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1 Introduction

Machine learning (ML) serves as a tool to explicitly describe complex relationships and uncover

patterns within high-dimensional datasets that might help improve forecast accuracy. Gu et al.

(2020) narrowed the definition of ML down to a set of high-dimensional statistical prediction

models, combined with optimization algorithms for parameter searching and regularization methods

for overfitting mitigation. In this paper, we combine ML and a novel methodology to build optimal

portfolios that deal with systemic risk. The new approach enables us to incorporate information

from high-dimensional datasets and account for systemic events simultaneously.

Stock return predictability is of great importance to investors as it is a key ingredient for asset

allocation and risk management. Many studies have tried to explain cross-sectional stock returns

using various predictors such as size, book-to-market, and momentum factor; see Harvey et al.

(2016) and references therein. The increasing number of available factors provides richer predictive

information by incorporating big data into return modelling. However, as argued by Gu et al.

(2020), traditional prediction methods (e.g. linear models) are unable to fit complex patterns and

tend to break down when the number of covariates is close to the number of observations or when

the predictors are highly correlated. Thanks to its ability to handle high-dimensional datasets and

nonlinear relationships, ML is the tool we need to confront the challenge of improving prediction

accuracy and consequently portfolio performance.

Since the ML techniques have shown promising superiority against traditional statistical meth-

ods in stock return prediction, many researchers have applied these models to portfolio optimization

and generated satisfying results; see Zhang et al. (2020); Babiak and Baruńık (2020); and Huang

et al. (2021); among others. However, as far as we know, the existing literature has not yet explored

the potential economic gains of combining ML-based probabilistic return forecasts with portfolio

optimization. The applications in FinTech focus mostly on point forecasts of stock returns with-

out accounting for any uncertainty. Moreover, so far the efficiency of portfolios constructed using
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ML techniques has been tested mainly for characteristic-sorted portfolios (e.g. long-short decile

portfolios), which further motivates us to investigate whether the ML approach to probabilistic

forecasting will help our investors when forming optimal portfolios.

Starting from the mean-variance paradigm of Markowitz (1952), the tradeoff between return

and risk has become the focus of research on portfolio management. A general approach for building

optimal portfolios consists of maximizing an ex-ante performance measure to obtain the so-called

market portfolio, which is based on diverse perceptions of reward and risk measures including the

well-known Sharpe ratio (Sharpe 1994); see Rachev et al. (2008) for a review of various ratios

that have been proposed for portfolio optimization. Although the existing performance ratios

have led to the development of many major theories and practices on optimal asset allocations,

by construction, they are unable to take into account systemic risk that might affect portfolio

performance beyond individual risks. Hence, investors are seeking new portfolio policies that can

help them mitigate systemic risk in their decision-making process.

While the finance literature has extensively studied the underlying mechanism of systemic risk

by proposing various measures, there is scarce research on the portfolio choice under such risk. Only

a few papers examined the implications of systemic risk on investment decisions; see Capponi and

Rubtsov (2022) and references therein. Recently, Lin et al. (2023) were interested in studying the

tradeoff between reward and risk under market distress by introducing a conditional Sharpe ratio

(CoSR), by which they directly incorporate the occurrence of systemic events into the measure.

However, none of the above-mentioned papers utilizes ML for predicting returns when building

optimal portfolios. Our paper bridges this gap by merging the literature on portfolio selection

under systemic risk with the one on return prediction using ML.

Theoretically, solving the portfolio optimization problem by maximizing a specific performance

ratio requires estimating the distribution of future portfolio returns. In practice, however, we might

just need to estimate the reward and risk measures. This can be done in two different ways, which

involve either using historical observations of return or simulated return scenarios. It has been
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argued that the optimal portfolios obtained based on the former approach are unlikely to beat the

naive portfolio, which can be mainly attributed to their extreme weights over the out-of-sample

period; see DeMiguel et al. (2009) among others. This might be caused by the estimation errors

that are known to affect sample-based estimators and make the latter less effective when they are

used as inputs in an optimization problem. Therefore, it is important to find ways to robustify

these portfolio optimization inputs.

Although extensive effort has been devoted to alleviating the aforementioned problem by de-

veloping more robust estimators; see for example Branger et al. (2019), few studies resort to ML.

In this paper, we fill this gap by employing a distributional ML approach to generate return sce-

narios for estimating reward and risk measures. Specifically, we formulate the portfolio selection

problem as a three-stage supervised learning process that considers systemic risk when building op-

timal portfolios. We start by predicting quantiles of cross-sectional stock returns using the Smooth

Pinball Neural Network (SPNN) model, based on which we estimate the conditional marginal dis-

tributions of returns on portfolio assets and the market. Thereafter, we apply t-copula to model

return dependence between individual assets and the market, and then generate scenarios for fu-

ture returns. Lastly, we solve the portfolio optimization problem dynamically by maximizing CoSR

based on the simulated samples.

Furthermore, we perform a large-scale empirical study using nearly 600 US stocks with 37

years of history from 1985 to 2021. Our set of predictors includes 94 firm characteristics, 14

macroeconomic variables, and 74 industry dummies. For the returns of individual assets and the

market, we calculate their monthly quantile forecasts using SPNN. Thereafter, on each month

within our out-of-sample period, we solve the portfolio optimization problem dynamically using

different objective functions. Specifically, we feed the CoSR optimizers with input parameters

that we estimate using the return scenarios generated from a hybrid model that combines SPNN

and copula. For comparison, we calculate sample-based tangency portfolio (SR), sample-based

global minimum variance portfolio (GMV), and equally weighted portfolio (1/N) as benchmark
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strategies. In addition, we also consider an alternative scenario-based method proposed by Lin

et al. (2023) as a strong competitor, in which the authors implemented a GARCH-copula hybrid

model to simulate returns. Finally, we calculate and report the out-of-sample portfolio performance

of different strategies via a backtesting analysis. We also test the significance of the difference in

Sharpe ratios between our approach and that of each benchmark portfolio.

Our paper contributes to the literature in two ways. First, we shed new light on the performance

ratio-based portfolio selection using a distributional ML approach. This is done by incorporating

SPNN-based probabilistic forecasts of stock returns into a conditional Sharpe ratio. The ability

of ML methods to capture complex and nonlinear patterns that characterize big datasets results

in more accurate forecasts of future return distributions, and hence in more robust estimates that

are then fed into the portfolio optimizer, which in turn enhances the portfolio performance relative

to popular benchmark portfolios. Second, we further improve the portfolio selection process by

explicitly incorporating systemic events, which leads to portfolios that are resilient during crises.

After accounting for the conditional tail risk of portfolios, our backtesting results show that our

proposed approach not only performs well on stressed scenarios but also performs steadily when

the market is doing well.

The rest of the paper is organized as follows. Section 2 introduces the stock return quantile

prediction via SPNN. Section 3 formulates the portfolio selection problem under systemic risk.

In this same section, we discuss the method of probabilistic forecasting of returns, and illustrate

how we model dependence through copula and generate return scenarios. Section 4 uses a high-

dimensional dataset from the US market to conduct a large-scale empirical analysis in which we

compare the out-of-sample portfolio performance of our proposed approach with those of several

popular benchmark strategies. Section 5 concludes. Figures and tables that are not shown in the

body of the paper are in Appendix A and B, respectively.
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2 Quantile regression neural network

We start by reviewing the traditional quantile regression (QR), which is the main building block of

Quantile Regression Neural Network (QRNN). Then we introduce the mathematical formulation

of QRNN and its advanced variant Smooth Pinball Neural Network (SPNN). Before we describe

our quantile models, let us first set some notations. Using the terminology of the literature on

neural networks, we denote by R = (R1, ..., RV ) the 1×V vector of monthly returns for V training

samples, and X = (X1, ...,XV ), with Xv = (x1,v, ..., xP,v)
T , for v = 1, ..., V , the P × V matrix of

P covariates across V training samples, including firm-level features, interactions of each feature

with macroeconomic variables, and industry dummies.1

2.1 Model specification

Initially proposed by Koenker and Bassett (1978), the quantile regression (QR) model estimates

the relationship between predictors and a conditional quantile of the response variable. Formally,

the τ -th conditional quantile of the predictand Rv is given by

QRv(τ |Xv) = XT
v β(τ), ∀v ∈ {1, ..., V }, τ ∈ (0, 1), (1)

where β(τ) = [β0(τ), ..., βP (τ)]
T is the vector of the regression coefficients and can be estimated

by solving the following optimization problem

β̂(τ) = Arg min
β(τ)

1

V

V∑
v=1

ρτ
[
Rv −XT

v β(τ)
]
, (2)

where the asymmetric loss function ρτ (known as pinball loss function) is defined as

ρτ (u) =


τu u ≥ 0

(τ − 1)u u < 0

. (3)

The fitted conditional quantile is expressed as

Q̂Rv(τ |Xv) = XT
v β̂(τ). (4)

