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A Regularization Approach to Optimizing Large
Portfolios Under Asymmetries in Returns and Risk

Attitudes

ABSTRACT

This paper introduces a methodology for selecting large portfolios in the presence of asymmetries in

asset returns and risk attitudes. Within this framework, the optimal portfolio depends on inverting the

covariance matrix of returns. However, traditional estimators of this matrix become nearly singular

when the number of assets is significantly larger than the sample size. This results in a selected

portfolio that deviates substantially from the optimal one. To address this challenge, we propose four

regularization techniques aimed at stabilizing the inverse of the covariance matrix: Ridge, Spectral

Cut-Off, Landweber-Fridman, and Lasso. These regularization techniques involve a tuning parameter

that requires careful selection. To tackle this, we introduce a data-driven approach for choosing the

optimal tuning parameter. Through extensive simulations and an empirical study, we demonstrate that

by accounting for asymmetries and stabilizing the inverse of the covariance matrix, we substantially

enhance the performance of the optimal portfolio compared to several benchmark portfolios.

Keywords: Portfolio selection, Generalized Disappointment Aversion, Asymmetric returns, Large

portfolios, Regularization techniques, Monte Carlo simulations.



1 Introduction

1.1 Motivation and contributions

In the years subsequent to the publication of Markowitz’s seminal work in 1952, his impact on

modern portfolio theory has endured. Practitioners and numerous research papers still embrace his

approach for portfolio selection. However, Markowitz (1952) portfolio theory has faced significant

criticism, primarily due to the assumption of symmetric return distributions, which fails to capture

the inherent asymmetry often observed in real financial markets [see Ang and Chen (2002), Hong

et al. (2007), among others]. This oversight can lead to suboptimal portfolio allocations, especially

in the presence of extreme events. Furthermore, as highlighted by Dahlquist et al. (2017), there is

evidence that investors exhibit disparate attitudes towards risk by assigning greater significance to

losses than gains when assessing the risk of their portfolios. Recently, various methods have emerged

for choosing optimal portfolios under asymmetry in returns and/or risk attitudes; see Dahlquist et al.

(2017), Tédongap and Tinang (2022), and references therein. Similar to Markowitz (1952), the inver-

sion of the covariance matrix is a pivotal step in implementing these methods. However, with a large

number of assets, the covariance matrix can become ill-conditioned. This poses a practical issue as it

impedes the calculation of optimal portfolio weights, diminishing the applicability of these methods

in scenarios with a diverse array of assets. This paper simultaneously addresses the above challenges

by proposing an innovative approach to selecting large portfolios in the presence of asymmetries in

assets returns and risk attitudes.

Dahlquist et al. (2017) provided a novel solution to the problem of portfolio selection under asym-

metries in both assets returns and risk attitudes. They modelled the former asymmetry based on a

normal-exponential model for returns, while the latter was modelled using generalized disappoint-

ment aversion (GDA) risk preferences, as introduced by Gul (1991) and Routledge and Zin (2010).

GDA provides a flexible framework for modelling investor behavior, offering various advantages. In

the context of portfolio choice, GDA risk preferences offer a sophisticated structure through which

investors can tailor their responses to the financial market uncertainty, assigning distinct weights

to downside losses and upside gains. Traditional utility functions [e.g. quadratic utility used in
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mean-variance portfolio] often assume symmetric risk aversion, whereas GDA departs from this by

acknowledging that individuals may exhibit asymmetric attitudes toward risk.

Under the above asymmetries, Dahlquist et al. (2017) derived three-fund separation strategy em-

powering investors to allocate wealth among a risk-free asset, a standard mean-variance efficient fund,

and an additional fund that accommodates return asymmetries. However, as mentioned previously,

Dahlquist et al. (2017)’s optimal portfolio solution involves inverting the covariance matrix of as-

set returns, which is effective only in the presence of a small number of assets. In their empirical

application, Dahlquist et al. (2017) considered only two risky assets.

In the dynamic landscape of current financial markets, the incorporation of large portfolios, en-

compassing a diverse array of assets, becomes imperative for a comprehensive understanding of risk

and return dynamics. However, the wide range of securities introduces challenges, especially in

estimating the covariance matrix required for optimal portfolio selection. As the number of assets

under consideration grows, the commonly used estimator, the sample covariance matrix, becomes

ill-conditioned or nearly singular/non-invertible, amplifying estimation errors and affecting the port-

folio’s performance.

To address the ill-conditioning of the estimator of the covariance matrix of asset returns, this

paper proposes various regularization (stabilization) techniques that help to improve the performance

of Dahlquist et al. (2017)’s optimal portfolio and extend its applicability to situations involving a

substantial number of assets. Inverting a covariance matrix can be viewed as solving an inverse

problem. To overcome this issue, we apply three widely used regularization techniques: (i) the Ridge,

which involves adding a diagonal matrix to the covariance matrix; (ii) the Spectral cut-off (or principal

component) method, which entails discarding eigenvectors associated with the smallest eigenvalues;

and (iii) the Landweber-Fridman iterative method. Additionally, we consider a form of Lasso applied

to the inverse covariance matrix; see Friedman et al. (2008).

These regularization schemes incorporate a tuning parameter that requires careful selection. For

instance, in the principal components approach, the regularization parameter is the number of prin-

cipal components. The choice of this parameter is crucial, and we propose a data-driven selection

method based on generalized cross-validation (GCV); see Li (1986, 1987). It is worth noting that our

criterion differs from that used in traditional factor models, where the number of factors is selected
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using Bai and Ng (2002)’s criterion, as we do not impose any factor structure on the data.

Furthermore, the weights assigned by the investor to the mean-variance efficient fund and the

fund accommodating return asymmetries—depend not only on the preference parameters, such as

the investor’s risk aversion, degree of disappointment aversion, and the percentage of the investor’s

certainty equivalent, but also on endogenous coefficients. These coefficients include the optimal asset

allocation itself. As a result, the optimal allocation and the endogenous coefficients must be solved

simultaneously, as emphasized by Dahlquist et al. (2017). In this paper, we introduce a data-driven

method for selecting these crucial parameters.

