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Abstract

We introduce measures of extreme dependence using Kullback-Leibler relative entropy, which

we define in terms of copula densities. To estimate these measures, we employ the Bernstein cop-

ula density estimator, providing consistent nonparametric estimators and deriving their Bahadur-

type representations. Subsequently, we establish the asymptotic distribution of a test for symmet-

ric dependence, constructed using these measures. We explore the properties of this test under

both global and local alternatives. Additionally, we demonstrate the validity of a bootstrap-based

test that can be employed in finite-sample settings to assess symmetric dependence. A Monte

Carlo simulation study shows that both the asymptotic and bootstrap-based tests exhibit good

finite-sample size and power properties across various data-generating processes and sample sizes.

Finally, we present an empirical application that highlights the practical utility of the extreme de-

pendence measures. Specifically, we quantify the degree of extreme dependence between the US

financial market and several developed and emerging financial markets.
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1 Introduction

Numerous empirical studies have established that financial markets exhibit asymmetric depen-

dence, meaning they tend to be more interdependent during market downturns and less so during mar-

ket upturns. Accounting for this type of dependence, and its degree, can significantly enhance portfo-

lio allocation and risk management strategies; see Ang and Chen (2002), among others. The critical

importance of understanding the nature of dependence—whether symmetric or asymmetric—between

asset returns has encouraged the development of various parametric and nonparametric tests to assess

symmetric dependence in financial markets; see Longin and Solnik (2001); Ang and Bekaert (2002);

Ang and Chen (2002); Patton (2004); Hong et al. (2007); Jiang, Wu and Zhou (2018); and Song

and Taamouti (2017). However, these tests fall short of quantifying the degree of dependence, as

they primarily indicate the presence or absence of dependence. Consequently, a strong asymmetric

dependence might not be statistically significant at a given significance level, while a statistically sig-

nificant asymmetric dependence might not be "strong" from an economic perspective or relevant for

investment decision-making.

In this paper, we propose nonparametric measures for quantifying extreme dependence. These

measures are capable of capturing both linear and nonlinear forms of extreme dependence. For in-

stance, they can assess the degree of co-movement between the U.S. market and other international

markets, thereby identifying which markets are more or less vulnerable to potential economic or fi-

nancial crises originating in the U.S. Additionally, as will be demonstrated later, these measures can

also be employed to develop tests for symmetric dependence.

In a recent study, Jiang, Maasoumi, Pan and Wu (2018) interested in measuring general asym-

metric dependence between two random variables, building upon the exceedance correlation measure

introduced by Hong, Tu and Zhou (2007). Their approach was applied to test the hypothesis of sym-

metric dependence. Specifically, they proposed a two-step procedure to test for general asymmetric

exceedance dependence in stock returns. However, beyond the fact that their approach is based on the

probability density function, their study lacks theoretical results concerning the consistency of the es-

timators for their measures and does not derive the asymptotic distributions. In this paper, we address

these gaps by presenting measures of extreme dependence based on copula density functions and

rigorously examine the consistency and establish the asymptotic distributions of their nonparametric

estimators.

Formally, we consider two univariate random variables, X and Y , with means E(X) = µX and

E(Y ) = µY , and variances Var(X) = σ2
X and Var(Y ) = σ2

Y , respectively. In the following, we assume
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that X and Y have been standardized to have a mean of zero and a variance of one. Using Kullback-

Leibler relative entropy (Kullback and Leibler, 1951), Jiang, Maasoumi, Pan and Wu (2018) define the

following measures of lower and upper tail exceedance dependence for a given positive exceedance

level c:

ρ
− (c)=

∫ −c

−∞

∫ −c

−∞

fXY (x,y) log
[

fXY (x,y)
fX (x) fY (y)

]
dxdy,

ρ
+ (c)=

∫ +∞

c

∫ +∞

c
fXY (x,y) log

[
fXY (x,y)

fX (x) fY (y)

]
dxdy,

where, fXY (x,y) represents the joint probability density function of (X ,Y )′, while fX(x) and fY (y)

denote the marginal probability density functions of X and Y , respectively. To estimate ρ−(c) and

ρ+(c), Jiang, Maasoumi, Pan and Wu (2018) propose replacing fXY (x,y), fX(x), and fY (y) with

their nonparametric estimates obtained through kernel methods. However, they did not explore the

theoretical properties, such as consistency and asymptotic distribution, of these estimators. Instead,

they relied on Monte Carlo simulations to evaluate the performance of their test based on Kullback-

Leibler relative entropy.

In this paper, we first propose measures of extreme dependence using Bernstein copula density

functions, as opposed to the probability density functions employed in Jiang, Maasoumi, Pan and Wu

(2018). Bernstein copula density functions are particularly advantageous due to their ability to address

boundary bias issues, a common problem in kernel methods like those used by Jiang, Maasoumi, Pan

and Wu (2018). Subsequently, we conduct a rigorous analysis of the asymptotic properties of the

nonparametric estimators for our proposed measures.

Specifically, we begin by expressing these measures in terms of the copula function. In other

words, using Sklar (1959)’s theorem, the measures can be reformulated as follows:

ρ
− (c) =

∫ −c

−∞

∫ −c

−∞

fXY (x,y) log [c(FX (x) ,FY (y))] dxdy, (1.1)

and

ρ
+ (c) =

∫ +∞

c

∫ +∞

c
fXY (x,y) log [c(FX (x) ,FY (y))] dxdy, (1.2)

where c(·, ·) is the copula density of (X ,Y )′ and FX (X) and FY (Y ) are the cumulative distribution
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functions of X and Y , respectively. We can further re-write (1.1) and (1.2) as follows:

ρ− (c) = E {log [c(FX (X) ,FY (Y ))] I (X ≤−c,Y ≤−c)} ,

ρ+ (c) = E {log [c(FX (X) ,FY (Y ))] I (X ≥ c,Y ≥ c)} ,

(1.3)

where I (X ≤−c,Y ≤−c) and I (X ≥ c,Y ≥ c) are indicator functions that we define in the next

section [see Equation (2.2)].

Moreover, we present nonparametric estimators for the measures ρ−(c) and ρ+(c) as defined in

(1.3), using the Bernstein copula density estimator introduced by Sancetta and Satchell (2004) and

Bouezmarni, Rombouts and Taamouti (2010). We establish the consistency of these estimators and

derive their Bahadur-type representations. Given that these measures can be employed to test for sym-

metric dependence, another significant contribution of this paper is the derivation of the asymptotic

distributions for tests of symmetric dependence based on our proposed measures. Subsequently, we

analyze the properties of these tests under both global and local alternatives.

Additionally, we propose a bootstrap-based test that can be applied in finite-sample contexts to as-

sess the hypothesis of symmetric dependence. A Monte Carlo simulation study demonstrates that both

the asymptotic and bootstrap-based tests exhibit robust finite-sample size and power properties across

a range of data-generating processes and sample sizes. Finally, we provide an empirical application to

demonstrate the practical utility of our extreme dependence measures, specifically by quantifying the

degree of extreme dependence between the US financial market and several developed and emerging

financial markets.

The remainder of this paper is structured as follows. Section 2 introduces the general framework

for estimating lower and upper tail exceedance dependence measures using the Bernstein copula

density. In Section 3, we explore the asymptotic properties of the estimators for tail dependence

measures, specifically proving their consistency and deriving their Bahadur representations. Section 4

demonstrates how these measures and their estimators can be utilized to construct a test for symmetric

dependence. We derive the asymptotic distribution of this test and analyze its power under both global

and local alternatives. In Section 5, we propose an alternative bootstrap-based test for symmetric

dependence and conduct a Monte Carlo simulation study to assess the finite-sample properties of both

bootstrap and asymptotic tests. Section 6 is dedicated to an empirical application, with conclusions

drawn from the results presented in Section 7. Finally, the tables of the empirical results and proofs

are provided in Appendix A and Appendix B, respectively.
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2 Framework

Consider two variables of interest, X and Y , and let (Yt ,Xt) ∈ R2, t ∈ Z be a strictly stationary

stochastic process in R2. Denote by f (x,y) the joint probability density function of Xt and Yt , and by

c(F (X) ,F (Y )) the corresponding copula density function, where F (X) and F (Y ) are the cumulative

distribution functions of X and Y , respectively. As discussed in the introduction, we are interested

in providing measures of extreme dependence between X and Y using copula density. Thus, for a

non-negative constant c, and following the work of Jiang, Maasoumi, Pan and Wu (2018), we use the

copula function c(F (X) ,F (Y )) to define the following measures of lower and upper tail exceedance

dependence:

ρ− (c) = E {log [c(FX (X) ,FY (Y ))] I (X ≤−c,Y ≤−c)} ,

ρ+ (c) = E {log [c(FX (X) ,FY (Y ))] I (X ≥ c,Y ≥ c)} ,

(2.1)

where I (X ≤−c,Y ≤−c) and I (X ≥ c,Y ≥ c) are indicator functions that we define as follows:

I (X ≤−c,Y ≤−c) =

 1, if X ≤−c and Y ≤−c

0, otherwise,

I (X ≥ c,Y ≥ c) =

 1, if X ≥ c and Y ≥ c

0, otherwise.