1 Note that in the above notations, we do not use any subscript to distinguish between different entities (e.g.
individual firms), but we will do so in Section 3.
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QR provides a more complete picture of the conditional distribution of R than conditional mean

regression and does not make assumptions on the distribution of the target variable. Moreover,

QR is robust to outliers and can thus be estimated more accurately than conventional moments

regression. The QR model defined in (1) is, however, unable to capture possible nonlinear relation-

ships between R and X. To overcome this issue, Taylor (2000) originally introduced the quantile

regression neural network (QRNN) that combines QR with ANN to depict the complex nonlin-

ear relationships between predictors and the response variable without pre-specifying a functional

form. Thus, instead of using a linear function, the conditional quantile is approximated by a neural

network f(·) under the QRNN framework. Formally, the conditional τ -th quantile of Rv based on

the QRNN model with a single hidden layer can be formulated as

QRv(τ |Xv) = f (Xv,H(τ),O(τ)) = g2

[ K∑
k=1

ok(τ)g1
( P∑
j=1

hj,k(τ)x
v
j

)]
, (5)

where H(τ) = (h1,1(τ), ..., hP,K(τ))
T is the weight vector that links the input and hidden layer,

O(τ) = (o1(τ), ..., oK(τ))
T is the weight vector responsible for connecting the hidden and output

layer, and K is the number of hidden neurons. The activation functions g1(·) and g2(·) are generally

specified as a sigmoid/rectifier function and a linear function, respectively. The set of parameters

β(τ) ≡
{
H(τ),O(τ)

}
can be estimated by solving

β̂(τ) = Argmin
β(τ)

L(τ) = Argmin
β(τ)

1

V

V∑
v=1

ρτ

[(
Rv − f(Xv,β(τ))

)]
, (6)

and the fitted conditional quantiles are obtained as Q̂R(τ |X) = f(X, β̂(τ)).

Exhibit 1: Schematic diagram of SPNN with a single hidden layer.
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2.2 Approximation of pinball loss function

The parameters of neural networks are typically determined through some gradient-based non-

linear optimization algorithms by which the gradients are calculated using the backpropagation

algorithm; see Cannon (2011). The gradient of (6) can be computed analytically by updating

backpropagation equations based on the least absolute error function. However, the loss function

ρτ is non-differentiable at the origin (u = 0), which thus requests a smooth approximation in order

to apply gradient-based optimization methods. To smooth ρτ , one can resort to the Huber norm

introduced by Huber (2004), which is defined as:

h(u) =


1

2
u2 |u| ≤ ε

ε(|u| − 1

2
ε) otherwise

, (7)

where ε is a given threshold magnitude; see also Cannon (2018) and Xu et al. (2017). The check

function is approximated by

ρ(A)
τ (u) = |τ − I{u<0}|h(u), (8)

where I{u<0} is an indicator function that values as one when u < 0 and zero otherwise. As ε

converges to zero, the approximate error function converges to the exact QR error function; see

Xu et al. (2017). An alternative way to smooth the loss function was proposed by Zheng (2011),

which smoothes ρτ using a logistic function, i.e., for τ ∈ (0, 1),

ρ(A)
τ (u) = τu+ α ln

(
1 + exp(−u

α
)
)
, (9)

where α > 0 is the smoothing parameter. As argued by Arends et al. (2020), the loss function

in equation (9) combines Huber loss and pinball loss together. Zheng (2011) has shown that

ρ
(A)
τ (u) = ρτ (u) as α → 0+ in the limit. For illustration, Figure 15 in Appendix B displays the

pinball loss function (red curve) for τ = 0.5, the Huber approximation (blue curve) for ε = 10, and

the logistic approximation (black curve) for α = 0.2, respectively.

Replacing the loss function in equation (6) by a smoothed ρ
(A)
τ , we obtain the following updated
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objective function

L(A)(τ) =
1

V

V∑
v=1

ρ(A)
τ

[(
Rv − f(Xv,β(τ))

)]
. (10)

We can minimize (10) using standard gradient-based optimization algorithms to obtain the estimate

of β(τ). Cannon (2011) implemented this optimization procedure in R using the quasi-Newton

optimization algorithm for calculating the Huber loss, while Hatalis et al. (2019) applied the logistic

loss in Python. We adopt the logistic loss (9) in our empirical analysis.2

2.3 Smooth pinball neural network

To further enhance the performance of estimating quantiles, Xu et al. (2017) extended the original

QRNN model to composite quantile regression neural network (CQRNN), which can be used to

estimate multiple conditional quantiles (for different values of τ) simultaneously and efficiently.

CQRNN shares the same goal as the one of linear composite quantile regression (CQR) developed

by Zou and Yuan (2008), namely combining the strength across multiple quantile regressions to

better capture the complex nonlinear relationships between the predictors and the predictand

(Cannon 2018). CQRNN is similar to QRNN by structure, where the difference lies in the objective

function, which is now summed over M values of τ :

L
(A)
C =

1

M

M∑
m=1

L(A)(τm), (11)

where τ is equally spaced as τm = m
M+1

for m ∈ {1, · · · ,M}. The expression in (11) is a composite

version of the objective function in equation (10) since it evaluates multiple regression quantiles

synthetically. CQRNN is a flexible model not only because it allows us to uncover complex nonlinear

patterns among variables through the properties of ANN, but also because it helps improve the

estimation efficiency and prediction accuracy thanks to the property of CQR (Xu et al. 2017).

Although CQRNN improves the model efficiency and prediction accuracy, it fails to prevent the

quantile crossover problem. Quantile crossing violates the property that a cumulative distribution

2 We have also tried for the Huber loss and the backtesting results are similar to those of using logistic loss.
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function (CDF) is a monotonically increasing function. As stated by Ouali et al. (2016), quantile

crossing is a serious modelling problem that may result in an invalid predictive distribution of the

predictand. Similarly, Bang et al. (2016) argued that this problem reduces the estimation accuracy

of regression quantiles and can cause trouble to the subsequent analysis and interpretation of the

model. In order to mitigate this issue, Cannon (2018) developed a monotonic CQRNN (MCQRNN)

model that imposes partial monotonicity constraints on the neural network weights and stacks

covariates into an input matrix. MCQRNN imposes monotonicity constraints on a standard Multi-

Layer Perceptron (MLP) and then it integrates the model architecture of CQRNN to achieve

simultaneous estimation. However, the stacked matrix of covariates complicates the network by

adding overmuch parameters, which makes the estimation computationally inefficient and induces

the propensity of overfitting.

Recently, Hatalis et al. (2019) proposed an efficient alternative to MCQRNN namely smooth

pinball neural network (SPNN) that introduces a set of constraints into the CQRNN framework.

To prevent the quantile crossover, the constraint QRv(τ1|Xv) ≤ · · · ≤ QRv(τM |Xv), ∀v, needs to

be satisfied. However, it is hard to solve the optimization problem via gradient-based methods

with such constraints. To fix this issue, Hatalis et al. (2019) suggested adding a penalty term to

the objective function (11), where the penalty term p is defined as

p = c
1

MV

M∑
m=1

V∑
v=1

[
max

(
0, ϵ−

(
Q̂Rv(τm|Xv)− Q̂Rv(τm−1|Xv)

))]2
, (12)

where Q̂Rv(τ0|Xv) is initialized to zero, ϵ denotes the minimum difference value between two neigh-

bouring quantiles, and c is the penalty parameter. The objective function of SPNN is now given

by

LS = L
(A)
C + p+ λ||β||1, (13)

where β ≡ {H ,O} = {H(τm),O(τm)}m=1,...,M represents the composite parameters of neural

network (i.e. parameters across all τ). Note that the l1 norm || · ||1 is applied in (13) to mitigate

the overfitting problem, where λ denotes the regularization parameter. The training of SPNN
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can be conducted using standard gradient-based optimization algorithms. In our paper, we adopt

SPNN for completing prediction tasks due to its virtues of simultaneously estimating multiple

quantiles and preventing quantile crossing.

3 Portfolio selection under systemic risk

In this section, we first review the CoSR-based portfolio selection problem. Then we discuss the

simulation scheme for generating multivariate return scenarios, which is done by combining the

predicted conditional marginal return densities from SPNN with a fitted t-copula. Lastly, we show

the calculation of CoSR based on simulated returns.

3.1 Portfolio selection problem

We consider an economy with N risky assets. Hereafter, we present the portfolio allocation problem

of an investor that wishes to select the weights of N assets by maximizing an ex-ante CoSR measure

following Lin et al. (2023). Before we describe our portfolio problem, let us first set some notations.

We denote by Rt = (R1,t, ..., RN,t)
T the vector of monthly returns over month t, Rm,t the market

return over month t, and Wt = (ω1,t, ..., ωN,t)
T the vector of portfolio weights held over month

t + 1. The portfolio return is given by Rp,t+1 = W T
t Rt+1. 0 and 1 denote the column vectors of

zeros and ones, respectively.