To assess the performance of our regularized optimal portfolio under asymmetry in returns and

GDA risk preferences, we adopt the methodology inspired by Zakamouline and Koekebakker (2009)

to derive a closed-form solution for the Generalized Sharpe Ratio (GSR). This ratio, which considers

higher moments of the distribution of returns, serves as a more robust performance measure compared

to the commonly used Sharpe ratio. The conventional Sharpe ratio, grounded in mean-variance theory,

is valid only for normally distributed returns or quadratic preferences. In situations with non-normal

return distributions, relying on the conventional Sharpe ratio can lead to potentially misleading con-

clusions; see Hodges (1998), Zakamouline and Koekebakker (2009), Bernardo and Ledoit (2000a),

among others.

We conducted a series of Monte Carlo simulations to evaluate the performance of our regularized

optimal portfolios in comparison to other benchmark portfolios. Specifically, we compared with

Dahlquist et al.’s (2017) optimal portfolio without regularization, standard and regularized mean-

variance portfolios that neglect asymmetries in returns and risk attitudes, and the equally weighted

portfolio (referred to as the naive portfolio). By assessing portfolios’ generalized Sharpe ratio and

expected loss in utility, the simulation results demonstrate that the regularized optimal portfolios

proposed in this paper significantly outperform the benchmark portfolios, particularly Dahlquist et

al.’s (2017) optimal portfolio when the number of assets is large. Furthermore, we observe that

considering asymmetries leads to a noteworthy improvement in the optimal portfolio’s expected loss

in utility.

An empirical application is also considered to illustrate the practical usefulness of considering

both regularization and asymmetries in portfolio choices. To do so, we apply our methods to sev-

3



eral sets of portfolios from Kenneth French’s website: the monthly 30-industry portfolios (FF30), the

monthly 48-industry portfolios (FF48), and the monthly 100 portfolios formed on size and book-to-

market (FF100). The empirical results show that by taking asymmetries into account and stabilizing

the inverse of the covariance matrix, we considerably improve the performance of the optimal portfo-

lio in terms of maximizing the generalized Sharpe ratio and minimizing the expected loss in utility.

1.2 Related literature

The literature on portfolio selection under asymmetric returns has attracted considerable attention

for several years now. Researchers have explored various approaches to tackle the challenges posed

by the observed asymmetry in financial market returns. Jondeau and Rockinger (2006) and Martellini

and Ziemann (2010) investigate optimal portfolio allocation by considering higher moments of asset

returns beyond the mean and variance. They incorporate skewness and kurtosis into the portfolio

optimization process, recognizing the limitations of traditional mean-variance analysis. Guidolin and

Timmermann (2008) explore the impact of regime-switching dynamics, skewness, and kurtosis pref-

erences on international asset allocation. They consider investors with preferences beyond mean and

variance, incorporating regime-switching models to account for changing market conditions. Mencía

and Sentana (2009) focus on multivariate location–scale mixtures of normals and their application to

mean–variance–skewness portfolio allocation. The authors explore portfolio optimization consider-

ing not only the mean and variance but also skewness, using a mixture model framework to capture

the distributional characteristics of asset returns.

The portfolio selection approach considered in this paper is closely related to Dahlquist et al.

(2017), who studied the impact of asymmetries in asset returns and risk attitudes on portfolio choice.

They modelled asymmetric preferences using generalized disappointment aversion and asymmetric

return distributions using a normal-exponential model. They provided insights into the role of skew-

ness in shaping investors’ decisions and risk preferences. However, Dahlquist et al.’s (2017) optimal

portfolio solution works only for a small number of assets as it involves inverting an estimator of

the covariance matrix of asset returns that can become nearly singular when the number of assets is

sufficiently large. To extend Dahlquist et al. (2017) to portfolios with a large number of assets, we

address the ill-conditioning of the estimator of the covariance matrix. We propose various regulariza-
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tion (stabilization) techniques, including Ridge, the Spectral cut-off (principal components) method,

the Landweber-Fridman iterative method, and the Lasso applied to the inverse covariance matrix. We

also introduce data-driven approaches for selecting tuning parameters in the regularization schemes

and the weights assigned by the investor to the standard mean-variance efficient fund and the fund

accommodating return asymmetries.

In the presence of a large number of assets, Ledoit and Wolf (2003) and Ledoit and Wolf (2004)

aimed to enhance portfolio performance by introducing the linear shrinkage estimator for the covari-

ance matrix. More recently, Ledoit and Wolf (2017) proposed a nonlinear shrinkage estimator and its

factor-model-adjusted version. Along similar lines, Abadir et al. (2014) proposed a new way to esti-

mate the covariance matrix of asset returns based on a consistent estimation of eigenvalues. Carrasco

and Noumon (2011) and Carrasco and Doukali (2017) explored various regularization techniques to

stabilize the inverse of the sample covariance matrix. However, it’s noteworthy that these papers

exclusively focus on mean-variance portfolios, overlooking higher moments in return distributions

and thereby neglecting return asymmetries. In contrast, our work complements existing literature on

large portfolios by specifically addressing asymmetries in asset returns within the context of investor

portfolio choice.

Another approach to enhancing portfolio performance, as proposed in the context of the global

minimum volatility (GMV) portfolio, involves imposing constraints on portfolio weights; see Jagan-

nathan and Ma (2003), DeMiguel, Garlappi, Nogales and Uppal (2009), Brodie et al. (2009), Fastrich

et al. (2015), and Fan et al. (2012). Furthermore, Ao et al. (2019) introduced a new approach for

estimating the mean-variance portfolio, utilizing an unconstrained regression representation of the

optimization problem combined with high-dimensional sparse regression methods. However, these

works often assume that asset return distributions are either i.i.d or approximated by the multivari-

ate normal distribution. Our contribution involves addressing high-dimensional estimation issues in

portfolio selection under non-normal and asymmetric asset return distributions.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework. Section

3 describes the four regularization techniques of the inverse of the covariance matrix. Section 4

derives the optimal portfolio and the optimal selection of the tuning parameter. Section 5 presents the

generalized sharpe Ratio. Section 6 analyzes the performance of our methods through a Monte Carlo
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experiment. Section 7 illustrates the practical usefulness of our approach. Section 8 concludes.

