

Hence

(T −K)E(−QV ′

ZM
∗VZQ(1− λ+

1

T −K
)V ′

Z(I −M∗)u)

= (L− 1)KQ(C1 + C2)Qq + 2LQC1Qq + o(T−2).

Thus 4. is equal to

(L− 1)KQCQq + 2LQC1Qq + o(T−2)
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The term in 5. is

−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQV ′

ZM
∗u = −Q(1− λ+

1

T −K
)(T −K)CQV ′

ZM
∗u+ op(T

−2)

where, with E(V ′

Z(I −M∗)VZ) = (T −K)C,

E(−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQV ′

ZM
∗u) = E(−(T −K)QC(1− λ+

1

T −K
)QV ′

ZM
∗u) + o(T−2)

so that the above, on introducing ( ), finally becomes

−(T −K)KQC
−(L− 1)

T −K
Qq + 2LQCQq + o(T−2).

Hence for 5. we have

(L− 1)KQCQq + 2LQCQq + o(T−2)

Next we shall evaluate 6., in particular

E[−Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(1− λ+
1

T −K
)V ′

Z(I −M∗)u]

= E[−Q(1− λ+
1

T −K
)(T −K)CQ(1− λ+

1

T −K
)(T −K)q + o(T−2)

= −(T −K)2QCQqE(1− λ+
1

T −K
)2] + o(T−2)

where E((1− λ+
1

T −K
)2) = E[(1− λ)2 + 2

(1− λ)

T −K
+ (

1

T −K
)2]

= E[(
u′(P̄Z − P̄X)u

u′(P̄Z)u
)2 +

2

T −K

u′(P̄Z − P̄X)u

u′(P̄Z)u
+ (

1

T −K
)2].

So we consider E(u
′(P̄Z−P̄X)u
u′(P̄Z)u

)2 where u′(P̄Z − P̄X)u is independent of u′(P̄Z)u and u′(P̄Z −

P̄X)u = −u′(PZ − PX)u = u′(PX − PZ)u.

By direct evaluation E(u′(PX −PZ)u)
2 = L2+2L and E(u

′(P̄Z−P̄X)u
u′(P̄Z)u

)2 = L2+2L
(T−K)2 +o(T 2) while

E( u′(P̄Z−P̄X)u
u′(P̄Z)u

) = −L
T−K

+ o(T−1). Hence

E((1− λ+
1

T −K
)2) =

L2 + 2L− 2L+ 1

(T −K)2
=

L2 + 1

(T −K)2
+ o(T−2)

so that for 6 we may write

E

[

−Q

(

1− λ+
1

T −K

)

V ′

Z(I −M∗)VZQ

(

1− λ+
1

T −K

)

V ′

Z(I −M∗)u

]

= −(L2 + 1)QCQq + o(T−2)
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Now consider the sum of the two terms 7. and 8. which will be taken together as follows:

+Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQX ′u

+Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQ(X ′VZ + V ′

ZX)QX ′u

= +Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)(T −K)CQX ′u

+Q(1− λ+
1

T −K
)(T −K)CQ(X ′VZ + V ′

ZX)QX ′u+ op(T
−2)

= (T −K)Q(X ′VZ + V ′

ZX)QCQ(1− λ+
1

T −K
)X ′u

+ (T −K)QCQ(1− λ+
1

T −K
)(X ′VZ + V ′

ZX)QX ′u+ op(T
−2)

=

[

(T −K)Q(X ′(W ∗ + uq′) + (W ′∗ + qu′)X)QCQ((
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′u+ op(T

−2)

]

+

[

(T −K)QCQ(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)(X ′(W ∗ + uq′) + (W ′∗ + qu′)X)QX ′u+ op(T

−2)

]

=

[

(T −K)QX ′uq′QCQ((
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′u

+ (T −K)Qqu′XQCQ((
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′u+ op(T

−2)

]

+

[

(T −K)QCQ(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′uq′QX ′u

+ (T −K)QCQ(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)qu′XQX ′u+ op(T

−2)

]
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The terms may be written as

[

(T −K)QX ′uu′X ((
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)QCQq

+ (T −K)Qqu′XQCQ((
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′u+ op(T

−2)

]

+

[

(T −K)QCQ(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)X ′uu′XQq

+ (T −K)QCQ(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)qu′XQX ′u+ op(T

−2)

]

=

[

(T −K)QX ′u(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)u′XQCQq

+ (T −K)Qqu′XQCQX ′u (
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
) + op(T

−2)

]

+

[

(T −K)QCQX ′u(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)u′XQq

+ (T −K)QCQq(
u′(P̄Z − P̄X)u

u′(P̄Z)u
+

1

T −K
)u′XQX ′u+ op(T

−2)

]

where now the terms are in a form where evaluation is relatively straightforward.
We have by direct evaluation that the above reduces to

− (L− 1)QCQq − (L− 1)trQC.Qq − (L− 1)QCQq − (k + g)(L− 1)QCQq

= −(k + g + 2)(L− 1)QCQq − (L− 1)trQC.Qq

Hence it has been shown that

(7) + (8) = +Q(Z ′VZ + V ′

ZZ)Q(Z ′VZ + V ′

ZZ)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

+Q(Z ′VZ + V ′

ZZ)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)VZQZ ′u

has expectation
−(L− 1)(k + g + 2)QCQq − (L− 1)trQC.Qq + o(T−2)

Finally we shall evaluate the last term.