A generic portfolio optimization problem when an investor’s objective function is given by a

performance measure ϕ(·) can be described as follows

W ∗
t = arg max

Wt

ϕt(Rp,t+1), s.t. 1TWt = 1, (14)

where the different candidates of ϕ(·) result in different optimal portfolios. As we argued in

previous sections, we are interested in building portfolios that take into account systemic risk. For

this reason, we consider the performance measure CoSR that is defined as a ratio of a conditional
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reward measure over a conditional risk measure

CoSRt(Rp,t+1) =
CoERt(Rp,t+1)

CoSDt(Rp,t+1)
, (15)

with the conditional reward CoER defined as

CoERt(Rp,t+1) = Et(Rp,t+1 −Rm,t+1|SEt+1) = W T
t µt|SE − µm,t|SE, (16)

where SEt+1 = {Rm,t+1 < C} denotes a systemic event (SE) where the market return goes below

a certain threshold C over the next month, µt|SE = Et(Rt+1|SEt+1) is the vector of conditional

expected returns on individual assets, and µm,t|SE = Et(Rm,t+1|SEt+1) is the conditional expected

market return. Analogously, the conditional risk measure CoSD is defined as the conditional second

moment of the portfolio’s excess return, that is:

CoSDt(Rp,t+1) =
[
V art(Rp,t+1 −Rm,t+1|SEt+1)

]1/2
=

(
W T

t Σt|SEWt + σ2
m,t|SE − 2W T

t σt|SE
)1/2

,

(17)

where Σt|SE = V art(Rt+1|SEt+1) denotes the conditional covariance matrix of asset returns, σ2
m,t|SE

= V art(Rm,t+1|SEt+1) denotes the conditional variance of market return, and σt|SE = covt(Rt+1,

Rm,t+1|SEt+1) is the vector of conditional covariances between individual assets and the market

portfolio. The portfolio selection problem under CoSR is given by

W ∗
t = arg max

Wt

{
CoSRt(Rp,t+1)

}
, s.t. 1TWt = 1. (18)

As pointed out by Lin et al. (2023), the optimization problem in (18) can be solved analyti-

cally without imposing short-selling constraints (W ≥ 0). However, investors might benefit from

prohibiting short sales in certain cases. For example, financial regulators often ban short-selling

to restrain short-term speculative investments, which is also realistic in extreme scenarios. Fur-

thermore, the capacity of short-selling tends to produce extreme portfolio weights during market

distress, thus increasing the transaction costs triggered by portfolio rebalancing. Hence, we con-

sider no short-sale constraint in our later exercise. Unfortunately, (18) has no closed-form solution

under short-selling restrictions. Thus, we employ a numerical procedure to solve it.

As for benchmark portfolios, we consider the unconditional Sharpe ratio and the negative of

portfolio variance as alternative objective functions for ϕ in (14) under short selling restrictions,
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where the resulting optimal portfolios are denoted by SR and GMV, respectively. In addition,

DeMiguel et al. (2009) argued that the naive portfolio (1/N) should be taken as a competitive

benchmark to evaluate the performance of more sophisticated strategies. Hence we add it as a

benchmark as well.

3.2 Simulation of return scenarios

To solve (18), we adopt a scenario-based method via Monte Carlo simulation. The proposed

performance ratio can be estimated using its empirical analogue based on the generated return

scenarios over the subset of crisis scenarios.

In this section, we discuss how we estimate the conditional marginal densities of monthly

returns. In particular, we consider a semiparametric estimation approach for predictive densities

using conditional quantiles obtained from SPNN models. After fitting the marginal densities, we

apply t-copula to model the dependence between assets and market returns. Lastly, we describe

an algorithm for simulating return scenarios.

3.2.1 Predictive densities from quantiles

Let Xj,t = {xj,p,t}p=1,...,P ; t=1,...,T for j ∈ {i,m} with i = 1, ..., N be the P -dimensional predictor

set for monthly return of firm i or market index, which is available at the end of the month t.

Hereafter, we show how the conditional quantiles of returns obtained from SPNN models, i.e.

q̂j,t+1(τm) = Q̂Rj,t+1
(τm|Xj,t), can be used to estimate the conditional density pj,t = p(Rj,t+1|Xj,t)

following Cannon (2011). Formally, to recover the predictive probability density p̂j,t(·) based on

conditional quantiles, we distinguish between the following three cases:

• If q̂j,t+1(τ1) ≤ Rj,t+1 < q̂j,t+1(τM) and τm and τm+1 are such that q̂j,t+1(τm) ≤ Rj,t+1 <

q̂j,t+1(τm+1), then

p̂j,t =
τm+1 − τm

q̂j,t+1(τm+1)− q̂j,t+1(τm)
. (19)
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• If Rj,t+1 < q̂j,t+1(τ1), we assume a lower exponential tail

p̂j,t = z1 exp
(
−|Rj,t+1 − q̂j,t+1(τ1)|

e1

)
, (20)

where z1 = (τ2 − τ1)/(q̂j,t+1(τ2)− q̂j,t+1(τ1)) and e1 = τ1/z1.

• If Rj,t+1 ≥ q̂j,t+1(τM), we assume an upper exponential tail

p̂j,t = zM exp
(
−|Rj,t+1 − q̂j,t+1(τM)|

eM

)
, (21)

where zM = (τM − τM−1)/(q̂j,t+1(τM)− q̂j,t+1(τM−1)) and eM = τM/zM .

As illustrated above, the predictive densities are interpolated between neighboring specified quan-

tiles, while the exponentially decaying tails beyond the lower and upper limits ensure the probability

density function integrates to one.

3.2.2 Dependence modelling and scenario generation

Once the predictive marginal return distributions for individual assets and the market are obtained,

the next is to model joint return distribution via copula. An (N + 1)-dimensional copula C

is a multivariate distribution function on [0, 1]N+1, with standard uniform margins. Following

Sklar’s theorem (Sklar 1959), any multivariate distribution, in our case the multivariate distribution

function of individual firm and market monthly returns, can be decomposed into univariate margins

and a certain copula function, that is

FR1,...,RN+1
(u1, ..., uN+1) = C

(
FR1(u1), ..., FRN+1

(uN+1)
)
, (22)

where uj ∼ U(0, 1) for j = 1, ..., N+1, RN+1 = Rm, and FRj
denotes the marginal CDF of monthly

return on an individual asset or market index.

In our empirical analysis, we use t-copula to model the dependence among monthly returns.

The t-copula function is given by

Cν,P(u1, ..., uN+1)=

∫ t−1
ν (u1)

−∞
· · ·

∫ t−1
ν (uN+1)

−∞

Γ(ν+N+1
2

)

Γ(ν
2
)
√

(νπ)N+1|P |

(
1 +

x′P−1x

ν

)− ν+N+1
2

dx, (23)

where Γ is the Gamma function, P is a correlation matrix, and ν represents the degrees of freedom

both for margins and copula function. We now generate future return scenarios according to the
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following steps:

• Given historical monthly returns on firms and market, i.e, {Rj,t}j=1,...,N+1; t=1,...,T , we estimate

the CDF, say F̂νj,t , of return series {Rj,t} using a univariate t-location-scale distribution, i.e.

Rj,t ∼ F̂νj,t .

• Convert historical monthly returns over each estimation window into standard uniforms using

probability transformation: uj,t = F̂νj,t(Rj,t), where uj,t ∼ U(0, 1).

• Given {uj,t}j=1,...,N+1, we use the method of moment to estimate the degrees of freedom ν

and the correlation matrix P of the t-copula; see McNeil et al. (2015).

• Simulate dependent standard uniform vectors u
(s)
t+1 =

(
u
(s)
1,t+1, · · ·u

(s)
N+1,t+1

)
for s = 1, ..., S,

where S is the simulation sample size.

• Convert u
(s)
t+1 to return scenarios via quantile transform: R

(s)
j,t+1= F̂−1

Rj,t+1
(u

(s)
j,t+1), where F̂

−1
Rj,t+1

is the inverse CDF of the fitted j-th marginal empirical distribution deduced from p̂j,t for

j ∈ {i,m}. From this, we obtain S simulated samples over month t+1 that possess the same

dependence structure as the in-sample dataset.