2 Framework

This section is devoted to outlining the theoretical framework for the selection of portfolios in

the context of asymmetries in asset returns and risk attitudes. To achieve this objective, we start

by introducing the following notations. We assume the presence of N risky assets in the economy,

characterized by a random returns vector denoted as rt+1, along with a risk-free asset exhibiting a

known rate r f . The rate r f is calibrated to correspond to the mean of the one-month Treasury-Bill

(T-B) rate observed in the data.

Let Rt+1 = rt+1 − r f denotes the vector of excess returns on the set of risky assets, and let 1N

represent the N-dimensional vector of ones. We define ω = (ω1, . . . ,ωN)
′ as the vector of portfolio

weights, indicating the proportion of capital to be invested in the risky assets, while the remaining

1−ω ′1N is allocated to the risk-free asset. Note that the short-selling is permissible in the financial

market, implying that some of the weights can take on negative values. Using the above notations, we

define the portfolio log return, say rω,t+1, as follows:

rω,t+1 = ω
′
rt+1 + r f

(
1−ω

′
1N

)
. (2.1)

. Dahlquist et al. (2017) have recently explored the portfolio choices of an investor with generalized

disappointment-aversion preferences, dealing with log returns characterized by a normal-exponential

model. This innovative approach to portfolio selection accommodates asymmetries in both returns

and risk attitudes, enabling the assignment of distinct weights to downside losses and upside gains.

Formally, following Routledge and Zin (2010), Dahlquist et al. (2017) consider a portfolio optimiza-

tion problem, which involves selecting the weights allocated to the N risky assets to maximize the

utility of the certainty equivalent of terminal wealth W . This utility function is marked by the in-

vestor’s level of risk aversion, their degree of disappointment aversion, and the percentage of the

certainty equivalent below which outcomes are deemed disappointing.

To derive their optimal portfolio, Dahlquist et al. (2017) also assume that log returns on N risky

6



assets are described by the model

rt = µ −σ ◦δ +(σ ◦δ )ε0,t +
(

σ ◦
√

1N −δ ◦δ

)
◦ εt , (2.2)

where µ , σ , and δ are N-dimensional vectors of parameters that describe the mean, standard devi-

ation, and asymmetry of the process of returns of the N risky assets, respectively. 1N is a vector of

ones, and ◦ denotes the element-wise product of vectors. The N-dimensional vector εt represents

asset-specific shocks and follows a multivariate normal distribution with standard normal marginal

densities and correlation matrix Ψ. The scalar ε0,t represents a common shock affecting all assets,

following an exponential distribution with a rate parameter equal to one. The asymmetry in asset

returns is ascribed to this shared source of risk. The exponential distribution is well-suited to model

the concurrent happening of extreme events, such as substantial and infrequent losses. To illustrate

how the vector δ characterizes the non-normality of returns, Dahlquist et al. (2017) derive the mean,

variance, skewness, and excess kurtosis of each asset return ri,t ,

E(ri,t) = µi, Var(ri,t) = σ
2
i , Skew(ri,t) = 2δ

3
i , Xkurt(ri,t) = 6δ

4
i (2.3)

and the correlation and coskewness of the returns of asset i and asset j

Corr(ri,t ,r j,t) = Ψi j

√
1−δ 2

i

√
1−δ 2

i +δiδ j (2.4)

Coskew(ri,t ,r j,t) =
E[(ri,t −E(ri,t))

2(r j,t −E(r j,t))]

Var(ri,t)
√

V ar(r j,t)
= 2δ

2
i δ j, (2.5)

which reveals that δ plays a crucial role in characterizing the non-normality of returns, contributing

to nonzero skewness, coskewness, and excess kurtosis. The aforementioned moments and cross-

moments will serve as the basis for estimating the parameters of the returns process using the Gener-

alized Method of Moments (GMM).

Using the second-order Taylor approximation a la Campbell and Viceira (2002) of the portfolio

log return, Dahlquist et al. (2017) have shown that the optimal portfolio weights that maximize the
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utility of the certainty equivalent of investor’s terminal wealth are given by:

ω =
1
γ̃

(
ω

MV + χ̃ω
AV
)
, (2.6)

with

ω
MV = Σ

−1
(

µ − r f 1N +
1
2

σ
2
)
, ω

AV = Σ
−1(σ ◦δ ), (2.7)

where σ2 is the diagonal element of the variance-covariance matrix Σ. Note that the coefficients γ̃ and

χ̃ depend not only on the preference parameters, but also on the optimal asset allocation, ω . That is,

the coefficients γ̃ and χ̃ are endogenous to the model. For more details about the analytical expression

of these parameters, the reader is refereed to Dahlquist et al. (2017).

In addition to the risk-free asset, the optimal solution given in (2.6) has two components. The

first one, ωMV , is called the ”mean-variance” fund because it is the solution to the mean-variance

optimal portfolio problem, and the second part, ωAV , is the ”asymmetry-variance” fund because its

composition depends on the asymmetry vector δ , and the variance-covariance matrix of the risky

asset returns.

One notable limitation of Dahlquist et al. (2017) approach lies in its implicit assumption that the

number of assets N is small compared with the sample size T . While their analysis provides valu-

able insights into portfolio optimization with generalized disappointment-aversion preferences, the

model’s practical applicability may be limited when dealing with a larger set of assets. This implicit

assumption can impact the robustness of the findings in scenarios where the portfolio comprises a

more extensive array of risky assets. In contrast to their paper, and recognizing the inherent incli-

nation of practitioners to explore patterns among as many assets as possible, we contribute to this

literature by considering cases where the number of assets N is not restricted and may be smaller or

larger than the sample size T .