(9) = +Q(X ′VZ + V ′

ZX)Q(X ′VZ + V ′

ZX)Q(1− λ+
1

T −K
)V ′

Z(I −M∗)u

= Q(X ′(W ∗ + uq′) + (W ′∗ + qu′)X)Q(X ′(W ∗ + uq′)

+ (W ′∗ + qu′)X)Q(1− λ+
1

T −K
)(T −K)q

which has 8 components as follows.

(i) QX ′W ∗QX ′W ∗Q(1-λ+ 1
T−K

)(T −K)q
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(ii) QW ′∗XQX ′W ∗Q(1-λ+ 1
T−K

)(T −K)q

(iii) QX ′W ∗QW ′∗XQ(1-λ+ 1
T−K

)(T −K)q

(iv) QW ′∗XQW ′∗XQ(1-λ+ 1
T−K

)(T −K)q

(v) QX ′uq′QX ′uq′Q(1-λ+ 1
T−K

)(T −K)q

(vi) QX ′uq′Qqu′XQ (1-λ+ 1
T−K

)(T −K)q

(vii) Qqu′XQX ′uq′Q (1-λ+ 1
T−K

)(T −K)q

(viii) Qqu′XQqu′XQ(1-λ+ 1
T−K

)(T −K)q

Noting that W ∗ is distributed independently of u, the expected values of the above terms are
shown to be

(i) QX ′E(W ∗QX ′W ∗)QE((1-λ+ 1
T−K

))(T −K)q = QX ′XQC2Q
−(L−1)
T−K

(T −K)q

= −(L− 1)QC2Qq + o(T−2)

(ii) QE(W ′∗XQX ′W ∗)QE((1-λ+ 1
T−K

))(T −K)q = −(L− 1)(g + k)QC2Qq + o(T−2)

(iii) QX ′E(W ∗QW ′∗)XQE((1-λ+ 1
T−K

))(T −K)q = −(L− 1)trQC2.Qq + o(T−2)

(iv) QE(W ′∗XQW ′∗)XQE((1-λ+ 1
T−K

))(T −K)q = −(L− 1)QC2Qq + o(T−2)

For the corresponding terms in u we have

(v) QE(X ′(uq′QX ′uq′Q(1-λ+ 1
T−K

)(T −K)q = QE(X ′uu′XQqq′Q(1-λ+ 1
T−K

))(T −K)q

= −(L− 1)Qqq′Qq = −(L− 1)QC1.Qq + o(T−2)

(vi) QE(X ′uq′Qqu′XQ(1−λ+ 1
T−K

))(T −K)q = −(L−1)Qqq′Qq = −(L−1)trQC1.Qq+o(T−2)

(vii) QqE(u′XQX ′uq′Q(1− λ+ 1
T−K

))(T −K)q = −(L− 1)(g + k)Qqq′Qq

= −(L− 1)(g + k)QC1.Qq + o(T−2)

(viii) +QqE(u′XQqu′XQ(1-λ+ 1
T−K

))(T −K)q = QqE(q′QX ′uu′XQ(1-λ+ 1
T−K

))(T −K)q

= −(L− 1)QqqQq = −(L− 1)QC1.Qq + o(T−2)

Adding these 8 terms we have for the required expectation:

(9) = −(L− 1)QCQq − (L− 1)(g + k)QCQq − (L− 1)trQC.Qq − (L− 1)QCQq + o(T−2)

= −(L− 1)(g + k + 2)QCQq − (L− 1)trQC.Qq + o(T−2)

Adding the terms (4) to (9) yields

(L− 1)KQCQq + 2LQC1Qq + (L− 1)KQCQq + 2LQCQq − (L2 + 1)QCQq − (L− 1)(k + g + 2)QCQq

− (L− 1)trQC.Qq − (L− 1)(g + k + 2)QCQq − (L− 1)trQC.Qq

= (L− 1)(L− 3)QCQq + 2LQC1Qq − 2(L− 1)trQC.Qq

Adding to this the 2SLS approximation higher order terms (L−1) trQC.Qq−(L−1)(L−2)QCQq
we find the MLIML bias as

E(eMLIML) = −(L− 1)QCQq − (L− 1)trQC.Qq + 2LQC1Qq + o(T−2).
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In the two equation model QCQq = trQC.Qq and the above becomes

−2(L− 1)QCQq + 2LQC1Qq = 2QCQq − 2LQC2Qq

Hence it is found that whereas the bias is non-zero to order T−2 in general, it is likely to be
close to zero in the special case of a two equation model when L is small, which explains why, in
simulations which typically use two-equation models, the bias is often found to be very small.
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