3.3 CoSR estimation

To estimate the performance measure CoSR based on simulated returns, we first estimate the

elements of the vector of conditional expected returns on individual assets µt|SE using the average

of the simulated arithmetic asset returns over one-month ahead period, that is

µ̂i,t|SE =

∑S
s=1 R

(s)
i,t+1 I{R

(s)
m,t+1 < C}

#SE
, (24)

where S is the number of Monte Carlo simulations and #SE =
∑S

s=1 I{R
(s)
m,t+1 < C} is the number

of scenarios out of S that represent a market distress. For each asset in the portfolio, the filtered

mean vector (average of one-period ahead return conditional on a market distress episode) is given

by µ̂t|SE = (µ̂1,t|SE, ..., µ̂N,t|SE)
T . Similarly, the conditional expected market return µm,t|SE can be
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estimated as

µ̂m,t|SE =

∑S
s=1 R

(s)
m,t+1 I{R

(s)
m,t+1 < C}

#SE
. (25)

Thus, the estimator of CoER can be written as

ˆCoERt = W T
t µ̂t|SE − µ̂m,t|SE, (26)

where Wt denotes the vector of portfolio weights that is known at month t. As for the CoSD, we

first estimate the conditional covariance matrix of the vector of asset returns Σt|SE using the Monte

Carlo sample counterpart, with element (i, j) defined as

Σ̂t(i,j)|SE =

∑S
s=1

(
R

(s)
i,t+1 − µ̂i,t

)(
R

(s)
j,t+1 − µ̂j,t

)
I{R(s)

m,t+1 < C}
#SE− 1

, (27)

for i, j = 1, . . . , N . We then estimate the conditional variance of market return σ2
m,t|SE as

σ̂2
m,t|SE =

∑S
s=1

(
R

(s)
m,t+1 − µ̂m,t

)2
I{R(s)

m,t+1 < C}
#SE− 1

. (28)

Analogously, for each asset i, an estimator of the conditional covariance between asset’s i and

market returns σim,t|SE is given by

σ̂im,t|SE =

∑S
s=1

(
R

(s)
i,t+1 − µ̂i,t

)(
R

(s)
m,t+1 − µ̂m,t

)
I{R(s)

m,t+1 < C}
#SE− 1

, (29)

thus the estimator of the vector of conditional covariances between individual assets and the market

portfolio is σ̂t|SE = (σ̂1m,t, ..., σ̂Nm,t)
T . Combining the above estimators, we obtain the following

estimator of CoSD at month t:

ˆCoSDt =
(
W T

t Σ̂t|SEWt + σ̂2
m,t|SE − 2W T

t σ̂t|SE

)1/2

. (30)

4 Empirical analysis

4.1 Data

Our empirical analysis is conducted using monthly cross-sectional US market data spanning from

January 1985 to December 2021, for a period of 37 years. In this section, we first provide details

of the predictor set and then discuss the choice of portfolio assets.
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4.1.1 Description of predictors

We adopt 94 firm characteristics used by Gu et al. (2020).3 We manually matched this dataset with

CRSP returns. The equities presented in this original dataset are composed of listed firms within

NASDAQ, AMEX, and NYSE ranging from 1965 to 2021. In addition to stock-level signals, we also

consider 14 macroeconomic variables. Among those, eight are used in Gu et al. (2020), including

dividend-price ratio (macro dp), earnings-price ratio (macro ep), book-to-market ratio (macro bm),

net equity expansion (macro ntis), Treasury-bill rate (macro tbl), term spread (macro tms), default

spread (macro dfy), and stock variance (macro svar); and six are uncertainty indices proposed by

Ludvigson et al. (2021), which covers total real uncertainty index (macro TRU), economic real

uncertainty index (macro ERU), total macro uncertainty index (macro TMU), economic macro

uncertainty index (macro EMU), total financial uncertainty index (macro TFU), and economic

financial uncertainty index (macro EFU).

Lastly, we consider industry dummies based on the first two digits of the SIC code as in Gu

et al. (2020). To summarize, our predictor set covers 94 stock-specific variables, 14 macroeconomic

variables, and 74 industry dummy variables. Throughout our empirical studies, the predictors are

defined as follows:

zi,t = xt ⊗ ci,t, (31)

where ci,t denotes the vector of 94 characteristics for firm i, and xt represents the vector of macroe-

conomic variables with an added constant C. Thus, zi,t is the vector of predictors including inter-

actions between macroeconomic variables and stock-level signals. The total number of covariates

is 94× (14 + 1) + 74 = 1484.

The original dataset used by Gu et al. (2020) spans from March 1957 to December 2016,

covering 60 years of history. However, it includes a large number of missing variables.4 After

3 We computed the value-weighted average of characteristics for the market portfolio using the 500 highest market
cap firms. The correlation coefficient between S&P 500 return and our constructed return is beyond 0.99.

4 All data before January 1985 contains at least one variable with a large portion of missing observations. Thus, it
is not possible to fill in those missing values with monthly cross-sectional medians as in Gu et al. (2020). Filling
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removing missing data, we obtain a dataset that starts in January 1985 and ends in December

2021, containing 256,632 monthly observations with 577 firms in total.

4.1.2 The choice of portfolio assets

As argued by Lin et al. (2023), big financial institutions are preferred in systemic risk-based portfolio

analysis since they are more exposed to market distress than non-financial counterparts. Their pre-

analysis results have shown that the objective function of CoSR is more relevant when the universe

of portfolio assets covers large financial institutions that are potentially systemic, although not

necessarily classified as Systemically Important Financial Institutions (SIFIs). Therefore, we first

consider a set of portfolio assets that includes only large financial institutions.

In November of 2021, the Financial Stability Board, in consultation with the Basel Committee

on Banking Supervision and national authorities, identified a list of Global SIFIs (G-SIFIs). The

total number of G-SIFIs contained in that list is 30, among which 5 are traded on the US market

throughout our sample period. Besides, the Board of Governors of the US Federal Reserve System

maintains a list of Domestic SIFIs (D-SIFIs). This list contains financial firms not big enough to

be classified as G-SIFIs, but are still considered to be domestic systemically important. According

to the list released in March 2014, 23 banks traded on the US stock market were identified as

D-SIFIs. Among those D-SIFIs, 12 are traded throughout our sample period. Finally, we keep a

list of 17 SIFIs consisting of 5 G-SIFIs and 12 D-SIFIs.

Following Brownlees and Engle (2016), we select big financial firms with a market capitalization

greater than 5 bln USD at the end of June 2007. After applying this filter criterion to our dataset,

we are left with a list of 38 assets that cover the aforementioned 17 SIFIs. Therefore, we finally

obtain a list of 38 portfolio assets (hereafter set 1) including 17 SIFIs and 21 non-SIFIs, which are

included in Table 13 in Appendix A.

To add robustness to our empirical findings, we also consider a set of portfolio assets which are

with medians does not seem appropriate since it will negatively affect the explanatory power of some predictors.
We, therefore, choose to only consider the sample period without missing observations.
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randomly selected from our dataset. This allows us to explore the out-of-sample performance of

our approach on portfolio assets that come from different sectors and with different sizes. Since

the intensity of the computational simulation methods that we employ makes it difficult to work

with high-dimensional portfolios, we restrict ourselves to a relatively moderate number of portfolio

assets and set the dimension of the randomly chosen set to 50 (hereafter set 2). Among those 4

belong to the mining sector, 19 belong to the manufacturing sector, 5 belong to the transportation

sector, 4 belong to the wholesale sector, 4 belong to the retail sector, 10 belong to the finance

sector, and 4 belong to the service sector. Table 14 in Appendix A lists these assets.

4.2 Estimation and selection of SPNN model

4.2.1 Sample splitting

We predict conditional quantiles of asset returns over the evaluation period via a recursive estima-

tion procedure. To achieve this, we first divide our original sample into two disjoint but consecutive

subsamples. The first subsample - known as in-sample - is further divided into a training subsam-

ple L1 and a validation subsample L2 that we use to estimate and select the best SPNN model,

respectively. The second subsample - known as out-of-sample - represents a testing subsample L3

on which we make final forecasts. The initial size of our recursive window is set to 180 monthly

observations (from January 1985 to December 1999). The increment size of the window is one

month, which results in an out-of-sample with 264 monthly observations starting from January

2000 and ending in December 2021.

It is well known that the ML models are prone to overfit the data, so it is crucial to go through

a rigorous procedure of model selection. Hyperparameter tuning helps control model complexity

and determine model predictive power as well. Following Gu et al. (2020), we use the validation

subsample L2 to perform model selection. Specifically, for each iteration, we use as a validation

subsample L2 the last 20% of cross-sectional data of each in-sample for all 577 firms and the market,

with the first 80% of the observations as the training subsample. We estimate the neural network
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model multiple times using different sets of hyperparameters on L1. The subsequent L2 is then

employed to determine the optimal tuning parameters by evaluating the quantile forecasts based

on the model estimates obtained over L1 for the respective hyperparameter set. In particular,

the quantile score (QS) is adopted for evaluating quantile forecasts, which takes into account

both sharpness and reliability; see Hong et al. (2016). It is defined as the mean of pinball losses

throughout the forecasting horizon and across all targeted quantile levels:

QS =
1

#M ×H × (N + 1)

∑
m∈M

H∑
t=1

N+1∑
j=1

ρ
(
Rj,t, q̂j,t(τm)

)
, (32)

where M is the quantile set of interest (we set M = {1, 2, ..., 99}), Rj,t is the realized return of

individual firm or market, and H indicates the forecast horizon (H = 12 in our case).