The issue lies in the fact that the optimal portfolio, as proposed by Dahlquist et al. (2017), depends

on the inverse of the covariance matrix of asset return distribution, a matrix that remains unknown and

requires estimation. Conventionally, this estimation involves substituting the unknown quantities with

their empirical counterparts. Specifically, this entails replacing the expected return µ with the sample

average µ̂ = 1
T ∑

T
t=1 rt and the covariance matrix Σ with the sample covariance Σ̂ = (R− 1T µ̂)′(R−
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1T µ̂)/T = R̄′R̄, where R represents the T ×N matrix with the tth row given by r′t . However, relying on

the sample covariance for forming the optimal portfolio may be problematic due to its potential near

singularity. Consequently, inverting such a matrix might amplify estimation errors and significantly

deteriorate the performance of the selected portfolio. To address this, in the subsequent sections, we

introduce four regularization techniques aimed at stabilizing the inverse of the covariance matrix.

3 Regularization techniques

The stability of the optimal portfolio weights in (2.6) relies on the properties of the matrix Σ̂ =

R̄′R̄. Two challenges may arise. The first one is associated with potential high correlation among

assets; i.e., the population covariance matrix Σ is nearly singular. The second one is due to the

situation where the number of assets under consideration is too large relative to the sample size, i.e.,

the sample covariance is (nearly) singular even though the population covariance is not. In such

instances, Σ̂ typically exhibits some singular values close to zero, rendering the problem ill-posed

and complicating the optimization of the portfolio. These challenges are precisely captured by the

condition number, representing the ratio of the maximal to minimal eigenvalue of Σ̂. A large condition

number results in an unstable inverse (R̄′R̄)−1. Formally, if we let ν be an arbitrary N ×1 vector, the

solution z to the equation

ν =

(
R̄′R̄
T

)
z (3.1)

is unstable in the sense that it is not continuous in ν . If ν is replaced by a noisy observation ν +∆ν ,

the solution may be very far from the true value z. Hence, it is crucial to stabilize the inverse to ensure

the stability of optimal portfolio weights.

The inverse problem literature, typically addressing infinite-dimensional problems, has put forth

several regularization techniques to stabilize the solution to (3.1). For a comprehensive understanding

of inverse problems, readers are referred to the papers Kress et al. (1989) and Kanwal (2013). In

this section, we focus on four widely employed regularization techniques: Ridge, spectral cut-off,

Landweber Fridman, and Lasso.

Before we delve into each regularization technique considered in this paper, let us first intro-
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duce some notations. At first, observe that the T × N matrix R can be perceived as an operator

from RN (equipped with the inner product < ν ,z >= ν ′z) into RT (equipped with the inner prod-

uct < φ ,ρ >= φ ′ρ/T ). Denote the adjoint of R̄ as R̄′/T . Let (λ̂ j, φ̂ j, ν̂ j), for j = 1,2, ...,N, be the

singular system of R, i.e., Rφ̂ j = λ̂ jν̂ j and R̄ν̂ j/T = λ̂ jφ̄ j. Additionally, (λ̂ 2
j , φ̂ j) represent the eigen-

values and orthonormal eigenvectors of R̄′R̄/T , while (λ̂ 2
j , ν̂ j) represent the nonzero eigenvalues and

orthonormal eigenvectors of R̄R̄′/T . We will now elaborate on the four regularization schemes under

consideration in this paper:

Ridge (R) regularization

In the context of the inverse of the variance-covariance matrix, Ridge regularization is a technique

that is used to enhance stability and address multicollinearity (very high correlation between assets’

returns) when estimating the inverse of the variance-covariance matrix by introducing a regulariza-

tion term to the optimization objective function. This term, proportional to the square of the matrix’s

elements, helps to prevent extreme values and ensures a well-conditioned and more reliable estimate.

Formally, Ridge regularization consists in adding a diagonal matrix to (R̄′R̄/T )τ or equivalently,

(R̄′R̄/T )τz =
N

∑
j=1

λ̂ j

λ̂ 2
j + τ

(z′φ̂ j)φ̂ j.

Thus, by applying Ridge regularization to the inverse of the variance-covariance matrix, we aim to

strike a balance between fitting the data accurately and maintaining numerical stability in scenar-

ios where multicollinearity or large number of assets might pose challenges to traditional estimation

methods. This regularization has a Bayesian interpretation. For more details, the reader is referred to

De Mol et al. (2008).

Landweber-Fridman (LF) regularization

Landweber-Fridman (LF) regularization also addresses numerical stability and multicollinearity con-

cerns in the estimation of the inverse of the variance-covariance matrix by introducing a regularization

term to the optimization process. However, unlike Ridge regularization, LF regularization technique

incorporates an iterative algorithm, often resembling the Landweber iteration method. This iterative

process helps stabilize the estimation of the inverse matrix, particularly in situations with highly cor-

related assets. Formally, let c be a constant such that 0 < c < 1/||R̄||2 and ||R̄|| denotes the largest
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eigenvalue of R̄. The LF regularized inverse can be computed as:

(R̄′R̄/T )τz =
N

∑
j=1

1

λ̂ j
(1−

(
1− cλ̂

2
j

)1/τ

)(z′φ̂ j)φ̂ j.

Here, the regularization parameter τ is such that 1/τ −1 represents the number of iterations.

Spectral cut-off (SC) regularization

Spectral Cut-off regularization provides a mechanism to suppress the influence of smaller eigenvalues

on the estimation of the variance-covariance matrix by truncating or setting a threshold. This effec-

tively dampens the impact of multicollinearity and high-dimensionality, enhancing the stability of the

inverse variance-covariance matrix estimator.

By mitigating the impact of small eigenvalues, SC regularization aims to produce a more robust

estimate, particularly in situations where the variance-covariance matrix may be ill-conditioned. For-

mally, SC regularization consists in selecting the eigenvectors associated with the eigenvalues greater

than some threshold:

(R̄′R̄/T )τz = ∑
λ̂ 2

j >τ

1

λ̂ j
(z′φ̂ j)φ̂ j,

for τ > 0. Since the φ̂ j are related to the principal components of (R̄′R̄/T ), this technique is also

called principal components (PC) regularization.