(2.2)

In this section, we discuss the estimation of the above measures. Considering the expressions of

the measures in (2.1), it appears that natural estimators of ρ− (c) and ρ+ (c) can be obtained by

replacing the unknown copula c(FX (X) ,FY (Y )) with its nonparametric estimate from a finite sample,

and the theoretical expectation “E” with its empirical analogue T−1
∑

T
t=1. In what follows, we use

the Bernstein copula density as an estimator of c(FX (X) ,FY (Y )) due to its well-known attractive

properties, such as addressing the boundary bias problem that affects standard kernel methods like the

one used in Jiang, Maasoumi, Pan and Wu (2018). Formally, we consider the following nonparametric

estimators of ρ− (c) and ρ+ (c):

ρ̂− (c) = 1
T ∑

T
t=1 log

[
ck,T (Vt)

]
I (Xt ≤−c,Yt ≤−c) ,

ρ̂+ (c) = 1
T ∑

T
t=1 log

[
ck,T (Vt)

]
I (Xt ≥ c,Yt ≥ c) ,

(2.3)
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where ck,T (·) is the Bernstein copula density estimator of c(FX (X) ,FY (Y )) that we define below.

We now define the Bernstein copula density estimator, which we use to construct our nonparamet-

ric estimators for the measures of tail dependence between X and Y . Without loss of generality, we

focus on the case where X and Y are both univariate variables. The more general multidimensional

case can be analyzed similarly, albeit with slightly more complex notation. In what follows, we denote

u = (u1,u2)
′ = (FX (X) ,FY (Y ))

′ ∈ [0,1]2. Thus, the copula density c(u) is defined as follows:

c(u) = ∂
2C(u)/∂u1∂u2,

where C (·) is the copula function. The Bernstein copula function is absolutely continuous, hence the

Bernstein copula density is defined as:

ck(u) =
k

∑
v1=0

k

∑
v2=0

C
(v1

k
,
v2

k

) 2

∏
j=1

P′
v j,k(u j),

where P′
v j,k(u j) is the derivative of Pv j,k(u j) with respect to u j, with Pν j,k(u j) the binomial probability

mass with parameters ν j and k evaluated at u j. The Bernstein estimator of the copula density is given

by

ck,T (u) =
k

∑
v1=0

k

∑
v2=0

CT

(v1

k
,
v2

k

) 2

∏
j=1

P′
v j,k(u j),

where CT (·) is the empirical copula and T is the number of observations, see e.g. Sancetta and

Satchell (2004) and Bouezmarni, Rombouts and Taamouti (2010). The Bernstein copula density

estimator can be rewritten as follows [see Bouezmarni, Rombouts and Taamouti (2010)]:

ck,T (u) =
1
T

T

∑
t=1

Kk (u,Vt) , for u ∈ [0,1]2, (2.4)

with

Kk(u,Vt) = k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
2

∏
j=1

Pv j,k−1(u j),

where Pv j,k−1(u j) is the binomial probability mass with parameters v j and k−1 evaluated at u j, and

Vt = (FXT (Xt) ,FY T (Yt))
′,

with FXT (x) = T−1
∑

T
t=1 I (Xt ≤ x) and FY T (y) = T−1

∑
T
t=1 I (Yt ≤ y), respectively, the empirical

distribution functions of Xt and Yt for t = 1, . . . ,T , and Ak(v)=
[

v1
k ,

v1+1
k

]
×
[

v2
k ,

v2+1
k

]
for v=(v1,v2)

′,
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with the integer k that plays the role of bandwidth parameter. The Bernstein copula density estimator

was first proposed and investigated by Sancetta and Satchell (2004) for independent and identically

distributed (i.i.d.) data. Later, Bouezmarni, Rombouts and Taamouti (2010) applied Bernstein polyno-

mials to estimate the copula density for time series data with α-mixing dependence. They provided

the asymptotic properties of the Bernstein copula density estimator for α-mixing data, including

asymptotic bias and variance, uniform almost sure (a.s.) convergence, and asymptotic normality.

More recently, Janssen, Swanepoel and Veraverbeke (2014) revisited this estimator, establishing its

asymptotic normality under i.i.d. conditions. In the following, we study the asymptotic properties

(consistency and asymptotic distribution) of the nonparametric estimators ρ̂− (c) and ρ̂+ (c).

3 Asymptotic properties of ρ̂− (c) and ρ̂+ (c)

This section aims to investigate the asymptotic properties of the nonparametric estimators for the

lower and upper tail exceedance dependence measures, denoted as ρ̂−(c) and ρ̂+(c), respectively.

These estimators are crucial for understanding the extremal dependence structure in tail regions.

Before proceeding with the asymptotic analysis, we introduce a set of standard assumptions,

which will serve as the foundation for our theoretical results. These assumptions ensure the regularity

conditions necessary for deriving consistency properties of the estimators of our tail exceedance de-

pendence measures as well as establishing their Bahadur representations, which can be used to obtain

the asymptotic normality of the estimators.

Assumption A1: The process (Yt ,Xt) ∈ R2, t ∈ Z is a strictly stationary β -mixing process with co-

efficient βl = O
(
ρ l), for some 0 < ρ < 1.

Assumption A2: We assume that k → ∞ together with T−1/2k3/2 log log2(T )→ 0 when T 7→ ∞.

These assumptions are widely used in the literature, including in Bouezmarni, Rombouts and

Taamouti (2012) and Belalia, Bouezmarni, Lemyre and Taamouti (2017), where a detailed discussion

can also be found. Based on the results of Belalia, Bouezmarni, Lemyre and Taamouti (2017), the

following proposition establishes the consistency of the measures ρ̂− (c) and ρ̂+ (c). The proof of

Proposition 1 follows from the proof of Theorem 2 in Belalia et al. (2017).

Proposition 1. Under Assumptions A1 and A2, the estimators ρ̂− (c) and ρ̂+ (c) in (2.3) converges

in probability to the true measures of extreme dependence ρ− (c) and ρ+ (c) , respectively.

We now present the Bahadur representations for the estimators ρ̂− (c) and ρ̂+ (c). Before doing
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so, we define

Cul (u1,u2) := ∂C (u1,u2)/∂ul, for l = 1,2,

as the first-order partial derivatives of the copula distribution function C (u1,u2) over (u1,u2)∈ (0,1)2.

The following theorem establishes the Bahadur representations of ρ̂− (c) and ρ̂+ (c) [see the proof of

Theorem 1 in Appendix B].

Theorem 1. : Suppose Assumptions A1 and A2 hold. Then, for any given positive constant c, as

T → ∞, we have

√
T [ρ̂− (c)−ρ− (c)] = 1√

T ∑
T
t=1
[
ε
−
1t (c)+ ε

−
2t (c)

]
+op (1) ,

√
T [ρ̂+ (c)−ρ+ (c)] = 1√

T ∑
T
t=1
[
ε
+
1t (c)+ ε

+
2t (c)

]
+op (1)

where
ε
−
1t (c) = log [c(FX(Xt),FY (Yt))]I (Xt ≤−c,Yt ≤−c)−ρ−(c),

ε
−
2t (c) = I (Xt ≤−c,Yt ≤−c)−E [I (Xt ≤−c,Yt ≤−c)]

−Cu1 (FX(−c),FY (−c)) [I (Xt ≤−c)−FX(−c)]

−Cu2 (FX(−c),FY (−c)) [I (Yt ≤−c)−FY (−c)] ,

ε
+
1t (c) = log [c(FX(Xt),FY (Yt))]I (Xt ≥ c,Yt ≥ c)−ρ+(c),

ε
+
2t (c) = I (Xt ≥ c,Yt ≥ c)−E [I (Xt ≥ c,Yt ≥ c)]

+Cu1 (1−FX(c),1−FY (c)) [I (Xt ≤ c)−FX(c)]

+Cu2 (1−FX(c),1−FY (c)) [I (Yt ≤ c)−FY (c)] .

In the Bahadur representations of ρ̂− (c) and ρ̂+ (c), although the expressions may seem complex,

their interpretation is relatively straightforward. The first terms, ε
−
1t (c) and ε

+
1t (c), represent the stan-

dard Bahadur terms when the true copula density function c(u1,u2) is known. In contrast, the second

terms, ε
−
2t (c) and ε

+
2t (c), reflect the non-negligible estimation effects that arise from replacing the

unknown true copula density c(u1,u2) with the Bernstein copula density approximation ck,T (u1,u2).

Moreover, these estimation effects can be further traced to distinct sources. Specifically, the initial

terms in ε
−
2t (c) and ε

+
2t (c) result from the need to replace the unknown copula distribution function

C (u1,u2) with the empirical Bernstein copula distribution estimator. The remaining terms stem from

the fact that the marginal distributions FX(x) and FY (y) are also unknown and must be substituted

with their empirical distribution functions (EDFs), FXT (x) and FY T (y).
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Interestingly, by applying the Central Limit Theorem, the results in Theorem 1 demonstrate that,

despite the fact that our estimators are model-free and entirely nonparametric, we still achieve the

standard parametric rate of convergence.

4 Test of asymmetric dependence

The measures of tail dependence described previously can be used to construct tests for symmetric

dependence at the extremes. Specifically, if there exists symmetric dependence between the random

variables X and Y at a given exceedance level c > 0, then the measures of lower and upper tail

exceedance dependence, ρ− (c) and ρ+ (c), will be equal. This equality forms the basis for testing

the null hypothesis of symmetric tail dependence. To formalize, for a pre-specified exceedance level

c, we aim to test the null hypothesis:

H0 (c) : ρ
− (c) = ρ

+ (c) , (4.1)

against the alternative hypothesis:

H1 (c) : ρ
− (c) ̸= ρ

+ (c) . (4.2)

Under this null hypothesis, if the two measures are indeed equal, it suggests that the dependence

between X and Y is symmetric at the threshold c. To perform this test, we use the empirical estimators

ρ− (c) and ρ+ (c) and assess whether their observed difference is statistically significant.

In the following analysis, we employ a two-sided t-type test to assess the null hypothesis H0 (c)

against the alternative H1 (c). This test is based on the distance between the measures of tail depen-

dence ρ− (c) and ρ+ (c) . To determine the asymptotic distribution of our test statistic, we first inves-

tigate the asymptotic behavior of the difference ρ̂− (c)− ρ̂+ (c) . Theorem 2 provides an asymptotic

decomposition of the term
√

T [ρ̂− (c)− ρ̂+ (c)] , which allows us to derive its asymptotic distribution.