After selecting the best set of hyperparameters, we re-estimate our model using the in-sample

data on L1 + L2, based on which we obtain the final quantile forecasts of returns over the out-of-

sample period L3. As for the data preprocessing, we standardize features by removing the mean

and scaling to unit variance. The data is first normalized within each of the training subsamples

during hyperparameter tuning and then normalized for observations within the whole in-sample

when making final forecasts. Due to the computational intensity of ML-based approaches, we re-fit

our model once a year and retain the corresponding estimates to obtain the quantile forecasts for

that year; see Gu et al. (2020) and Kynigakis and Panopoulou (2021).

4.2.2 SPNN configuration

We consider neural networks with up to three hidden layers. In particular, we consider the following

specifications: (1) SPNN model that has a single hidden layer with 32 neurons (hereafter SPNN1);

(2) SPNN model that has two hidden layers with 32 and 16 neurons (hereafter SPNN2); and (3)

SPNN model that has three hidden layers with 32, 16, and 8 neurons (hereafter SPNN3).

In practice, we adopt the Rectified Linear Unit (ReLU) g(x) = max(0, x) as the activation

function of hidden layers, which promotes sparsity in the number of active neurons and allows for

an efficient derivative computation as well; see Nair and Hinton (2010) among others. For the
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output layer, we apply the identity activation function g(x) = x following Hatalis et al. (2019).

During model training, we adopt the Adam optimizer, which is an extended version of the gradient

descent method.

4.2.3 Training and regularization methods

The network training is time-consuming due to the high degree of computational complexity in-

volved in tuning abundant parameters and processing mass data. To improve the generalization

power of fitted SPNN models and reduce the training cost, in addition to applying l1 penalization,

we consider additional DL techniques including batch training, batch normalization, and early

stopping. Finally, to reduce the prediction variance incurred during the stochastic optimization

process, we adopt an ensemble approach to initialize neural network models using different random

seeds and average forecasts over all models.

4.2.4 Hyperparameters

We use a two-dimensional grid search approach to find the optimal set of hyperparameters by

minimizing the QS among all possible SPNN configurations over the validation set L2. The tuning

parameters are the L1 penalty parameter λ and the learning rate of Adam optimizer lr. For the

grid of values we keep following Gu et al. (2020) and set λ ∈ [10−5, 10−3] and lr ∈ [10−3, 10−2].

Our goal of model selection is modest in the sense of fixing various hyperparameters in advance,

though tuning on a larger set of hyperparameters might help in improving accuracy.5 Unlike Gu

et al. (2020) who set the batch size to 10,000, we adopt a relatively small batch size of 32. Although

a large batch tends to give more precise estimates of the gradients, a small batch ensures that each

training iteration is fast and reduces memory usage as well. Keskar et al. (2016) argued that using

a large batch tends to suffer from a generalization drop due to sharp minima, see also Masters and

Luschi (2018) and others for the preference for a small batch. For the remaining hyperparameters,

5 We also tested for different combinations of l1-penalty, learning rate, dropout rate, and patience in early stopping,
and the current setting is found to be most effective.
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we just follow Gu et al. (2020). Specifically, the number of maximum epochs is set to 100, the

patience in early stopping is set to 5, and the number of ensemble models is set to 10.

4.3 Portfolio formation

After fitting SPNN models, we obtain quantile forecasts of monthly returns, based on which we

estimate the conditional marginal return distributions following the method discussed in Section

3.2.1. Combining the distributional forecasts with the fitted t-copula model, we generate 30,000

return scenarios at the beginning of each month over the out-of-sample period.

The portfolio optimization problem defined in (18) is solved monthly by maximizing the ex-

ante CoSR measure. Specifically, we estimate reward and risk measures by computing the first and

second conditional moments based on filtered realizations that satisfy the SE condition. Following

Acharya et al. (2017) and Brownlees and Engle (2016), we choose two different SE thresholds C:

i) C = V aRm
5% indicating the most that the financial market loses with 95% confidence over the

next month, and ii) C = −6.7%, which corresponds to a 40% decrease in the market index over

six months.

For comparison, we assess the out-of-sample performance of our portfolio against three bench-

marks, namely sample-based SR portfolio, sample-based GMV, and 1/N portfolio.6 In addition,

we also consider S&P 500 Index as a fundamental benchmark. We assume our investors have an

initial wealth of FW0 = 1 and an initial cumulative log return CR0 = 0 at the beginning of the

backtesting period (December 1999).

Three main steps are performed to calculate the ex-post final wealth and cumulative return

at the k-th recalibration (k = 0, 1, 2, ..., 263). Firstly, we generate return scenarios based on the

algorithms described in Section 3.2.2, and obtain the solution W ∗
k+1 to the optimization problem

in (14) for each of the performance measures under consideration. This step is performed using the

Matlab built-in function fmincon. Following Kresta et al. (2015), we randomly choose 20 starting

6 To reduce the estimation error of sample covariance matrix, we applied the shrinkage estimator proposed by
Ledoit and Wolf (2004) to SR portfolio and GMV.
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points in order to approach the global optimum when solving (14). Secondly, the ex-post final

wealth is calculated as

FWk+1 = FWk(1 +W ∗T
k Rk+1), (33)

where Rk+1 is the ex-post vector of simple returns between k and k + 1. Thirdly, the ex-post

cumulative log return is calculated as

CRk+1 = CRk + ln(1 +W ∗T
k Rk+1). (34)

The latter equation reports the cumulative performance of the portfolio net of wealth. That is,

expression (33) implies that FWK+1=FW0

K

Π
k=0

(1+W ∗T
k Rk+1). Taking logs from left and right-hand

sides of the latter equation, we obtain (ln FWK+1 − ln FW0) =
K∑
k=0

ln(1 +W ∗T
k Rk+1). Therefore,

the growth in wealth due to the cumulative return on the portfolio is given by expression (34). By

repeatedly computing FWk+1 and CRk+1, we obtain the wealth and cumulative return paths over

the backtesting period.

4.4 Results

In this section, we first briefly illustrate the results of return quantile forecasts and examine the

predictive power of candidate predictors using two variable importance measures namely mean

squared sensitivity (MSS) and quantile causality measure (QC). We then present the backtesting

results with and without accounting for proportional transaction costs. Finally, we calculate the

portfolio’s long-run marginal expected shortfall (LRMES) to compare the systemic risk of different

strategies under investigation.

4.4.1 Quantile forecasts and variable importance

To gain insights on the return quantile forecasts obtained using SPNN models, in Figure 2 we

display the realized returns and the prediction intervals obtained using SPNN1. To further save
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space, we only show results for the S&P 500 Index below.7 From Figure 2, we see that the return

quantile forecasts are able to capture most of the variation in the realized returns over the out-of-

sample period, especially during crisis episodes.
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Exhibit 2: Conditional quantiles of market returns by SPNN1.

Next, we investigate the relative importance of individual predictors for the performance of

SPNN model on both training and testing sets. Gu et al. (2020) highlighted the importance of

ranking the variable importance of predictors to add interpretability to ML-based models. Unlike

Gu et al. (2020) and Kynigakis and Panopoulou (2021) who use the change in the out-of-sample

R2 to measure the variable importance in the context of mean regression, hereafter we adopt two

measures that are more suitable for measuring performance related to quantile forecasts.

We first consider the Mean Squared Sensitivity (MSS), which measures the sensitivity of the

output of the m-th neuron in the output layer with respect to the p-th input predictor (Zurada

et al. 1994; Yeh and Cheng 2010):

MSSp,m =

√∑
t∈(L1+L2)

(
sp,m|Xt

)2
|L1|+ |L2|

, (35)

with

sp,m
∣∣
Xt

=
∂Q̂Rt+1(τm|Xt)

∂xp,t

(Xt), (36)

7 The corresponding results for portfolio assets are available upon request.
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where Xt = (x1,t, ..., xP,t)
T refers to the t-th observation of the P predictors in the in-sample

(L1 + L2) on which we perform the sensitivity analysis, sp,m
∣∣
Xt

refers to the sensitivity of the

output of the m-th neuron in the output layer (which in our case is the τm-th conditional quantile)

with respect to the input of the p-th neuron in the input layer evaluated at Xt, and |Li| denote

the number of observations in set Li, for i = {1, 2}. The sensitivities defined in (36) can be

calculated using the chain rule for the partial derivatives of the inner layers, see Pizarroso et al.

(2020) for more computational details. By computing MSS, we can measure the sensitivity of model

estimation/prediction to the changes in a candidate predictor. In practice, for each predictor xp,

we compute the following average MSS

M̃SSp =
1

M

M∑
m=1

MMSp,m, (37)

which allows us to measure the variable importance across all quantiles of interest.