Notice that the above three regularization techniques (R, LF, and SC) can be rewritten using a

common notation as:

(R̄′R̄/T )τz =
N

∑
j=1

q
(

τ, λ̂ 2
j

)
λ̂ j

(z′φ̂ j)φ̂ j,

where q
(

τ, λ̂ 2
j

)
is a weight that takes different forms depending on the regularization scheme:

• q
(

τ, λ̂ 2
j

)
= λ̂ 2

j /
(

τ + λ̂ 2
j

)
for R regularization,

• q
(

τ, λ̂ 2
j

)
= 1−

(
1− cλ̂ 2

j

)1/τ

for LF regularization.

• q
(

τ, λ̂ 2
j

)
= I
(

λ̂ 2
j ≥ τ

)
for SC regularization.

All these regularization techniques involve a tuning parameter denoted as τ . The case where τ = 0

corresponds to absence of regularization, resulting in q(τ, λ̂ 2
j ) = 1. In Section 4.1, we present a data-
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driven approach for selecting the tuning parameter τ within the context of the portfolio optimization

problem discussed in this paper.

Least Absolute Shrinkage and Selection Operator (LASSO) regularization

For linear regression models, Least Absolute Shrinkage and Selection Operator (LASSO) regulariza-

tion introduces a penalty term to the ordinary least squares objective function, reinforcing sparsity in

the estimated coefficients. When applied to the inverse of the variance-covariance matrix, LASSO

regularization facilitates variable selection by driving certain elements of the matrix to zero, effec-

tively shrinking less relevant parameters. This regularization method can be particularly valuable

in situations where the number of assets is large relative to the sample size, helping to improve the

stability and interpretability of the estimated covariance matrix.

Formally, let Ω=E (rtr′t) =E (R′R)/T , and denote β =Ω−1µ =E (R′R)−1 E (R′1T ). For a mean-

variance portfolio, we have

Σ
−1

µ = (Ω−µµ
′)−1

µ = (Ω−1 +
Ω−1µµ ′Ω−1

1−µ ′Ω−1µ
)µ =

Ω−1µ

1−µ ′Ω−1µ
=

β

1−µ ′β
.

Notice that the Lasso regularization technique introduced by Tibshirani (1996) is the l1-penalized

version of β̂ = argmin||1T −Rβ ||22. Hence, the Lasso regularized solution is obtained by solving:

β̂ = argmin||1T −Rβ ||22 + τ||β ||1.

However, when dealing with a portfolio that incorporates asymmetries in preferences and returns, ob-

taining the closed form of the optimal solution becomes more complicated compared to the standard

mean-variance problem.

In the presence of asymmetries, using equations (2.6), and (2.7), we obtain:

ω =
1
γ̃

(
Σ
−1

µ1 + χ̃Σ
−1

µ2
)

(3.2)

ω =
1
γ̃

(
β1

1−µ ′
1β1

+ χ̃
β2

1−µ ′
2β2

)
,
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where

µ1 =

(
µ − r f ı+

1
2

σ
2
)
,β1 = Ω

−1
µ1, µ2 = (σ ◦δ ),β2 = Ω

−1
µ2. (3.3)

We can now substitute the unknown quantities µ1 and µ2 with their sample counterparts and derive

the following sample-based optimal allocation:

ω̂ =
1
γ̃

(
β̂1

1− µ̂ ′
1β̂1

+ χ̃
β̂2

1− µ̂ ′
2β̂2

)
.

We note that adopting the Lasso approach requires the regularization of two distinct regression co-

efficients, namely β1 and β2. Instead, in this paper, we focus on directly regularizing the covariance

matrix of asset returns. We recognize the utility of Lasso regularization in introducing sparsity when

inverting the covariance matrix. However, similar to the other regularization procedures, our regu-

larized inverse of the sample covariance matrix obtained through the Lasso method, denoted as Σ̂τ ,

depends on an unknown tuning parameter. We will optimally select this parameter using a data-driven

selection method based on generalized cross-validation (GCV) as shown in the next section.

4 Data-driven method for selecting the tuning parameter

This section aims to present a data-driven method for selecting the tuning parameter τ required

for implementing the regularization techniques proposed in Section 3.

As shown earlier, the optimal portfolio weights under asymmetries are given by:

ω = αmvω
MV +αavω

AV ,

where αmv = 1/γ̃ and αav = χ̃/γ̃ . As previously mentioned, the weights ωMV and ωAV are estimated

as follows

ω̂
MV
τ = Σ̂

τ

(
µ̂ − r f ı+

1
2

σ̂
2
)
, ω̂

AV
τ = (̂Σ

τ
)−1(σ̂ ◦ δ̂ ). (4.1)

Consequently, the optimal portfolio weights ω can be estimated by replacing the unknown parameters
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by their estimates from the sample:

ω̂τ = αmvω̂
MV
τ +αavω̂

AV
τ . (4.2)

The estimator of the optimal weights in (4.2), however, cannot be implemented in practice as it

depends on the unknown parameters αmv, αav, and τ . On the one hand, as previously discussed, the

coefficients αmv and αav depend not only on the preference parameters but also on the optimal asset

allocation, ω , making them endogenous to the model. Nonetheless, Dahlquist et al. (2017) provide

analytical expressions for these coefficients, which we utilize in this paper for their estimation. On

the other hand, our regularized portfolio relies on the tuning parameter τ , which we select using a

data-driven method, as illustrated below.

Now to select the tuning parameter τ , we first construct a loss function that minimizes the quadratic

distance between the regularized inverse of the estimated covariance matrix and the inverse of the true

covariance matrix (e.g. Kan and Zhou (2007), and Frost and Savarino (1986)). Thanks to this loss

function, the regularized inverse of the covariance matrix is always invertible, even when N ≥ T ,

meaning that this loss function exists for N ≥ T . Formally, we consider the following loss function:

µ
′
[(

Σ̂
τ −Σ

−1)′
Σ
(
Σ̂

τ −Σ
−1)]

µ, (4.3)

where µ is the expected excess return and Σ̂τ is the regularized inverse of the sample covariance matrix

Σ̂. The choice of this specific quadratic distance is beneficial for deriving a criterion that can be easily

approximated through a generalized cross-validation approach. Using the above loss function, the

tuning parameter is selected as follows:

τ̂ = arg min
τ∈HT

E
{

µ
′
[(

Σ̂
τ −Σ

−1)′
Σ
(
Σ̂

τ −Σ
−1)]

µ

}
. (4.4)

In the following, we present an approximation to the objective function of the above optimiza-

tion problem, which helps in selecting the tuning parameter based on a generalized cross-validation

criterion. For this purpose, we require the following assumption:

Assumption A:
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(i) For some ν > 0, we assume that

∑
N
j=1

<β ,φ j>
2

η2ν
j

< ∞,

where φ j and η2
j denote the eigenvectors and eigenvalues of Ω

N , respectively, with Ω = E (rtr′t) =

E (R′R)/T , and β = Ω−1µ = E (R′R)−1 E (R′1T ).