For a detailed proof of Theorem 2, please refer to Appendix B.

Theorem 2. : Let Assumptions A1 and A2 hold. Then, under the null hypothesis in (4.1), for given
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c > 0, as T → ∞, we have

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
=

1√
T

T

∑
t=1

{log [c(FX (Xt) ,FY (Yt))] [I (Xt ≤−c,Yt ≤−c)−I (Xt ≥ c,Yt ≥ c)]

+
[
ε
−
2t (c)− ε

+
2t (c)

]}
+op (1)

:=
1√
T

T

∑
t=1

ut (c)+op (1) . (4.3)

where,

ut (c)= {log [c(FX (Xt) ,FY (Yt))] [I (Xt ≤−c,Yt ≤−c)−I (Xt ≥ c,Yt ≥ c)] +
[
ε
−
2t (c)− ε

+
2t (c)

]}
Furthermore, under the null hypothesis,

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
→d N

(
0,σ2 (c)

)
,

where the asymptotic variance σ2 (c) is given by

σ
2 (c) = E

(
u2

1 (c)
)
+2

∞

∑
j=1

E
[
u1 (c)u1+ j (c)

]
.

Notice that for any given exceedance level c > 0, if the long-run variance σ2 (c) was known, one

could directly use the quantity
√

T [ρ̂− (c)− ρ̂+ (c)] to construct a two-sided t-type test statistic, with

the following limiting null distribution:

t (c) :=

√
T [ρ̂− (c)− ρ̂+ (c)]

σ (c)
→d N (0,1) ,

whose asymptotic critical values are available in most econometric and statistical textbooks. However,

in practice, the asymptotic variance σ2 (c) is unknown, rendering the test statistic t (c) infeasible.

Thus, a proper estimator of σ2 (c) is required. For a given weakly consistent estimator, σ̂2 (c) →p

σ2 (c) [see e.g. Liu and Wu (2010)], our proposed feasible t-type test statistic is defined as

t̂ (c) :=

√
T [ρ̂− (c)− ρ̂+ (c)]

σ̂ (c)
, (4.4)

whose asymptotic distribution, as T → ∞, remains unchanged under the null hypothesis and follows

a standard normal distribution. Notice that when the process {ut (c)}, defined in (4.3), is a martingale
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difference, the variance σ2 (c) reduces to E
(
u2

1 (c)
)

and can be consistently estimated by

1
T

T

∑
t=1

û2
t (c) ,

where ût (c) is defined as follows:

ût (c)= log
[
ck,T (FXT (Xt) ,FY T (Yt))

]
[I (Xt ≤−c,Yt ≤−c)−I (Xt ≥ c,Yt ≥ c)]+

[
ε̂
−
2t (c)− ε̂

+
2t (c)

]
,

with

ε̂
−
2t (c) =I (Xt ≤−c,Yt ≤−c)− 1

T

T

∑
t=1

I (Xt ≤−c,Yt ≤−c)

−Ĉu1,T (FXT (−c),FY T (−c)) [I (Xt ≤−c)−FXT (−c)]

−Ĉu2,T (FXT (−c),FY T (−c)) [I (Yt ≤−c)−FY T (−c)] ,

and

ε̂
+
2t (c) =I (Xt ≥ c,Yt ≥ c)− 1

T

T

∑
t=1

I (Xt ≥ c,Yt ≥ c)

+Ĉu1,T (1−FXT (c),1−FY T (c)) [I (Xt ≤ c)−FXT (c)]

+Ĉu2,T (1−FXT (c),1−FY T (c)) [I (Yt ≤ c)−FY T (c)] .

We now examine the consistency and asymptotic power of the feasible t̂ (c) test in (4.4) for de-

tecting local departures from the null hypothesis (4.1). Specifically, we consider local alternatives

that converge to the null hypothesis at an appropriate rate. To this end, we introduce a sequence of

Pitman-type local alternatives of the following form:

H1T (c) : ρ
− (c) = ρ

+ (c)+
γ (c)√

T
, (4.5)

where γ (c) is a finite positive constant representing the magnitude of the deviation of ρ− (c) from

ρ+ (c). Asymptotically (as T → ∞), these terms converge to equality. The following proposition

demonstrates that our test is consistent and exhibits non-trivial asymptotic local power against the

sequence of Pitman local alternatives defined in (4.5), which converges to the null at the rate T−1/2

[see the proof of Proposition 2 in Appendix B].

Proposition 2. Let Assumptions A1 and A2 hold. Then, under the alternative hypothesis H1 (c), for
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given c > 0, as T → ∞, the t̂ (c) test in (4.4) consistent, i.e.

Pr (|t̂ (c)|> b)→ 1

for T → ∞ and any positive constant b = o(T 1/2). In addition, under the local alternatives H1T (c) in

(4.5), we have:
√

T
[
ρ̂
− (c)− ρ̂

+ (c)
]
→d N

(
γ(c),σ2 (c)

)
.

From Proposition 2, we can immediately conclude that the limiting distribution of our nonpara-

metric test t̂(c) is nontrivially shifted whenever γ(c)> 0. Therefore, the proposed test is able to detect

local alternatives that converge to the null hypothesis H0(c) at the parametric rate T−1/2. The local

power of the test increases with the magnitude of the deviation of γ(c), and thus our test has nontriv-

ial power against the local alternatives in (4.5), which approach the parametric rate T−1/2 arbitrarily

closely.

As shown in (4.4), the asymptotic null distribution of t̂(c) follows a standard normal distribution,

with the corresponding critical values readily available. Additionally, the limiting distribution is

independent of the nuisance parameter k used in estimating ρ̂−(c) and ρ̂+(c). However, it is well

known that tests based on the asymptotic null distribution often suffer from size distortions and power

losses in finite samples. The finite-sample performance of the asymptotic-based test is also expected

to depend on the choice of k. To address these limitations, we propose implementing the test using a

stationary bootstrap procedure.

A key advantage of the stationary bootstrap is that the resampled pseudo-time series remains

stationary, due to the use of geometrically distributed random block sizes. The stationary bootstrap

introduced by Politis and Romano (1994b) is a powerful block-resampling technique that has been

widely applied in the time series literature; see also Politis and Romano (1994a) and Hwang and Shin

(2011), among others. The following sections, which present Monte Carlo simulations and empirical

applications, demonstrate that the stationary bootstrap procedure offers good approximations in finite

samples and is robust to the choice of k.

5 Monte-Carlo simulations

In this section, we conduct a Monte Carlo simulation study to evaluate the performance of the

bootstrap approach introduced at the end of the previous section. This approach offers a small-sample

approximation of the asymptotic distribution as described in Theorem 2. Specifically, we evaluate its
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size and power in testing for symmetric dependence, as well as its effectiveness in reducing bias in

the estimators of tail dependence measures.

5.1 Performance of Bootstrap-Based Test

Though the asymptotic-based test t̂(c) given by Theorem 2 is computationally efficient and straight-

forward to implement, the empirical size of the test statistic t̂(c) in small samples may differ signif-

icantly from the nominal significance level. Size distortion is almost inevitable in small samples, as

confirmed by our unreported simulations. However, as emphasized at the end of the previous sec-

tion, it is well known that certain bootstrap methods, such as the stationary block bootstrap (Kunsch,

1989), can effectively account for the dependence structure in weakly dependent time series data and

help improve the performance of the asymptotic-based tests. Stationarity is maintained by randomly

selecting the length of each block from a geometric distribution (Politis and Romano, 1994b), with

the mean determined by the algorithm proposed in Politis and White (2004) and Patton et al. (2009).

In light of the above, this section proposes approximating the finite sample distribution of t̂(c)

under the null hypothesis by using the distribution of

t̂∗ (c) :=

√
T [ρ̂−∗ (c)− ρ̂+∗ (c)]

σ̂ (c)
, (5.1)

where ρ̂−∗(c) and ρ̂+∗(c) are constructed using the stationary bootstrap sample {(Y ∗
t ,X

∗
t ) : t = 1, . . . ,T}.

Estimating the standard error σ̂(c), as discussed in 5.1, is crucial because it serves as the scale pa-

rameter of the above distribution. We propose using the nested resampling method to estimate the

asymptotic variance σ(c). For further details, see Hinkley and Shi (1989) and Tibshirani and Efron

(1993).

Formally, we bootstrap a sequence of B1 samples from the original data, from which we compute

a sequence {ρ̂
−∗
(i) (c); ρ̂

+∗
(i) (c)}

B1
i=1. The quantity σ̂∗(c) is then defined as the sample standard deviation

of this sequence of B1 values:

σ̂
∗(c) =

1
B1 −1

B1

∑
i=1

[(ρ̂−∗
(i) (c)− ρ̂

+∗
(i) (c))− (ρ̂−∗

(i) (c)− ρ̂
+∗
(i) (c))]

2. (5.2)

To obtain the sampling distribution of the t-statistic t̂∗ (c), we first generate bootstrap samples

from the original data. For a given bootstrap sample j, we compute ρ̂( j)−∗(c) and ρ̂( j)+∗(c) using

the equation in (2.3). The quantity σ̂∗
j (c) is estimated based on nested bootstrap samples with a

sample size of B1. Following Horowitz (2001), we adjust the t-statistic from the bootstrap samples to
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account for sampling bias:

t̂∗j (c) =
[ρ̂−∗

j (c)− ρ̂
+∗
j (c)]− [ρ̂−∗(c)− ρ̂+∗(c)]

σ̂∗
j (c))

. (5.3)

We generate B bootstrap samples and estimate the empirical distribution F for {t̂∗j (c)}B
j=1. We then

report the percentile of t̂∗ (c) under F . For a given significance level α , the null hypothesis of sym-

metric dependence will be rejected if t̂∗ (c) falls in the upper 1−α/2 or lower α/2 percentile of the

empirical distribution F . For theoretical justification of this bootstrap approximation and the neces-

sary assumptions, the reader is referred to Politis and Romano (1994b).