Next, we consider the QRNN causality measure developed by Lin and Taamouti (2023), which

is an extension of the Quantile Causality (QC) measure proposed by Song and Taamouti (2021).

Specifically, for τ ∈ (0, 1), the QC of the p-th input variable in QRNN is defined as

QCp(τ) = ln

[
E
[
ρτ
(
Rt+1 −QRt+1(τ |X t)

)]
E
[
ρτ
(
Rt+1 −QRt+1(τ |Xt)

)]], (38)

where X t denotes the information set at time t on all predictors, except the p-th predictor. QCp(τ)

measures the degree of causal effect from a certain predictor p to the τ -th quantile of the predictand

given the past of the latter. As pointed out by Song and Taamouti (2021), QC can be viewed as

a measure of the amount of information brought by the past of the p-th predictor to improve the

prediction of the τ -th quantile of asset return Rt+1. Similar to the average measure M̃SSp, in our

empirical analysis we compute the average QC for each predictor xp as

Q̃Cp = ln

[ 1
M |L3|

∑M
m=1

∑
t∈L3

ρτm
(
Rt+1 − Q̂Rt+1(τm|X t)

)
1

M |L3|
∑M

m=1

∑
t∈L3

ρτm
(
Rt+1 − Q̂Rt+1(τm|Xt)

)], (39)

where the marginal contribution of each predictor xp is assessed using the out-of-sample L3 only,

whose data does not overlap with those of training or tuning samples.

Figure 3 reports the variable importance measured by MSS for the 10 most influential firm-
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level predictors and for all macroeconomic variables under consideration based on the fitted SPNN1

model, while Figures 16 and 17 in Appendix B report the corresponding variable importance results

measured by QC for set 1 and set 2, respectively.8 The variable importance is normalized to sum

up to one, which makes it easier to interpret the relative importance of the predictive power of

each predictor compared to those of others. Variables are ranked such that those with the highest

importance are at the top and the lowest are at the bottom.
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Exhibit 3: Left panel displays the top-10 most influential firm-level predictors in SPNN1 measured
by MSS, while the right panel reports the corresponding results for all macroeconomic variables.

The top-10 most influential firm-level features measured by MSS as displayed in the top panel

of Figure 3 can be grouped into five categories. The first group contains risk measures including the

total and idiosyncratic return volatilities (retvol, idiovol); Next covers liquidity variables including

dollar volume (dolvol), debt capacity/firm tangibility (tang), bid-ask spread (baspread), turnover

(turn), and the number of zero trading days (zerotrade); A single momentum predictor constitutes

the third group, which is the short-term reversal (mom1m); The fourth group includes a valuation

ratio namely the R&D expense-to-market ratio; The last group consists of industry dummy (sic2).

As for macroeconomic variables, we see from the bottom panel of Figure 3 that all contribute

significantly to model training. Among those, the total financial uncertainty index (macro TFU)

is identified as the most influential macro-level predictor.

Analogously, the rankings based on QC measure as shown in Figures 16 and 17 within Appendix

8 To save space, hereafter we only report the variable importance results obtained by the SPNN1 model. The
corresponding results for other SPNN configurations are similar and are available upon request.
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B draw a similar conclusion. The results for portfolio set 1 and set 2 agree on a relatively small set

of dominant firm-level predictors, which covers the risk measures of total and idiosyncratic return

volatilities (retvol, idovol), the liquidity variables of dollar volume (dolvol), industry-adjusted size

(mve ia), bid-ask spread (baspread) and turnover (turn), the short-term reversal (mom1m), and

an accounting variable that indicates the number of years since first Compustat coverage (age).

While for the macro state variables, the results again confirm their predictive power and place the

greatest emphasis on the total financial uncertainty index (macro TFU) in both cases.

To better illustrate the variable importance over recursive windows, we display the time-varying

rankings of predictors in SPNN1 measured by MSS and QC in Figures 18 - 23 within Appendix

B, consecutively. In particular, we rank the importance of individual predictors according to their

average contribution over all quantiles of the returns and across all recursive in-sample or out-of-

sample windows depending on the measure of use. Columns in these figures correspond to the

start year in each window, and the color gradient within each column indicates the most influential

(dark blue) to least influential (light blue) predictors.

4.4.2 Backtesting results

This section conducts a backtesting analysis to assess the economic gains of our proposed portfolio.

To do so, we compare the out-of-sample performance of SPNN-CoSR portfolios with those of bench-

mark strategies. The optimized portfolios were built recursively using conditional/unconditional

return moments estimated on simulated/historical return observations at each iteration. All port-

folios are monthly rebalanced until the end of the evaluation period.

The backtesting results on set1 and set2 are displayed in Figure 4 and 5, respectively.9 There

are several noticeable features from these figures. Firstly, all candidate portfolios outperform the

market index. Secondly, all portfolios perform poorly during the 2007-2008 financial crisis. The

9 To show how the performance differs across different numbers of assets, we also considered randomly chosen
portfolio sets of dimensions 30 (set3) and 40 (set4). The corresponding results obtained using SPNN1 are
displayed in Figure 26, which again demonstrates the superiority of our approach.
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SR, GMV and 1/N strategies lose almost all of their values during that period, while the SPNN-

CoSR portfolios perform significantly better than others, even though they lost around half of their

values since the last peak in 2007. In particular, among SPNN-CoSR portfolios, the SPNN1-based

ones deliver the best out-of-sample performance. Thirdly, all SPNN-based CoSR portfolios show

a strong upward trend in profitability throughout the evaluation period, which can be mainly

attributed to the relatively stable performance during market distress. The backtesting results

confirm the benefits of combining SPNN-based return forecasts with the incorporation of systemic

risk into traditional mean-variance framework when constructing optimal portfolios.
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Exhibit 4: Ex-post paths of final wealth and cumulative return on set 1.
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Exhibit 5: Ex-post paths of final wealth and cumulative return on set 2.

Tables 6 and 7 report the values of several performance metrics for set 1 and set 2, respectively.

The results vary among different strategies depending on the choice of performance measure, except
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for the 1/N portfolio, which does not rely on any estimation. For the case of set 1, the SPNN-

CoSR portfolios dominate all other benchmark strategies in terms of profitability, whichever model

configuration is being considered. Among those, the SPNN1-based CoSR portfolio with C =

−6.7% delivers the highest value by the end of the evaluation period. Besides, the GARCH-based

CoSR portfolios are serious competitors which provide comparable profits over the out-of-sample

period but still cannot beat our proposed approach. Specifically, our investors would multiply

their wealth by 20.145 and 21.216 using SPNN1-based CoSR portfolios with C = V aRm
5% and

C = −6.7%, respectively, which is almost twice that of GARCH-based CoSR portfolios with

C = V aRm
5% (12.797) and C = −6.7% (13.650). The GMV gives the lowest final wealth (5.348)

and annual return (0.079), while the sample-based SR portfolio performs as the second-worst

with a final wealth of 6.973 and an annual return of 0.092. Interestingly, the naive 1/N strategy

outperforms all sample-based portfolios in terms of profitability, with the former exhibiting a final

wealth of 9.541 and an annual return of 0.108. The backtesting results for portfolio set 2 draw

similar conclusions as those of set 1, we thus omit the details for brevity.

Exhibit 6: Backtesting results without transaction costs (set 1)

Strategy Final wealth Annual return MDD MOL TO Sharpe ratio Sortino ratio Calmar ratio

SPNN1-based CoSR (C=V aRm
5%) 20.145 0.146 0.549 0.203 0.125 0.754 1.237 0.266

SPNN1-based CoSR (C=-6.7%) 21.216 0.149 0.527 0.205 0.110 0.767 1.257 0.283

SPNN2-based CoSR (C=V aRm
5%) 19.908 0.146 0.587 0.205 0.127 0.742 1.199 0.248

SPNN2-based CoSR (C=-6.7%) 19.965 0.146 0.566 0.208 0.110 0.753 1.216 0.258

SPNN3-based CoSR (C=V aRm
5%) 18.002 0.140 0.557 0.202 0.128 0.734 1.204 0.252

SPNN3-based CoSR (C=-6.7%) 17.770 0.140 0.534 0.202 0.115 0.730 1.202 0.262

GARCH-based CoSR (C=V aRm
5%) 12.797 0.123 0.568 0.226 0.392 0.635 1.035 0.216

GARCH-based CoSR (C=-6.7%) 13.650 0.126 0.557 0.252 0.384 0.651 1.055 0.226

Sample-based SR 6.973 0.092 0.602 0.210 0.038 0.394 0.661 0.153

Sample-based GMV 5.348 0.079 0.722 0.196 0.028 0.317 0.546 0.110

1/N 9.541 0.108 0.686 0.245 0.024 0.408 0.667 0.157
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Exhibit 7: Backtesting results without transaction costs (set 2)