(ii) Σ

N and Ω

N are trace class operators.

Notice that the regularity condition A(i) is utilized in several papers, including Carrasco and

Doukali (2017). Regarding A(ii), it’s worth noting that the trace-class operator K is defined as a

compact operator with a finite trace, denoted as Tr(K) = O(1). This assumption A(ii) is considered

more realistic than assuming that Σ is a Hilbert-Schmidt operator.

From Equation (4.4), under assumption A and building on the findings from Proposition 1 in

Carrasco and Noumon (2011), using a generalized cross-validation criterion (see Wahba (1975), Li

(1986, 1987), and Andrews (1991) among others), the optimal value of τ is determined by the follow-

ing optimization problem:

τ̂ = arg min
τ∈HT

GCV (τ)+

(
1′T (MT (τ)− IT )X β̂τ̃

)2

T 2
(

1− µ̂ ′β̂τ̃

)
 ,

where HT = {1,2, ...,T} for spectral cut-off and Landweber Fridman and HT = (0,1) for Ridge.

GCV (τ) is the generalized cross validation criterion:

GCV (τ) =
1
T

∥(IT −MT (τ))1T∥2

(1− tr (MT (τ))/T )2 ,

and the operator MT (τ) is defined by the following identity:

µ̂
′ (βτ −β ) =

1′T
T

(MT (τ)− IT )Xβ .

Notice that β̂τ̃ is an estimator of β which we obtain using some initial consistent estimator τ̃ of τ

(e.g. τ̃ can be obtained by minimizing GCV (τ)). In the following, we show how one can estimate β

using Lasso method; see Tibshirani (1996).
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Let β̃ (τ) be the Lasso estimator of β for a given value of τ . By replacing the Lasso’s penalty term

∑

∣∣β j
∣∣ by the term ∑β 2

j /
∣∣β j
∣∣, we can show that β̃ (τ) can be approximated by:

β
∗ =

(
R′R+ τ (c)W− (τ)

)−1 R′1T ,

where c is the upper bound ∑

∣∣β j
∣∣ in the constrained problem equivalent to the penalized Lasso,

W (τ)− is the generalized inverse of the diagonal matrix W (τ) with diagonal elements
∣∣∣β̃ j (τ)

∣∣∣, and

τ (c) is chosen so that ∑ j

∣∣∣β ∗
j

∣∣∣ = c. The term τ (c) represents the Lagrangian multiplier for the con-

straint ∑ j

∣∣∣β ∗
j

∣∣∣≤ c. This constraint is always binding for τ (c) ̸= 0 (ill-posed cases). Now, for

p(τ) = tr
{

R
(
R′R+ τ (c)W− (τ)

)−1 R′
}
,

The generalized cross-validation criterion using Lasso method is given by:

GCV (τ) =
1
T

∥∥∥1T −Rβ̃ (τ)
∥∥∥2

(1− p(τ)/T )2 .

Using Monte Carlo simulations, Tibshirani (1996) shows that the above criterion leads to satisfac-

tory results in terms of estimating β .

5 Generalized Sharpe Ratio

The Sharpe ratio is a widely recognized metric for evaluating the performance of an invest-

ment strategy. Nevertheless, it is only valid in cases where returns are normally distributed or when

quadratic preferences are involved. When returns are not normally distributed, as is the case in this

paper, the Sharpe ratio can yield misleading conclusions; see Hodges (1998), Bernardo and Ledoit

(2000b), and Kadan and Liu (2014)). To address this limitation, Zakamouline and Koekebakker

(2009) introduced a portfolio performance measure—the generalized Sharpe ratio (GSR)—which ac-

counts for higher moments of the distribution and captures asymmetry in returns.

Expanding on the work of Zakamouline and Koekebakker (2009), hereafter we derive a closed-

form solution for the GSR that integrates the first four moments of the normal-exponential distribution
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of returns. As outlined by Zakamouline and Koekebakker (2009) (page 1247, Equation 26), the GSR

can be calculated using the following formula:

1
2

GSR2 =−log(−E[U(ω)]), (5.1)

where ω is the investor’s optimal portfolio weights that should take into account asymmetries in

returns and risk attitudes.

We now need to derive the expression of E[U(ω)] in terms of the returns distribution, preference

parameters, and other relevant factors. This expression can be obtained by addressing the following

mean-variance-asymmetry investment problem:

maxωE(U(ω)) = maxω µω − r f −
γ̃ −1

2
σ

2
ω + χ̃σωδω . (5.2)

After solving the above problem for the optimal allocation as in Equation (2.7), we can substitute this

solution into Equation (5.2) to obtain the desired expression of the GSR under asymmetries in returns

and risk attitudes, which we provide in the following proposition.

Proposition 1. The generalized Sharpe ratio of a portfolio of N risky assets generated by a normal-

exponential model is given by:

GSR(ω) =

√
−2log(−µω + r f +

γ̃ −1
2

σ2
ω − χ̃σω δ̂ω), (5.3)

where ω is the portfolio weights, µω , σ2
ω , and δω are the mean, standard deviation, and asymmetry

coefficient of the portfolio returns, respectively, γ̃ and χ̃ are the preference parameters, and r f is the

risk free asset.