In order to generate data and assess the performance of the bootstrap-based test for symmetric

dependence, we need to specify the marginal distributions of the random variables under study as

well as the copulas that model the dependence between them in our simulation setting. For the latter,

we consider copulas with varying levels of asymmetric dependence. The copulas under consideration

include the Gaussian and Student’s t copulas, which model symmetric exceedance dependence around

their means, as well as the Clayton and Gumbel copulas, which capture asymmetric tail dependence.

To evaluate the empirical size and power of the bootstrap-based test described in Theorem 2, we

employ the following data generating processes (DGPs) based on mixed Gaussian-Clayton copulas;

see Hong et al. (2007) for more details.

Cmixt(u,v,ρ,τ,κ) = κCnor(u,v,ρ)+(1−κ)Cclay(u,v,τ), κ ∈ [0,1] (5.4)

where κ is the mixture parameter. In other words, κ represents the weight assigned to the Gaussian

copula. In our simulation design, we consider values of κ equal to 0, 0.25, 0.5, 0.75, and 1. By varying

κ , we can achieve different levels of asymmetric dependence. Specifically, the mixture model nests

the Gaussian copula as a special case when κ = 1 and reduces to the Clayton copula when κ = 0. The

parameter ρ in the Gaussian copula corresponds to the correlation coefficient, while the parameter

τ governs the dependence between the marginal distributions in the Clayton copula. A higher τ

indicates stronger left-tail dependence.

For the individual distributions of the variables, we use marginal distributions based on a standard

generalized autoregressive conditional heteroskedasticity (GARCH)(1, 1) process. The parameters

for the copula-GARCH model used in our simulations were derived from real data. Specifically, we

first fitted the copula-GARCH model to the equally-weighted return of the 5th smallest size portfolio

and the value-weighted market returns [see the section on the empirical application for more infor-
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mation about these returns], then estimated the parameters of this model using maximum likelihood

estimation (MLE). In the simulations, the data-generating processes (DGPs) are based on the copula-

GARCH model with parameters set to the MLEs obtained from this fitting process. The MLEs for the

Clayton copula parameter τ and the Gaussian copula parameter ρ are 4.351 and 0.914, respectively.

The estimated GARCH parameters are presented in Table 1.

Table 1: Maximum likelihood estimates for GARCH(1, 1) processes

Parameter Estimate SE Estimate SE

µi 0.937 0.233 0.562 0.171
ωi 4.977 2.321 1.139 0.556
αi 0.137 0.046 0.107 0.029
βi 0.730 0.094 0.844 0.036

Note: The table reports maximum likelihood estimates for parameters of the GARCH(1, 1) processes
used to fit the equal-weighted return of the 5th smallest size portfolio and the value-weighted market
return data. The GARCH models are used as the DGPs to simulate the data. The specification is set
to follow a standard GARCH(1, 1) process: rit = µi + εi,t , where εi,t is normally distributed with a
time-varying variance σ2

i,t = ωi+αiε
2
i,t−1+βiσ

2
i,t−1. µi is the unconditional mean of the variables. ωi

is the constant term in the time-varying conditional volatility process. αi is the ARCH parameter and
βi is the GARCH parameter in the GARCH(1, 1) process. The sample period used for estimation is
from January 1965 to December 2013.

Our nonparametric test relies on the bandwidth parameter k, which is necessary for estimating

the Bernstein copula density (distribution). In our simulation, the optimal bandwidth parameter is

selected by minimizing the mean squared error (MSE) of the copula density estimator, following

the approach outlined by Rose (2015). A practical bandwidth can also be determined using an ap-

proach similar to that proposed by Omelka, Gijbels and Veraverbeke (2009) for kernel-based copula

estimation. However, this alternative method is not explored in the current paper and is left for fu-

ture research. Omelka et al. (2009)’s method involves an Edgeworth expansion of the asymptotic

distribution of the test statistics.

The simulations are conducted using 1000 replications of copula-GARCH samples, where the de-

pendence structure adheres to the mixed copula described in Equation 5.4. Specifically, we calculate

the empirical size and power of our proposed test using different sample sizes (T = 240, 420, 600,

and 1200). The empirical size and power are computed as the relative frequency of rejecting the

null hypothesis of symmetric dependence at different exceedance levels c = 0,1,1.5 in the simulated

samples.

Tables 2, 3, and 4 present the results for the empirical size and power of our asymmetric depen-

dence test at the nominal size levels of 10%, 5%, and 1% for different exceedance levels c = 0,1,1.5.
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From the above results and when c = 0 (refer to Table 2), we note the following. When κ =

1, i.e., equation 5.4 reduces to the Gaussian copula with symmetric tail dependence. In this case,

our proposed test demonstrates accurate sizes in finite samples, showing robustness across different

sample sizes. When the data exhibits minimal deviation from normality with κ = 0.75, the rejection

rates remain low when T = 240. This low rejection rate is attributed to the relatively smaller number of

samples available at higher exceedance levels. However, the power of the test increases significantly

as κ decreases to 0.5, 0.25, and 0.

Furthermore, a significant improvement in the power of our test is observed as the sample size

increases. Notably, when the data-generating processes (DGPs) exhibit stronger asymmetric depen-

dence (κ = 0.25 and 0), the performance of our test further improves, with its power converging to 1

at a faster rate.

For the other exceedance levels c = 1 and c = 1.5 (refer to Tables 3 and 4), our test continues to

show accurate empirical sizes for all nominal levels of 10%, 5%, and 1%. Regarding empirical power,

the pattern indicates that a larger sample size is required for our test to achieve good empirical power

when exceedance levels in the farther tails are considered.

Table 2: Empirical Size and power of the test of symmetric dependence test, with c = 0

Sample size (T) Nominal size 100% (Size) 75% 50% 25% 0%

240 10% 0.091 0.448 0.861 0.994 1.000
5% 0.042 0.309 0.758 0.986 0.997
1% 0.009 0.095 0.495 0.884 0.988

420 10% 0.121 0.511 0.927 1.000 1.000
5% 0.066 0.440 0.936 1.000 1.000
1% 0.014 0.240 0.802 1.000 1.000

600 10% 0.112 0.755 0.996 1.000 1.000
5% 0.063 0.672 0.991 1.000 1.000
1% 0.012 0.335 0.950 1.000 1.000

1200 10% 0.120 0.994 1.000 1.000 1.000
5% 0.051 0.991 1.000 1.000 1.000
1% 0.012 0.917 1.000 1.000 1.000

Note: The table reports empirical size and power of the test of symmetric dependence. The ex-
ceedance level c is set to 0 in all cases. The inference is based on 199 stationary bootstrap resamplings
and 1000 replications. We construct the sampling distribution for our proposed test using the pivotal
bootstrap resampling approach. We employ a stationary block bootstrap method to take into account
the dependent structure in weakly dependent time series data. Stationarity is ensured by letting the
length of each block be randomly sampled from the geometric distribution; see Politis and White
(2004).
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Table 3: Empirical Size and power of the test of symmetric dependence test, with c = 1

Sample size (T) Nominal size 100% (Size) 75% 50% 25% 0%

240 10% 0.107 0.261 0.612 0.871 0.981
5% 0.048 0.171 0.445 0.791 0.962
1% 0.008 0.053 0.210 0.533 0.791

420 10% 0.120 0.350 0.791 0.980 1.000
5% 0.051 0.241 0.682 0.945 0.994
1% 0.010 0.069 0.510 0.811 0.959

600 10% 0.092 0.461 0.931 0.992 1.000
5% 0.050 0.311 0.854 0.985 1.000
1% 0.009 0.119 0.510 0.941 1.000

1200 10% 0.102 0.750 0.938 1.000 1.000
5% 0.051 0.610 0.981 1.000 1.000
1% 0.003 0.321 0.911 1.000 1.000

1800 10% 0.101 0.901 1.000 1.000 1.000
5% 0.051 0.890 1.000 1.000 1.000
1% 0.010 0.512 1.000 1.000 1.000

Note: The table reports empirical size and power of the test of symmetric dependence. The ex-
ceedance level c is set to 1 in all cases. The inference is based on 199 stationary bootstrap resamplings
and 1000 replications. We construct the sampling distribution for our proposed test using the pivotal
bootstrap resampling approach. We employ a stationary block bootstrap method to take into account
the dependent structure in weakly dependent time series data. Stationarity is ensured by letting the
length of each block be randomly sampled from the geometric distribution; see Politis and White
(2004).
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Table 4: Empirical Size and power of the test of symmetric dependence test, with c = 1.5

Sample size (T) Nominal size 100% (Size) 75% 50% 25% 0%

240 10% 0.110 0.155 0.360 0.560 0.786
5% 0.040 0.082 0.221 0.391 0.634
1% 0.006 0.015 0.071 0.160 0.321

420 10% 0.110 0.180 0.501 0.710 0.958
5% 0.052 0.111 0.371 0.689 0.932
1% 0.012 0.032 0.157 0.417 0.717

600 10% 0.091 0.241 0.641 0.921 0.995
5% 0.045 0.142 0.505 0.831 0.920
1% 0.011 0.027 0.211 0.603 0.821

1200 10% 0.112 0.371 0.834 0.959 1.000
5% 0.053 0.314 0.788 0.968 1.000
1% 0.013 0.121 0.491 0.946 0.999

1800 10% 0.100 0.577 0.927 1.000 1.000
5% 0.048 0.471 0.944 1.000 1.000
1% 0.010 0.236 0.903 1.000 1.000

2400 10% 0.100 0.693 0.995 1.000 1.000
5% 0.047 0.572 0.981 1.000 1.000
1% 0.011 0.272 0.914 1.000 1.000

3600 10% 0.103 0.901 1.000 1.000 1.000
5% 0.044 0.821 1.000 1.000 1.000
1% 0.008 0.520 1.000 1.000 1.000

Note: The table reports empirical size and power of the test of symmetric dependence. The ex-
ceedance level c is set to 1.5 in all cases. The inference is based on 199 stationary bootstrap resam-
plings and 1000 replications. We construct the sampling distribution for our proposed test using the
pivotal bootstrap resampling approach. We employ a stationary block bootstrap method to take into
account the dependent structure in weakly dependent time series data. Stationarity is ensured by let-
ting the length of each block be randomly sampled from the geometric distribution; see Politis and
White (2004).