Strategy Final wealth Annual return MDD MOL TO Sharpe ratio Sortino ratio Calmar ratio

SPNN1-based CoSR (C=V aRm
5%) 26.116 0.160 0.304 0.162 0.128 1.063 1.813 0.525

SPNN1-based CoSR (C=-6.7%) 25.949 0.160 0.325 0.159 0.117 1.043 1.777 0.491

SPNN2-based CoSR (C=V aRm
5%) 23.728 0.155 0.342 0.171 0.120 0.984 1.705 0.452

SPNN2-based CoSR (C=-6.7%) 25.382 0.158 0.351 0.162 0.106 1.013 1.743 0.451

SPNN3-based CoSR (C=V aRm
5%) 16.572 0.136 0.323 0.177 0.120 0.873 1.500 0.421

SPNN3-based CoSR (C=-6.7%) 20.120 0.146 0.335 0.171 0.109 0.945 1.620 0.436

GARCH-based CoSR (C=V aRm
5%) 12.435 0.121 0.305 0.117 0.181 1.012 1.985 0.398

GARCH-based CoSR (C=-6.7%) 12.137 0.120 0.319 0.120 0.190 0.988 1.878 0.377

Sample-based SR 7.093 0.093 0.461 0.141 0.041 0.513 0.907 0.202

Sample-based GMV 10.052 0.111 0.487 0.149 0.029 0.628 1.087 0.227

1/N 15.145 0.131 0.529 0.192 0.035 0.635 1.071 0.249

The results of ex-post Sharpe ratio, Sortino ratio and Calmar ratio again demonstrate the supe-

riority of our proposed approach. In particular, the SPNN1-based CoSR portfolio with C = −6.7%

delivers the highest values for all performance ratios among candidate portfolios. In addition, we

also test the significance of the difference in Sharpe ratios between SPNN1-based CoSR portfolio

and that of each benchmark strategy following Ledoit and Wolf (2008). The results are reported in

Tables 8 and 9 for set 1 and set 2, respectively. According to bootstrap p-values, the null hypothesis

of equal Sharpe ratios is rejected at the significance level of 0.01 in all cases. The testing results

further confirm the enhanced portfolio performance of our approach.

Exhibit 8: Statistics (set 1)

Strategy p value ∆̂ Original statistic Block size

SPNN1-based CoSR (C=V aRm
5%)

Sample-based SR 0.005 0.104 3.285 8

Sample-based GMV 0.000 0.126 4.468 10

1/N 0.017 0.100 3.120 10

SPNN1-based CoSR (C=-6.7%)

Sample-based SR 0.005 0.108 3.727 10

Sample-based GMV 0.000 0.130 5.144 10

1/N 0.009 0.104 3.336 10

Exhibit 9: Statistics (set 2)

Strategy p value ∆̂ Original statistic Block size

SPNN1-based CoSR (C=V aRm
5%)

Sample-based SR 0.006 0.159 3.446 10

Sample-based GMV 0.008 0.126 3.128 10

1/N 0.008 0.123 3.213 10

SPNN1-based CoSR (C=-6.7%)

Sample-based SR 0.009 0.153 3.249 10

Sample-based GMV 0.015 0.120 2.852 10

1/N 0.013 0.118 2.881 10
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Besides the above-mentioned performance ratios, investors may consider alternative statistics to

gain deeper insights into their trading strategies. Therefore, we add Maximum Drawdown (MDD),

Maximum One-Month loss (MOL), and average Turnover (TO) as additional performance metrics.

Formally, the MDD is defined as

MDD = max
t0≤t1≤t2≤T0

{rp,t0:t1 − rp,t0:t2} , (40)

where rp,t0:t denotes the cumulative portfolio return from time t0 to ti, for i ∈ {1, 2}, with t0 and T0

being the first and last months of evaluation period. MOL measures the largest decline in portfolio

value over a one-month period, and the average TO is defined as

TO =
1

T

T∑
t=1

( N∑
i=1

∣∣∣∣ωi,t+1 −
ωi,t(1 +Ri,t+1)

1 +
∑N

j=1 ωj,tRj,t+1

∣∣∣∣), (41)

where ωi,t is the desired weight of portfolio asset i at time t.

Tables 6 and 7 also report the values of these alternative measures. We first look at the

results for portfolio set 1. While the SPNN1-based CoSR portfolio with C = −6.7% provides the

highest profitability, it has the lowest MDD as well. Furthermore, all SPNN-based CoSR portfolios

regardless of model configurations and SE thresholds outperform other competitors in terms of

MDD, which demonstrates the better performance of our proposed approach during market distress.

Next, the values of MOL of SPNN-based CoSR portfolios are lower than those of GARCH-based

counterparts, while the sample-based GMV displays the lowest MOL since it focuses on the risk

only. Lastly, as for the corresponding results on portfolio set 2, our SPNN-based CoSR portfolios

are doing slightly worse than the GARCH-based CoSR portfolios in terms of MOL, while the

formers still outperform the latters in terms of MDD and other measures of profitability as well.

4.4.3 Effects of transaction costs

The estimation of transaction cost (TC) is based on TO as defined in (41). After accounting for a

proportional TC of c, the portfolio return is now calculated as follows:

R̃p,t+1 = (1 +Rp,t+1)

(
1− c

N∑
i=1

∣∣∣∣ωi,t+1 −
ωi,t(1 +Ri,t+1)

1 +
∑N

j=1 ωj,tRj,t+1

∣∣∣∣)−1. (42)
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Gu et al. (2020) argued that, given the large role of price trend predictors employed by ML-based

approaches, it is unsurprising that the ML-based trading strategies are characterized by relatively

high TO. This also holds for our SPNN-based approach as shown in Tables 6 and 7. Although our

SPNN-based CoSR portfolios show a higher TO than that of the sample-based benchmarks, their

values are still much lower than those of the GARCH-based CoSR portfolios. Unsurprisingly, the

1/N portfolio delivers the lowest TO due to its well-diversified property.

Although the CoSR portfolios with relatively high TO are more flexible to adapt to the changes

in market conditions than other benchmarks, their portfolio values are likely to decrease due to

higher TC during rebalancing. To analyze the effects of TC, we set a relatively high value of c = 50

basis points (bps) and recompute the results for all portfolios. Tables 10 and 11 report the values

of the performance measures after taking into account proportional TC.10 In short, the inclusion

of TC does not change our main conclusions. The SPNN-based CoSR portfolios still outperform

all other competitors in terms of profitability. Remarkably, the final wealth of SPNN-based CoSR

portfolios is still more than twice that of other benchmarks excluding the 1/N portfolio.

Exhibit 10: Backtesting results with 50 bps proportional transaction costs (set 1)

Strategy Final wealth Annual return MDD MOL Sharpe ratio Sortino ratio Calmar ratio

SPNN1-based CoSR (C=V aRm
5%) 14.462 0.129 0.562 0.204 0.660 1.081 0.230

SPNN1-based CoSR (C=-6.7%) 15.855 0.134 0.539 0.206 0.685 1.119 0.248

SPNN2-based CoSR (C=V aRm
5%) 14.225 0.128 0.601 0.208 0.646 1.043 0.214

SPNN2-based CoSR (C=-6.7%) 14.912 0.131 0.580 0.211 0.668 1.078 0.225

SPNN3-based CoSR (C=V aRm
5%) 12.834 0.123 0.572 0.205 0.635 1.041 0.215

SPNN3-based CoSR (C=-6.7%) 13.103 0.124 0.548 0.204 0.641 1.055 0.226

GARCH-based CoSR (C=V aRm
5%) 4.534 0.071 0.601 0.230 0.338 0.586 0.118

GARCH-based CoSR (C=-6.7%) 4.941 0.075 0.591 0.256 0.362 0.618 0.127

Sample-based SR 6.309 0.087 0.605 0.210 0.370 0.624 0.144

Sample-based GMV 4.971 0.076 0.725 0.197 0.299 0.519 0.104

1/N 8.950 0.105 0.689 0.246 0.394 0.645 0.152

10 To save space, the Figures 24 and 25 that illustrate the backtesting results after considering transaction costs are
removed to the Appendix B.
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Exhibit 11: Backtesting results with 50 bps proportional transaction costs (set 2)

Strategy Final wealth Annual return MDD MOL Sharpe ratio Sortino ratio Calmar ratio