It is worth noting that the GSR is computed subsequent to resolving the optimal portfolio choice

problem after incorporating asymmetries and addressing the ill-posed inverse of the covariance matrix

of returns.
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6 Monte Carlo simulations

We conduct extensive Monte Carlo simulations to evaluate the performance of our methodol-

ogy for selecting large portfolios, taking into account asymmetries in asset returns and risk attitudes,

and the challenges posed by the ill-conditioned inverse of the covariance matrix of returns. In par-

ticular, we assess and compare the generalized Sharpe ratio and the expected loss in utility of our

portfolios with those of several benchmark portfolios. Specifically, we compare our regulated port-

folios (hereafter R, LF, SC, and Lasso based portfolios) with the following portfolios: the equally

weighted portfolio (hereafter naive portfolio), the regularized mean-variance (hereafter MvP) portfo-

lios, the ridge-regularized portfolio (hereafter R), the Spectral cut-off (principal component) portfolio

(hereafter SC), the Landweber-Fridman portfolio (hereafter LF), and the Lasso portfolio (Lasso). Ad-

ditionally, we report results for the portfolio proposed by Dahlquist et al. (2017) (hereafter DFT).

We use Equation (2.2) to simulate returns under asymmetry. In our simulation study, we generate

three different sizes for the vector of risky assets, representing small, moderate, and large portfolios:

N = {30,50,100}. We use various values of N to investigate how the size of the portfolio affects its

performance. The case N = 100 presents the most challenging ill-posed problem, while the others

can be viewed as less severe cases.

The unknown parameters µ , δ , and Σ (or σ2) are calibrated using the monthly 30-industry port-

folios (FF30), the monthly 48-industry portfolios (FF48), and the monthly 100 portfolios formed on

size and book-to-market (FF100) from Fama and French data library. The return on the risk-free as-

set R f is calibrated to match the mean of the one-month Treasury-Bill (T-Bill) observed in the data

from July 1980 to June 2019. We assume the covariance matrix of the residual vector to be diagonal,

denoted as Σε=diag
(
σ2

1 , ...,σ
2
N
)
, where the diagonal elements are drawn from a uniform distribution

between 0.10 and 0.30, resulting in an average cross-sectional volatility of 20%.

We assess the performance of each investment portfolio across various levels of the investor’s

degree of disappointment aversion, l = 1,2,5. The investor’s risk aversion γ is set to 2, with the

threshold for outcomes considered disappointing κ at 0.95. Additional results, not included in this

paper but available upon request, were obtained by exploring alternative values for the coefficients of

γ , l, and κ . All results are based on C = 1000 replications and sample size T = 120.
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As we mentioned previously, one of the performance measures we use to evaluate and compare

portfolios is the generalized Sharpe ratio given in Proposition 1. Formally, at each simulation j, for

j = 1, . . . ,C, this generalized Sharpe ratio is estimated as follows:

GSR(ω̂τ̂) =

√
−2log

(
−µω̂τ̂ j , j

+ r f +
γ̃ −1

2
σ2

ω̂τ̂ j , j
− χ̃σω̂τ̂ j , j

δω̂τ̂ j , j

)
(6.1)

where

µω̂τ̂ j , j
= r f + ω̂

′
τ̂ j, j

(
µ − r f ı+

1
2

σ
2
)
− 1

2
ω̂

′
τ̂ j, jΣω̂τ̂ j, j,

σ
2
ω̂τ̂ j , j

= ω̂
′
τ̂ j, jΣω̂τ̂ j, j,

δω̂τ̂ j , j
=

ω̂ ′
τ̂ j, j

(σ ◦δ )

σω̂τ̂ j , j

.

For the C replications, the performance measure GSR(ω̂τ̂) is estimated as follows:

ˆGSR(ω̂τ̂) =
1
C

C

∑
j=1

√
−2log

(
−µω̂τ̂ j , j

+ r f +
γ̃ −1

2
σ2

ω̂τ̂ j , j
− χ̃σω̂τ̂ j , j

δω̂τ̂ j , j

)
.

Tables 1, 2, and 3 present the simulation results for the Generalized Sharpe Ratio (GSR) of both

our regularized portfolios and benchmark portfolios for N = 30, N = 50, and N = 100, respectively.

A higher GSR signifies better portfolio performance. Notably, we observe a significant improvement

in maximizing the GSR of our regularized portfolios compared to the benchmark portfolios, which

include the portfolio proposed by Dahlquist et al. (2017). The latter portfolio incorporates asym-

metries but does not address the ill-posed inverse of the covariance matrix of returns. Interestingly,

we observe that the regularized mean-variance portfolios perform much better than the Dahlquist et

al. (2017) portfolio. Furthermore, our regularized portfolios consistently outperform all benchmark

portfolios across different values of the degree of disappointment aversion, l, and portfolio sizes, N.

Particularly noteworthy is the superior performance of our portfolios compared to the benchmark

portfolios, especially when N is large and for small degrees of disappointment aversion. These results

clearly illustrate the importance of incorporating asymmetries and addressing the ill-posed inverse of

the covariance matrix of returns when optimizing portfolios.
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Table 1: Generalized Sharpe ratio for N = 30, γ = 2, and κ = 0.95

MvP
DFT

Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.2054 0.1813 0.2082 0.1625 0.1305 0.2281 0.2146 0.2258 0.2214 0.2053
l = 2 0.2132 0.1837 0.2121 0.2050 0.1208 0.2339 0.2188 0.2304 0.2258 0.2053
l = 5 0.2153 0.2019 0.2121 0.2108 0.1582 0.2359 0.2234 0.2319 0.2318 0.2053

Table 2: Generalized Sharpe ratio for N = 50, γ = 2, and κ = 0.95

MvP
DFT

Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.2274 0.1528 0.2194 0.2306 0.1126 0.2446 0.1876 0.2329 0.2485 0.2016
l = 2 0.2277 0.1617 0.2176 0.2314 0.1186 0.2467 0.1939 0.2341 0.2521 0.2016
l = 5 0.2320 0.1635 0.2257 0.2363 0.1598 0.2516 0.1948 0.2422 0.2566 0.2016

When comparing the performance of our four regularized portfolios, Tables 1-3 indicate that for

small and moderate-sized portfolios, Ridge regularization yields better performance compared to the

other regularization-based portfolios. However, for large-sized portfolios, the Landweber-Fridman

portfolio outperforms the others. Additionally, we observe that the spectral cut-off (or principal com-

ponent) portfolio is generally outperformed by the other regularized portfolios. This result is plau-

sible, as the returns were generated using a model that does not exhibit a factor structure. In other

words, the SC-based portfolio is expected to perform better when the returns exhibit a factor structure.