We conduct additional simulations to evaluate the performance of our proposed test when the

GARCH error terms follow a non-normal distribution. Specifically, we use the same simulation setup

as before, but this time we generate the marginal distribution of each variable based on two alternative

distributions: the Student t and the skewed t distributions.

Tables 5 and 6 present the test performance when the marginal distributions follow the t and

skewed t distributions, respectively. In Table 5, we observe that the empirical size is well maintained,

even for the smallest sample size, T = 240. The empirical powers are also quite similar to those

in the benchmark case (normal errors) and generally converge to 1 as the sample size increases to
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T = 1,200. In Table 6, the empirical powers are slightly lower than in the benchmark case but still

converge to 1 when the sample size is large.

Overall, we conclude that our asymmetric dependence test performs very well in finite samples,

even when the marginal distributions exhibit a degree of leptokurtic behavior.

Table 5: Empirical Size and power of the test of symmetric dependence test, t marginal distributions
(c = 0)

Sample size (T) Nominal size 100% (Size) 75% 50% 25% 0%

240 10% 0.119 0.391 0.841 0.981 0.986
5% 0.058 0.311 0.746 0.941 0.985
1% 0.009 0.098 0.467 0.801 0.942

420 10% 0.119 0.534 0.932 0.971 0.989
5% 0.053 0.469 0.931 0.973 0.992
1% 0.012 0.271 0.801 0.971 0.987

600 10% 0.106 0.742 0.986 0.988 0.991
5% 0.055 0.641 0.972 0.971 0.991
1% 0.011 0.317 0.899 0.962 0.979

1200 10% 0.115 0.949 0.989 1.000 1.000
5% 0.055 0.919 1.000 0.998 1.000
1% 0.013 0.818 0.991 0.989 0.998

Note: The table reports empirical size and power of the test of symmetric dependence for t marginal
distributions. The nominal sizes are set to 10%, 5%, and 1%, respectively. All random samples are
generated by the mixture copula in Equation 5.4. The inference is based on 199 stationary bootstrap
resamplings and 1000 replications, and the exceedance level c is set to 0 in all cases.
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Table 6: Empirical Size and power of the test of symmetric dependence test, with skewed t marginal
distributions (c = 0)

Sample size (T) Nominal size 100% (Size) 75% 50% 25% 0%

240 10% 0.119 0.312 0.789 0.957 0.989
5% 0.094 0.193 0.651 0.935 0.977
1% 0.015 0.058 0.381 0.781 0.928

420 10% 0.172 0.312 0.812 0.912 0.989
5% 0.161 0.251 0.816 0.972 0.976
1% 0.021 0.097 0.602 0.891 0.960

600 10% 0.271 0.471 0.921 0.992 0.995
5% 0.153 0.351 0.872 0.913 0.971
1% 0.051 0.135 0.712 0.989 0.993

1200 10% 0.403 0.711 0.995 0.993 0.997
5% 0.301 0.568 0.989 0.991 0.996
1% 0.108 0.291 0.958 0.983 0.996

Note: The table reports empirical size and power of the test of symmetric dependence for skewed
t marginal distributions. The nominal sizes are set to 10%, 5%, and 1%, respectively. All random
samples are generated by the mixture copula in Equation 5.4. The inference is based on 199 stationary
bootstrap resamplings and 1000 replications, and the exceedance level c is set to 0 in all cases.

5.2 Bootstrap-Based Bias Correction

Here, we provide additional simulation results to examine a bootstrap bias-corrected estimator

for measures of extreme dependence. Our estimators are again motivated by the stationary block

bootstrap method, which accounts for the dependent structure in weakly dependent time series data.

The procedure is straightforward: we first use the bootstrapped sample to estimate the finite sample

bias in the nonparametric estimators of Bernstein copula-based measures of extreme dependence. We

then subtract this bias term to obtain the bootstrap bias-corrected estimates. The estimates can be

obtained easily through the following four steps:

Step 1 We draw a stationary bootstrap sample {(X⋆
t ,Y

⋆
t )}T

t=1;

Step 2 Based on the sample {(X⋆
t ,Y

⋆
t )}T

t=1 , we compute the bootstrap estimators of the mea-

sures of extreme dependence;

Step 3 We repeat steps 1 and 2 B times so that we get ρ̂−∗ (c) and ρ̂
+∗
j (c) for j = 1, . . . ,B; and

Step 4 We approximate the bias term Bias+ = E[ρ̂+ (c)]−ρ+ (c) by the corresponding boot-

strapped Bias+⋆= E⋆[ρ̂+⋆ (c)]− ρ̂+ (c), where E⋆ is the expectation based on the bootstrapped

distribution of ρ̂+⋆ (c) and ρ̂+ (c) is the estimate of ρ+ (c) using the original sample. This
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suggests the bias estimate

ˆBias+⋆
=

1
B

B

∑
j=1

ρ̂
+∗
j (c)− ρ̂

+⋆ (c)).

Hence, a bootstrap bias-corrected estimators of measures of extreme dependence can be defined as

follows:

ρ̂
+⋆
BC (c) = ρ̂

+ (c)− ˆBias+⋆

and

ρ̂
−⋆
BC (c) = ρ̂

− (c)− ˆBias−⋆
.

Tables 7-9 present the simulation results for the bootstrap bias-corrected estimates of measures

of extreme dependence with c = 0. We use the same data-generating processes (DGPs) as described

in Subsection 1. The bias terms and the average values of the bootstrap bias-corrected estimates are

computed based on 1000 simulations, with B = 199 bootstrap replications.

From the three tables, particularly Table 7, where these measures are expected to be exactly zero

under the Gaussian copula, we observe that the bootstrap bias-corrected estimators perform better

than the bias-uncorrected estimators.

Table 7: Simulation results for Bias correction under Gaussian copula, c = 0

ρ̂−(c) ρ̂+(c)

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

Bias-Uncorrected Estimator 0.11 0.10 0.09 0.11 0.10 0.09
Bias-Corrected Estimator 0.006 0.001 0.0004 0.006 0.001 0.0004

Table 8: Simulation results for Bias correction under mixture (50%-50%) Clayton-Gaussian copula,
c = 0

ρ̂−(c) ρ̂+(c)

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

Bias-Uncorrected Estimator 0.12 0.131 0.141 0.052 0.061 0.061
Bias-Corrected Estimator 0.051 0.061 0.012 0.006 0.016 0.025
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Table 9: Simulation results for Bias correction under Clayton copula, c = 0

ρ̂−(c) ρ̂+(c)

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

Bias-Uncorrected Estimator 0.13 0.15 0.16 0.025 0.018 0.017
Bias-Corrected Estimator 0.054 0.061 0.063 0.012 0.012 0.016

6 Empirical application

In this section, we apply the non-parametric test proposed in the previous sections to commonly

used U.S. and international equity portfolios. Our goal is to investigate whether asymmetric comove-

ment is a universal and prevalent phenomenon in stock returns. We compare the results of our test

(DST) to those obtained from the Jiang, Maasoumi, Pan and Wu (2018) test (jmpw) by directly com-

paring the computed p-values for testing the symmetric dependence in the U.S. and other international

financial markets.

Our analysis focuses on the excess returns of value-weighted size and book-to-market decile port-

folios, as well as equal-weighted decile momentum portfolios in the U.S. market. The dataset consists

of monthly U.S. T-bill observations from January 1965 to December 2016, totaling 624 observations.1

Additionally, we examine the asymmetric comovement of portfolio returns in several other coun-

tries: Canada, France, Germany, Japan, Switzerland, and the UK. Specifically, we consider portfolios

sorted by book-to-market (B/M), earnings-to-price (E/P), and cash earnings-to-price (CE/P), and in-

vestigate their return comovement with the market return of their respective countries. Finally, for

each country, we test whether their market returns are asymmetrically dependent on the U.S. stock

market return.

As discussed earlier, the implementation of our non-parametric approach to test for asymmetric

dependence relies on the Bernstein copula density. First, we provide estimates of the measures of

extreme tail dependence, ρ+ and ρ−. Second, we present the p-values of our proposed copula-based

asymmetric dependence test across all three sets of portfolios, which are sorted by size, book-to-

market ratio, and past cumulative returns. These p-values are calculated using 399 stationary bootstrap

resamplings, with the exceedance level set to c = 0. The empirical results are summarized in Tables

10 and 11 of Appendix A.

Table 10 in Appendix A shows that our nonparametric test rejects the symmetry dependence hy-

1The data are available on Kenneth French’s website. Note that the international portfolio data spans from January
1975 to December 2016, except for Canada, which is available from January 1977 to December 2016.
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pothesis for the first eight smallest-size portfolios, indicating that larger firms exhibit more symmetric

comovement with the market. For value-weighted book-to-market portfolios, we reject the null hy-

pothesis of symmetric dependence for the tenth BE/ME portfolio at the 10% significance level. These

findings align with previous literature, which shows that value stocks tend to have more asymmetric

comovement with the market; see Ang and Chen (2002), Jondeau (2016), and Jiang, Maasoumi, Pan

and Wu (2018).