SPNN1-based CoSR (C=V aRm
5%) 18.633 0.142 0.322 0.163 0.937 1.587 0.442

SPNN1-based CoSR (C=-6.7%) 19.058 0.143 0.334 0.161 0.929 1.575 0.429

SPNN2-based CoSR (C=V aRm
5%) 17.296 0.138 0.359 0.172 0.872 1.500 0.385

SPNN2-based CoSR (C=-6.7%) 19.174 0.144 0.367 0.163 0.912 1.558 0.391

SPNN3-based CoSR (C=V aRm
5%) 12.082 0.120 0.339 0.178 0.759 1.301 0.354

SPNN3-based CoSR (C=-6.7%) 15.097 0.131 0.350 0.173 0.841 1.434 0.375

GARCH-based CoSR (C=V aRm
5%) 7.699 0.097 0.321 0.122 0.788 1.528 0.303

GARCH-based CoSR (C=-6.7%) 7.336 0.095 0.346 0.125 0.755 1.427 0.274

Sample-based SR 6.367 0.088 0.465 0.142 0.479 0.850 0.189

Sample-based GMV 9.300 0.107 0.491 0.150 0.602 1.043 0.217

1/N 13.826 0.127 0.533 0.193 0.610 1.029 0.238

4.4.4 Portfolio-level systemic risk

In this section, we measure the portfolio-level systemic risk using portfolio’s LRMES proposed by

Lin et al. (2023), which is defined as

LRMESp,t =
N∑
i=1

ωi,t LRMESi,t, (43)

where LRMESi,t indicates the expected loss in equity value of asset i over month t. The portfolio’s

LRMES can be interpreted as the expected percentage drop in portfolio value under stressed market

conditions. Figure 12 illustrates the portfolio-level LRMES over the evaluation period.11 Overall

speaking, the SPNN-based CoSR portfolios give the best performance in terms of systemic risk

measured by LRMES. The relatively low portfolio-level LRMES indicates less potential loss during

crisis periods. Specifically, the SPNN-based CoSR portfolio with C = −6.7% presents the lowest

LRMES than all other competitors throughout the out-of-sample period whichever portfolio set is

being considered, while all benchmark strategies provide much higher and volatile LRMES values.

11 To save space, we only show the results obtained by SPNN1 here. However, the corresponding results for other
SPNN configurations are available upon request.
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Exhibit 12: Portfolio-level LRMES by SPNN1 for set 1 (left panel) and set 2 (right panel).

5 Conclusion

We explore whether using return forecasts generated via quantile regression neural network can

add value to systemic risk-based portfolio selection. The optimal portfolio is constructed by max-

imizing an ex-ante conditional Sharpe ratio based on simulated return scenarios, and its out-of-

sample performance is compared with that of tangency portfolio, minimum variance portfolio, and

equally-weighted portfolio. The proposed approach outperforms all other benchmarks in terms

of profitability and portfolio-level systemic risk. The testing results of the difference of Sharpe

ratios further confirm its significant outperformance against benchmark strategies. Although our

portfolio is characterized by a relatively high turnover rate, its superiority is still tenable after

accounting for a considerable amount of proportional transaction costs. Another side contribution

of our paper is the implementation of two variable importance measures, which we propose to rank

the most influential predictors in SPNN models. The relevant results demonstrate the substan-

tial predictive information brought by macroeconomic variables, whereas only a limited number of

firm-level signals contribute to the training and prediction process.
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Appendix A - Tables

Exhibit 13: Portfolio assets of set 1

Firm name Ticker

Synovus Financial Corp. SNV

Jefferies Financial Group Inc. JEF

Cincinnati Financial Corporation CINF

Comerica Incorporated CMA

Loews Corporation L

Vornado Realty Trust VNO

Fifth Third Bancorp FITB

Regions Financial Corporation RF

M&T Bank Corporation MTB

Franklin Resources, Inc. BEN

Wells Fargo & Company WFC

Huntington Bancshares Incorporated HBAN

Marsh & McLennan Companies, Inc. MMC

Host Hotels & Resorts, Inc. HST

CNA Financial Corporation CNA

JPMorgan Chase & Co. JPM

Humana Inc. HUM

Lincoln National Corporation LNC

The Bank of New York Mellon Corporation BK

Aflac Incorporated AFL
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Exhibit 13: (continued)

Firm name Ticker

Northern Trust Corporation NTRS

American Express Company AXP

Bank of America Corporation BAC

The PNC Financial Services Group, Inc. PNC

Aon plc AON

Globe Life Inc. GL

Cigna Corporation CI

The Progressive Corporation PGR

Public Storage PSA

KeyBank KEY

U.S. Bancorp USB

SLM Corporation SLM

American International Group, Inc. AIG

SEI Investments Company SEIC

Truist Financial Corporation TFC

State Street Corporation STT

Zions Bancorporation ZION

UnitedHealth Group Incorporated UNH
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Exhibit 14: Portfolio assets of set 2

Firm name Ticker

Coca-Cola Consolidated, Inc. COKE

Apple Inc. AAPL

Vulcan Materials Company VMC

Associated Banc-Corp ASB

Bel Fuse Inc. BELFA

S&P Global Inc. SPGI

FMC Corporation FMC

Cardinal Health, Inc. CAH

Johnson & Johnson JNJ

Merck & Co., Inc. MRK

Coeur Mining, Inc. CDE

Communications Systems, Inc. JCS

Fifth Third Bancorp FITB

Rollins, Inc. ROL

First Horizon Corporation FHN

Franklin Electric FELE

Weyco Group WEYS

Barnes Group Inc. B

Diebold Nixdorf DBD

Hawkins, Inc. HWKN

Barnwell Industries, Inc. BRN

McDonald’s Corporation MCD

Safeguard Scientifics, Inc. SFE
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Exhibit 14: (continued)

Firm name Ticker

Rite Aid Corporation RAD

PotlatchDeltic Corporation PCH

Lee Enterprises, Inc. LEE

Tenet Healthcare Corporation THC

Methode Electronics, Inc. MEI

PNM Resources PNM

John Hancock Income Securities Trust JHS

Nordstrom, Inc. JWN

Southwest Airlines Co. LUV

One Liberty Properties, Inc. OLP

Otter Tail Corporation OTTR

Owens & Minor, Inc. OMI

PACCAR Inc PCAR

Leggett & Platt LEG

Newell Brands NWL

Moog Inc. MOG

Blackstone Mortgage Trust BXMT

Luby’s, Inc. LUB

RLI Corp. RLI

AT&T Inc. T

Sasol Limited SSL

Seacoast Banking Corporation of Florida SBCF

Enbridge Inc. ENB
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Exhibit 14: (continued)

Firm name Ticker

Transcat, Inc. TRNS

Trustco Bank TRST

Agnico Eagle Mines Limited AEM

Valmont Industries, Inc. VMI

Appendix B - Figures
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Exhibit 15: Pinball loss versus smoothed ones.
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Exhibit 16: Top and bottom panels display the variable importance of top-10 most influential
firm-level predictors and all macroeconomic variables measured by QC in SPNN1 for portfolio set
1, respectively.
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Exhibit 17: Top and bottom panels display the variable importance of top-10 most influential
firm-level predictors and all macroeconomic variables measured by QC in SPNN1 for the portfolio
set 2, respectively.
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Exhibit 18: Time-varying variable importance of the top-5 most influential firm-level predictors
measured by MSS. Predictors are ordered based on the average value of their MSS over recursive
training, with the most influential features at the top and the least influential at the bottom.
Columns correspond to the year-end of the 22 in-sample windows, and color gradients within each
column indicate the most influential (dark blue) to least influential (white) variables.
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Exhibit 19: Time-varying variable importance of the top-50 most influential predictors of interac-
tions between each firm characteristic with macroeconomic variables measured by MSS. Columns
correspond to the year-end of the 22 in-sample windows, and color gradients within each column
indicate the most influential (dark blue) to least influential (white) variables.
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Exhibit 20: Time-varying variable importance of the top-5 most influential firm-level predictors
measured by QC for portfolio set 1. Columns correspond to the year start of each of the 22 out-of-
sample windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Exhibit 21: Time-varying variable importance of the top-50 most influential predictors of interac-
tions between each firm characteristic with macroeconomic variables measured by QC for portfolio
set 1. Columns correspond to the year start of each of the 22 out-of-sample windows, and color
gradients within each column indicate the most influential (dark blue) to least influential (white)
variables.
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Exhibit 22: Time-varying variable importance of the top-5 most influential firm-level predictors
measured by QC for portfolio set 2. Columns correspond to the year-end of each of the 22 out-of-
sample windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Exhibit 23: Time-varying variable importance of the top-50 most influential predictors of interac-
tions between each firm characteristic with macroeconomic variables measured by QC for portfolio
set 2. Columns correspond to the year-end of each of the 22 out-of-sample windows, and color
gradients within each column indicate the most influential (dark blue) to least influential (white)
variables.
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Exhibit 24: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel) paths
obtained using different strategies with 50 bps proportional transaction costs for set 1. The shaded
areas denote recession periods as defined by NBER.
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Exhibit 25: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel) paths
obtained using different strategies with 50 bps proportional transaction costs for set 2. The shaded
areas denote recession periods as defined by NBER.
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Exhibit 26: Ex-post final wealth paths obtained using different strategies for set3 (top panel) and
set4 (bottom panel). The shaded areas denote recession periods as defined by NBER.
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