Among momentum-sorted portfolios, our test also rejects the null hypothesis of symmetric de-

pendence. In Table 11 of of Appendix A, we observe asymmetry across all three sets of portfolios

sorted by size, book-to-market ratio, and past cumulative returns in the markets of Canada, France,

Germany, and Switzerland. Concerning dependence on the U.S. market, our proposed test indicates a

higher dependence during market downturns between the U.S. market and these international markets.
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7 Conclusion

We introduced measures of extreme dependence between random variables by defining a Kullback-

Leibler relative entropy in terms of copula densities. To estimate these measures consistently in a

nonparametric way, we employed a Bernstein copula density estimator and derived Bahadur-type

representations for these estimators. We then established the asymptotic distribution of a test for

symmetric dependence, which was constructed using the aforementioned measures. We evaluated

the properties of this test under both global and local alternatives. Additionally, we demonstrated the

validity of a bootstrap-based test for symmetric dependence, suitable for finite-sample contexts.

A Monte Carlo simulation study indicated that the bootstrap-based test demonstrates valid size and

strong power across various data-generating processes and sample sizes, offering a reliable approx-

imation of the asymptotic-based test in finite-sample contexts. Finally, we presented an empirical

application that highlights the practical utility of these extreme dependence measures, specifically

quantifying the degree of extreme dependence between the U.S. financial market and various devel-

oped and emerging financial markets.
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Appendix A: Empirical results

This appendix presents the tables of empirical results discussed in the main text. The tables

include detailed outputs from our nonparamatric tests of symmetric dependence in the U.S. and other

international financial markets, providing insights and supporting evidence for the findings reported

in the paper.
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Table A.10: Measuring dependence in the U.S. stock portfolios

Value-weighted size portfolios

Portfolio ρ̂−(c) ρ̂+(c) ∆ρ DST jmpw

size1 0.30 0.21 0.09 0.00 0.00
size2 0.37 0.29 0.08 0.00 0.00
size3 0.41 0.35 0.06 0.01 0.01
size4 0.42 0.37 0.05 0.02 0.03
size5 0.46 0.43 0.03 0.10 0.11
size6 0.51 0.48 0.03 0.12 0.13
size7 0.56 0.55 0.01 0.37 0.39
size8 0.62 0.60 0.02 0.38 0.36
size9 0.66 0.69 0.03 0.17 0.15
size10 0.65 0.70 0.05 0.09 0.08

Value-weighted book-to-market portfolios

Portfolio ρ̂−(c) ρ̂+(c) ∆ρ DT S jmpw

BE/ME 1 0.45 0.45 0.00 0.93 0.91
BE/ME 2 0.55 0.56 0.01 0.89 0.86
BE/ME 3 0.56 0.52 0.04 0.13 0.14
BE/ME 4 0.50 0.51 0.01 0.98 0.96
BE/ME 5 0.47 0.44 0.03 0.12 0.10
BE/ME 6 0.44 0.42 0.02 0.54 0.55
BE/ME 7 0.38 0.38 0.00 0.98 0.99
BE/ME 8 0.38 0.36 0.02 0.33 0.35
BE/ME 9 0.40 0.37 0.03 0.35 0.32
BE/ME 10 0.32 0.28 0.04 0.05 0.06

Equal-weighted momentum portfolios

Portfolio ρ̂−(c) ρ̂+(c) ∆ρ DST jmpw

L 0.26 0.18 0.08 0.00 0.00
2 0.33 0.26 0.07 0.00 0.00
3 0.36 0.30 0.06 0.00 0.00
4 0.38 0.33 0.05 0.00 0.00
5 0.38 0.33 0.05 0.00 0.02
6 0.40 0.35 0.05 0.00 0.02
7 0.41 0.35 0.06 0.00 0.01
8 0.39 0.32 0.07 0.00 0.00
9 0.39 0.29 0.10 0.00 0.00
W 0.33 0.26 0.07 0.00 0.00

Note: The table reports the estimates and p-values (for the statistical significance) of exceedance
dependence measures for common U.S. portfolios sorted by size, book-to-market, and momentum at
the exceedance level c = 0.
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Table A.11: Testing asymmetric dependence between U.S. and international stock portfolios

International stock portfolios
BE/ME sorted portfolios E/P sorted portfolios CE/P sorted portfolios Comove with US

High Low High Low High Low
Country DST jmpw DST jmpw DST jmpw DST jmpw DST jmpw DST jmpw DST jmpw
Canada 0.25 0.20 0.18 0.19 0.25 0.26 0.02 0.04 0.02 0.03 0.02 0.03 0.00 0.07
France 0.05 0.07 0.61 0.59 0.02 0.01 0.30 0.33 0.05 0.06 0.30 0.34 0.00 0.00
Germ. 0.01 0.01 0.03 0.05 0.27 0.29 0.20 0.18 0.16 0.17 0.39 0.42 0.00 0.00
Japan 0.28 0.31 0.50 0.48 0.61 0.67 0.72 0.76 0.50 0.52 0.78 0.81 0.00 0.00
Switz. 0.52 0.62 0.48 0.45 0.10 0.12 0.05 0.07 0.25 0.30 0.60 0.65 0.00 0.00
UK 0.73 0.70 0.80 0.78 0.55 0.58 0.80 0.82 0.90 0.96 0.65 0.68 0.00 0.00

Note: This table reports the p-values for testing dependence between U.S. market and international
stock portfolios sorted by book-to-market (B/M), earnings to price (E/P), and cash earnings to price
(CE/P) at the exceedance level c = 0. The p-values are computed based on 399 stationary bootstrap
resamplings.
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Appendix B: Proofs of the main theoretical results

This appendix provides the detailed proofs of the main theoretical results presented in the paper.

Proof of Theorem 1: The following proof is for the bivariate case dX +dY = 2. For the more general

multidimensional case, dX + dY ≥ 3, the proof can be obtained in a similar way with slightly more

complex notations. We will also focus on the asymptotic behavior of the estimator ρ̂− (c), as the

asymptotic behavior of estimator ρ̂+ (c) can be studied analogously.

First of all, denote FXY T (x,y) = T−1
∑

T
t=1 I (Xt ≤ x,Yt ≤ y) to be the empirical distribution func-

tion of the sample
{
(Xt ,Yt)

′}T
t=1. Recall that the estimator ρ̂− (c) can be written as:

ρ̂
− (c) =

1
T

T

∑
t=1

log
[
ck,T (Vt)

]
I (Xt ≤−c,Yt ≤−c)

=
∫

log
[
ck,T (FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) dFXY T (x,y)

=
∫

log
[
ck,T (FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) d (FXY T (x,y)−FXY (x,y))

+
∫

log
[
ck,T (FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) dFXY (x,y),

Thus,

ρ̂
− (c)−ρ

− (c) =
∫

log
[
ck,T (FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) d (FXY T (x,y)−FXY (x,y))

+
∫

log
[

ck,T (FXT (x),FY T (y))
c(FX(x),FY (y))

]
I (x ≤−c,y ≤−c) dFXY (x,y)

: = A1T (c)+A2T (c) .

Hereafter, we shall deal with the terms A1T (c) and A2T (c) separately. Before proceeding, recall the

following generalized errors:

ε
−
1t (c) = log [c(FX(Xt),FY (Yt))]I (Xt ≤−c,Yt ≤−c)−ρ

−(c),

and

ε
−
2t (c) =I (Xt ≤−c,Yt ≤−c)−C (FX(−c),FY (−c))

−Cu1 (FX(−c),FY (−c)) [I (Xt ≤−c)−FX(−c)]

−Cu2 (FX(−c),FY (−c)) [I (Yt ≤−c)−FY (−c)] ,
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where C (FX(−c),FY (−c)) = E [I (Xt ≤−c,Yt ≤−c)] and Cul (u1,u2) := ∂C (u1,u2)/∂ul for l =

1,2. It is straightforward to see that under mild regularity conditions both generalized errors ε
−
1t (c)

and ε
−
2t (c) have mean zero and finite variance.

As we will show in the following, it turns out that the asymptotic behavior of
√

T [ρ̂− (c)−ρ− (c)]

is determined by the following two results:

Result (i) :
√

T A1T (c) =
1√
T

T

∑
t=1

ε
−
1t (c)+op(1),

and

Result (ii) :
√

T A2T (c) =
1√
T

T

∑
t=1

ε
−
2t (c)+op(1).

Therefore, results (i) and (ii) together imply immediately that
√

T [ρ̂− (c)−ρ− (c)] admits an asymp-

totic Bahadur representation

1√
T

T

∑
t=1

{
ε
−
1t (c)+ ε

−
2t (c)

}
+op(1),

as provided in Theorem 1. To save space, henceforth,we omit the dependence of those quantities (e.g.

A1T (c) and ε1t (c)) on the exceedance level c.

Proof of Result (i): First notice the following decomposition:

A1T =
∫

log [c(FXT (x),FY T (y))]I (x ≤−c,y ≤−c) d (FXY T (x,y)−FXY (x,y))

+
∫

log
[

ck,T (FXT (x),FY T (y))
c(FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) d (FXY T (x,y)−FXY (x,y))

=A11T +A12T ,

First of all, recall the following theorems: (1) Glivenko-Cantelli theorem for the stationary ergodic

processes {Xt} and {Yt} that states that the empirical distribution functions FXT (x) and FY T (y) of X

and Y converge almost surely to FX(x) and FY (y), respectively, over x∈R and y∈R uniformly and (2)

Donsker weak invariance principle for weakly dependent stationary process (Xt ,Yt)
′ that states that

√
T (FXY T (x,y)−FXY (x,y))⇒ G∞, where G∞ is a Gaussian process with zero mean and covariance

structure given by Ω(x1,y1;x2,y2) [see e.g. Theorem 2.1 in Doukhan and Wintenberger (2008)], such

that the supremum of absolute value, i.e. sup(x,y)
√

T |FXY T (x,y)−FXY (x,y)| converges in distribu-

tion to the law of the same functional of the Gaussian process G∞, i.e. sup(x,y) |G∞ (x,y)|, and thus

sup(x,y)
√

T |FXY T (x,y)−FXY (x,y)|= Op (1). Based on these classical results, it is straightforward to
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show that

√
T A11T =

∫
log [c(FX(x),FY (y))]I (x ≤−c,y ≤−c) d

√
T (FXY T (x,y)−FXY (x,y))

+
∫

log
[

c(FXT (x),FY T (y))
c(FX(x),FY (y))

]
I (x ≤−c,y ≤−c) d

√
T (FXY T (x,y)−FXY (x,y))

=
∫

log [c(FX(x),FY (y))]I (x ≤−c,y ≤−c) d
√

T (FXY T (x,y)−FXY (x,y))+op(1)

=
1√
T

T

∑
t=1

{log [c(FX(Xt),FY (Yt))]I (Xt ≤−c,Yt ≤−c)−E [log [c(FX(Xt),FY (Yt))]I (Xt ≤−c,Yt ≤−c)]}+op(1)

=
1√
T

T

∑
t=1

ε
−
1t +op(1),

where the first step follows from observing that∣∣∣∣∫ log
[

c(FXT (x),FY T (y))
c(FX(x),FY (y))

]
I (x ≤−c,y ≤−c) d

√
T (FXY T (x,y)−FXY (x,y))

∣∣∣∣
≤ C sup

(x,y)

∣∣∣∣c(FXT (x),FY T (y))− c(FX(x),FY (y))
c(FX(x),FY (y))

∣∣∣∣∫ −c

−∞

d sup
(x,y)

√
T |FXY T (x,y)−FXY (x,y)|

= op(1),

using sup(x,y) |c(FXT (x),FY T (y))− c(FX(x),FY (y))| ≤C
(
supx |FXT (x)−FX(x)|+ supy |FXT (y)−FX(y)|

)
=

op(1) and taking into account the fact that the trajectories of the limiting Gaussian process G∞ are

bounded and continuous almost surely. It remains to show that
√

T A12T = op(1), which is can be

proved as follows:∣∣∣∣∫ log
[

ck,T (FXT (x),FY T (y))
c(FXT (x),FY T (y))

]
I (x ≤−c,y ≤−c) d

√
T (FXY T (x,y)−FXY (x,y))

∣∣∣∣
≤C sup

(x,y)

∣∣∣∣ck,T (FXT (x),FY T (y))− c(FXT (x),FY T (y))
c(FXT (x),FY T (y))

∣∣∣∣∫ −c

−∞

d sup
(x,y)

√
T |FXY T (x,y)−FXY (x,y)|

≤C

(
sup
(x,y)

∣∣∣∣ck,T (FXT (x),FY T (y))− ck,T (FX(x),FY (y))
c(FXT (x),FY T (y))

∣∣∣∣+ sup
(x,y)

∣∣∣∣ck,T (FX(x),FY (y))− c(FX(x),FY (y))
c(FXT (x),FY T (y))

∣∣∣∣
+ sup

(x,y)

∣∣∣∣c(FXT (x),FY T (y))− c(FX(x),FY (y))
c(FXT (x),FY T (y))

∣∣∣∣
)∫ −c

−∞

d sup
(x,y)

√
T |FXY T (x,y)−FXY (x,y)|

=op(1),

and by sup(x,y) |c(FXT (x),FY T (y))− c(FX(x),FY (y))|= op(1), sup(x,y)
∣∣ck,T (FXT (x),FY T (y))− ck,T (FX(x),FY (y))

∣∣≤
C (sup |FXT (x)−FX(x)|+ sup |FXT (y)−FX(y)|) = op(1), and the uniform consistency of ck,T (u1,u2)

to c(u1,u2) over (u1,u2) ∈ (0,1)2 [see e.g. Proposition 3 of Bouezmarni, Rombouts and Taamouti
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(2010)], and the boundedness of
∫−c
−∞

d sup(x,y)
√

T |FXY T (x,y)−FXY (x,y)|. Hence the Result (i).

Proof of Result (ii): Note that by a second order Taylor expansion of the function g(u) = logu around

u∗ = 1, we obtain

A2T =
∫ [ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))

c(FX(x),FY (y))

]
I (x ≤−c,y ≤−c) dFXY (x,y)

− 1
2

∫ [ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))
c(FX(x),FY (y))

]2

I (x ≤−c,y ≤−c) dFXY (x,y)

+Rt

:=A21T − 1
2

A22T +Rt .

where Rt are the remaining terms such that
√

T RT = op(1).

In the following we show that: (1)
√

T A21T = T−1/2
∑

T
t=1 ε

−
2t +op(1) and (2)

√
T A22T = op(1).

(1) For the first term A21T , noticing that dFXY (x,y) = c(FX(x),FY (y))dFX(x)dFY (y) due to the copula

representation of the joint cumulative distribution function FXY (x,y), we get

A21T =
∫ (

ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))
)
I (x ≤−c,y ≤−c) dFX(x)dFY (y)

=
∫ (

ck,T (FX(x),FY (y))− c(FX(x),FY (y))
)
I (x ≤−c,y ≤−c) dFX(x)dFY (y)

+
∫ (

ck,T (FXT (x),FY T (y))− ck,T (FX(x),FY (y))
)
I (x ≤−c,y ≤−c) dFX(x)dFY (y)

:=A211T +A212T .

We shall show that: (a)
√

T A211T = T−1/2
∑

T
t=1 ε

−
2t +op(1) and (b)

√
T A212T = op(1).

34



(a) By the definition of Bernstein copula density estimator ck,T (·), we have

∫
ck,T (FX(x),FY (y))I (x ≤−c,y ≤−c) dFX(x)dFY (y)

=
k

∑
v1=0

k

∑
v2=0

CT

(v1

k
,
v2

k

)∫
P′

v1,k(FX(x))I (x ≤−c) dFX(x)
∫

P′
v2,k(FY (y))I (y ≤−c) dFY (y)

=
k

∑
v1=0

k

∑
v2=0

CT

(v1

k
,
v2

k

)∫ FX (−c)

0
dPv1,k(u1)

∫ FY (−c)

0
dPv2,k(u2)

=
k

∑
v1=0

k

∑
v2=0

CT

(v1

k
,
v2

k

)(
Pv1,k(FX(−c))Pv2,k(FY (−c))−Pv1,k(FX(−c))I (v2 = 0)

−Pv2,k(FY (−c))I (v1 = 0)+I (v1 = 0)I (v2 = 0)
)

=
k

∑
v1=0

k

∑
v2=0

CT

(v1

k
,
v2

k

)
Pv1,k(FX(−c))Pv2,k(FY (−c))

=Ck,T (FX(−c),FY (−c)) ,

where the second equality follows from the change of variables FX(x) = u1 and FY (y) = u2 and the

integration by parts, the third equality follows from the fact that Pv1,k(u1)
∣∣FX (−c)
u1=0 = Pv1,k(FX(−c))−

I (v1 = 0) and Pv2,k(u2)
∣∣FY (−c)
u2=0 = Pv2,k(FY (−c))−I (v2 = 0), the fourth equality from the fact that

CT (u1,0) = CT (0,u2) = 0, and the last equality from the definition of Bernstein copula distribution

estimator.

Now, observing that
∫

c(FX(x),FY (y))I (x ≤−c,y ≤−c) dFX(x)dFY (y) =C (FX(−c),FY (−c)),

we get

A211T =Ck,T (FX(−c),FY (−c))−C (FX(−c),FY (−c))

=CT (FX(−c),FY (−c))−C (FX(−c),FY (−c))+op

(
T−1/2

)
=

1
T

T

∑
t=1

{I (FX(Xt)≤ FX(−c),FY (Yt)≤ FY (−c))−C (FX(−c),FY (−c))

−Cu1 (FX(−c),FY (−c)) [I (FX(Xt)≤ FX(−c))−FX(−c)]

−Cu2 (FX(−c),FY (−c)) [I (FY (Yt)≤ FY (−c))−FY (−c)]}+op

(
T−1/2

)
=

1
T

T

∑
t=1

ε
−
2t +op

(
T−1/2

)
,

under the assumptions of bounded third order partial derivatives for C(u1,u2) on (u1,u2)∈ (0,1)2 and

T 1/2k−1 → 0 as T → ∞. This ends the proof of
√

T A211T = T−1/2
∑

T
t=1 ε

−
2t +op(1).

Notice that the last two extra terms appearing in ε
−
2t are due to the fact that the marginal distribu-
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tions FX(x) and FY (y) are unknown when estimating the copula function. Furthermore, if T 1/2k−1 →

δ , for 0 < δ < ∞, then there will be an additional bias term with its form depending on the second

order partial derives of C(u1,u2), i.e. ∂ 2C(u1,u2)/∂u2
l for l = 1,2, appearing in the expression of

generalized error ε
−
2t . To simplify our theoretical analysis, we focus on the case when the bias term is

cancelled by proper choice of k.

(b) Again by the definition of Bernstein copula density estimator ck,T (·), we write

∫
ck,T (FXT (x),FY T (y))I (x ≤−c,y ≤−c) dFX(x)dFY (y)

=
∫ 1

T

T

∑
t=1

Kk(FXT (x),FY T (y);FXT (Xt),FY T (Yt))I (x ≤−c,y ≤−c) dFX(x)dFY (y)

=
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1 (FXT (x)) dFX(x)
∫ −c

−∞

Pv2,k−1 (FY T (y)) dFY (y). (B.2)

Using a first order Taylor expansion of the function Pv1,k−1(FXT (x)) around the true CDF FX(x), i.e.

Pv1,k−1(FXT (x)) = Pv1,k−1(FX(x))+(FXT (x)−FX(x))P′
v1,k−1(FXT (x))+R1

T

as well as the expansion for Pν2,k−1(FY T (y)), i.e.

Pv2,k−1(FY T (y)) = Pv2,k−1(FY (y))+(FY T (y)−FY (y))P′
v2,k−1(FY T (y))+R2

T ,

where R1
T and R2

T are remaining terms regarding the Taylor expansion of Pv1,k−1(FXT (x)) and Pv2,k−1(FY T (y))

respectively, with
√

T R1
T = op(1) and

√
T R2

T = op(1) .

we can re-express (B.2) as the summation of the following five terms:

1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)
∫ −c

−∞

Pv2,k−1(FY (y))dFY (y)

+
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)
∫ −c

−∞

P′
v2,k−1(FY (y))(FY T (y)−FY (y))dFY (y)

+
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv2,k−1(FY (y))dFY (y)
∫ −c

−∞

P′
v1,k−1(FX(x))(FXT (x)−FX(x))dFX(x)

+
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

P′
v1,k−1(FX(x))(FXT (x)−FX(x))dFX(x)

×
∫ −c

∞

P′
v2,k−1(FY (y))(FY T (y)−FY (y))dFY (y)+R1

T +R2
T

=B1T +B2T +B3T +B4T +R1
T +R2

T .

36



It is straightforward to show that

∫
ck,T (FX(x),FY (y))I (x ≤−c,y ≤−c) dFX(x)dFY (y)

=
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)
∫ −c

−∞

Pv2,k−1(FY (y))dFY (y) = B1T ,

by simply plugging into the definition of ck,T (·). Therefore, we can decompose the term A212T as

follows: A212T = B2T +B3T +B4T +R1
T +R2

T . We next show that
√

T B jT = op(1) for j = 2,3,4.

Since the analysis of B3T is similar to B2T , in the following we only show the asymptotic negligi-

bility of B2T . Note that by applying the integration by parts, the integral
∫−c
−∞

P′
v2,k−1(FY (y))(FY T (y)−

FY (y))dFY (y) is equal to

Pv2,k−1(FY (−c))(FY T (−c)−FY (−c))−
∫ −c

−∞

Pv2,k−1(FY (y))d (FY T (y)−FY (y)) .

Plugging it into the expression of B2T , we obtain

B2T =
1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)Pv2,k−1(FY (−c))(FY T (−c)−FY (−c))

− 1
T

T

∑
t=1

k2
k−1

∑
v1=0

k−1

∑
v2=0

I (Vt ∈ Ak(v))
∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)
∫ −c

−∞

Pv2,k−1(FY (y))d(FY T (y)−FY (y))

= B21T −B22T .

As
√

T (FY T (−c)− FY (−c)) converges in distribution, and therefore is bounded as an Op(1).

Now, noticing that E (I (Vt ∈ Ak(v))) = E
(
I (Ṽt ∈ Ak(v))

)
(1+ o(1)) = k−2(1+ o(1)), in which

the pseudo-observations Vt = (FXT (Xt),FY T (Yt)) are replaced by the uniformized observations Ṽt =

(FX(Xt),FY (Yt)) and hence Ṽt, for t = 1, · · · ,T , are independent and uniformly distributed random
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variables. By the law of large numbers, we obtain:

√
T B21T

=k2
k−1

∑
v1=0

k−1

∑
v2=0

(
1
T

T

∑
t=1

I (Vt ∈ Ak(v))

)∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)Pv2,k−1(FY (−c))
√

T (FY T (−c)−FY (−c))

=
∫ −c

−∞

(
k−1

∑
v1=0

Pv1,k−1(FX(x))

)
dFX(x)

(
k−1

∑
v2=0

Pv2,k−1(FY (−c))

)
√

T (FY T (−c)−FY (−c))[1+op(1)]

=
∫ −c

−∞

dFX(x)
√

T (FY T (−c)−FY (−c))[1+op(1)]

=FX(−c)
√

T (FY T (−c)−FY (−c))[1+op(1)],

where the third step term follows from the binomial theorem ∑
k−1
v1=1 Pv1,k−1(FX(x))=∑

k−1
v2=1 Pv2,k−1(FY (y))=

1 for any x and y.

Similarly, we can show that the term
√

T B22T satisfies:

√
T B22T

=k2
k−1

∑
v1=0

k−1

∑
v2=0

(
1
T

T

∑
t=1

I (Vt ∈ Ak(v))

)∫ −c

−∞

Pv1,k−1(FX(x))dFX(x)
∫ −c

−∞

Pv2,k−1(FY (y))d
√

T (FY T (y)−FY (y))

=
∫ −c

−∞

(
k−1

∑
v1=0

Pv1,k−1(FX(x))

)
dFX(x)

∫ −c

−∞

(
k−1

∑
v2=0

Pv2,k−1(FY (y))

)
d
√

T (FY T (y)−FY (y))[1+op(1)]

=
∫ −c

−∞

dFX(x)
∫ −c

−∞

d
√

T (FY T (y)−FY (y))[1+op(1)]

=FX(−c)
√

T (FY T (−c)−FY (−c))[1+op(1)].

Combining the above results, we have shown that
√

T B2T =
√

T (B21T −B22T ) = op(1). By anal-

ogy, we can show
√

T B3T = op(1). The term
√

T B4T = op(1) can also be proved using similar

arguments. Thus, we have shown that
√

T A212T = op(1).

(2) To prove that
√

T A22T = op(1), notice that:

√
T A22T

=
√

T
∫ [ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))

c(FX(x),FY (y))

]2

I (x ≤−c,y ≤−c) dFXY (x,y)

≤
∫ √

T |ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))|
c(FX(x),FY (y))

dFXY (x,y)× sup
(x,y)∈R2

|ck,T (FXT (x),FY T (y))− c(FX(x),FY (y))|
c(FX(x),FY (y))

=Op(1)×op(1) = op(1),
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where the third step term follows by using the arguments we used to prove the term A21T and Propo-

sition 3 of Bouezmarni, Rombouts and Taamouti (2010); see also the proof of the term A1T . Hence

the Result (ii).

Proof of Theorem 2: We have

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
=
√

T [ρ̂−(c)−ρ
−(c)]−

√
T [ρ̂+(c)−ρ

+(c)]+
√

T [ρ−(c)−ρ
+(c)]

From theorem 1, we recall that we have:

√
T [ρ̂− (c)−ρ− (c)] = 1√

T ∑
T
t=1
[
ε
−
1t (c)+ ε

−
2t (c)

]
+op (1) ,

√
T [ρ̂+ (c)−ρ+ (c)] = 1√

T ∑
T
t=1
[
ε
+
1t (c)+ ε

+
2t (c)

]
+op (1)

where
ε
−
1t (c) = log [c(FX(Xt),FY (Yt))]I (Xt ≤−c,Yt ≤−c)−ρ−(c),

ε
−
2t (c) = I (Xt ≤−c,Yt ≤−c)−E [I (Xt ≤−c,Yt ≤−c)]

−Cu1 (FX(−c),FY (−c)) [I (Xt ≤−c)−FX(−c)]

−Cu2 (FX(−c),FY (−c)) [I (Yt ≤−c)−FY (−c)] ,

ε
+
1t (c) = log [c(FX(Xt),FY (Yt))]I (Xt ≥ c,Yt ≥ c)−ρ+(c),

ε
+
2t (c) = I (Xt ≥ c,Yt ≥ c)−E [I (Xt ≥ c,Yt ≥ c)]

+Cu1 (1−FX(c),1−FY (c)) [I (Xt ≤ c)−FX(c)]

+Cu2 (1−FX(c),1−FY (c)) [I (Yt ≤ c)−FY (c)] .

Following Theorem 1 and replacing
√

T [ρ̂−(c)−ρ−(c)]and
√

T [ρ̂+(c)−ρ+(c)] by their corre-

spondent expressions, it follows that

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
=

1√
T

T

∑
t=1

{log [c(FX (Xt) ,FY (Yt))] [I (Xt ≤−c,Yt ≤−c)−I (Xt ≥ c,Yt ≥ c)]

+
[
ε
−
2t (c)− ε

+
2t (c)

]}
+op (1)

:=
1√
T

T

∑
t=1

ut (c)+op (1) .

where,

ut (c)= {log [c(FX (Xt) ,FY (Yt))] [I (Xt ≤−c,Yt ≤−c)−I (Xt ≥ c,Yt ≥ c)] +
[
ε
−
2t (c)− ε

+
2t (c)

]}
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Under the null hypothesis, and using the central limit theorem of the U-statistics ut(c) for dependent

data (see Hall (1984)), we have

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
→d N

(
0,σ2 (c)

)
,

where the asymptotic variance σ2 (c) is given by

σ
2 (c) = E

(
u2

1 (c)
)
+2

∞

∑
j=1

E
[
u1 (c)u1+ j (c)

]
.

Proof of proposition 2: First, following similar arguments as in Theorem 1, we can show that the

test in (4.4) is consistent, i.e.

Pr (|t̂ (c)|> b)→ 1

Secondly, following similar arguments as in Theorem 2, and under the local alternative ρ− (c) =

ρ+ (c)+ γ(c)√
T
, and by applying the central limit theorem, we have:

√
T
[
ρ̂
− (c)− ρ̂

+ (c)
]
→d N

(
γ(c),σ2 (c)

)
.
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