Table 3: Generalized Sharpe ratio for N = 100, γ = 2, and κ = 0.95

MvP
DFT

Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.1774 0.1398 0.1711 0.1778 0.1323 0.2405 0.2032 0.2503 0.2400 0.1982
l = 2 0.1775 0.1547 0.1717 0.1835 0.1459 0.2446 0.2028 0.2586 0.2421 0.1982
l = 5 0.1787 0.1653 0.1754 0.1852 0.1616 0.2538 0.2134 0.2653 0.2471 0.1982

We next conducted additional simulations to investigate and compare the performances of our

regularized portfolios with those of benchmark portfolios in terms of the expected loss in the utility

function. Note that the optimal solution in Equation (2.6) can be obtained by solving the following

mean-variance-asymmetry investment problem:

max
ω

µω − r f −
γ̃ −1

2
σ

2
ω + χ̃σωδω . (6.2)
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Thereafter, we use the above portfolio problem to define the following loss in utility function:

LT (ω̂τ̂) =U (ω)−U (ω̂τ̂) , (6.3)

where U (ω) = µω − r f − γ̃−1
2 σ2

ω + χ̃σωδω is the true utility function and U(ω̂τ̂) is the estimated

one based on one of the portfolios under consideration. Thus, the expected loss in utility for a given

optimal portfolio is E [LT (ω̂τ̂)]. In our simulation, this quantity is approximated by:

Ê [LT (ω̂τ̂)] =
1
C

C

∑
j=1

LT

(
ω̂τ̂ j, j

)
. (6.4)

Table 4: Expected loss in utility for N = 30, γ = 2, and κ = 0.95

MvP DFT Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.04886 0.08709 0.0186 0.0692 0.07321 0.00771 0.01464 0.00851 0.00998 0.07348
l = 2 0.04097 0.08266 0.01716 0.0588 0.0789 0.00721 0.01401 0.00672 0.00733 0.07348
l = 5 0.03388 0.03252 0.01246 0.04563 0.0601 0.00644 0.00982 0.00564 0.00660 0.07348

Tables 4, 5, and 6 present the results of the expected loss in utility for portfolio sizes N = 30,

N = 50, and N = 100, respectively. A portfolio is considered to perform well in terms of expected

loss in utility if it leads to a minimal utility loss. Our analysis reveals a significant improvement in

minimizing the expected loss in utility of our regularized portfolios compared to the benchmark port-

folios. Our findings indicate that the proposed optimal regularized portfolios consistently outperform

the naïve portfolio, the regularized mean-variance portfolios, and Dahlquist et al. (2017)’s portfolio

across all tested sizes (N = 30, N = 50, and N = 100). The gap in expected utility loss between our

regularized portfolios and the regularized mean-variance portfolio is notably large. This underscores

the importance of considering asymmetries in returns and risk attitudes, as well as addressing the

ill-posed inverse of the covariance matrix of returns, when optimizing portfolios.

Table 5: Expected loss in utility for N = 50, γ = 2, and κ = 0.95

MvP DFT Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.0368 0.0689 0.0370 0.0387 0.1033 0.0047 0.0158 0.0054 0.0046 0.0784
l = 2 0.0320 0.0550 0.0337 0.0318 0.1172 0.0041 0.0117 0.0050 0.0042 0.0784
l = 5 0.0025 0.0487 0.0308 0.0227 0.0944 0.00328 0.0097 0.0042 0.0035 0.0784
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Table 6: Expected loss in utility for N = 100, γ = 2, and κ = 0.95

MvP DFT Optimal portfolio Naive
PortfolioR SC LF Lasso R SC LF Lasso

l = 1 0.01065 0.0915 0.0559 0.0156 0.1480 0.00406 0.0038 0.0040 0.00407 0.0805
l = 2 0.0095 0.0317 0.0467 0.0103 0.1590 0.00403 0.0036 0.0039 0.00403 0.0805
l = 5 0.0084 0.0208 0.0453 0.009 0.1289 0.00398 0.0034 0.0039 0.00398 0.0805

Table 7 presents descriptive statistics on the optimal tuning parameter selected for each stabiliza-

tion method, computed for three different values of N with l = 2. The tuning parameter for the SC

method reflects the number of factors that can explain the distribution of excess returns. We find that

this number of factors increases with N. For the LF method, the tuning parameter corresponds to the

number of iterations required for convergence of the portfolio optimization, with results indicating

that the average number of iterations is notably higher for N = 100 compared to the other values

N = 30 and N = 50. This suggests that a larger number of assets requires more iterations for the algo-

rithm to converge. For the Ridge method, the average selected tuning parameter also increases with

the size of the portfolio. Essentially, a larger portfolio requires greater shrinkage of the covariance

matrix to improve the optimal portfolio’s performance.

Table 7: Distribution characteristics of the optimal regularization parameters. The number of
iterations performed is 1000 for T = 120 observations

Rule R SC LF
N 30 50 100 30 50 100 30 50 100

Mean 0.0869 0.089 0.0947 6.925 5.953 7.558 222.8 212.037 281.336
Std 0.0055 0.0054 0.0066 2.3552 2.6038 2.3766 56.6342 64.1889 57.0728
q1 0.0458 0.0658 0.0784 5 4 6 179 162 234

Median 0.0898 0.0897 0.0982 7 6 8 212 199 283
q3 0.0987 0.102 0.106 9 8 10 257 250 342.5

7 Empirical study

In this section, we empirically assess the performance of our regularized optimal portfolios using

the rolling sample approach introduced by Kan and Smith (2008). We also conduct a comparative

analysis with benchmark portfolios employed in the Monte Carlo simulation section. The rolling

sample approach involves recursively generating T −M out-of-sample returns from a dataset of size

T , utilizing M previous returns. Subsequently, for each rolling window, the regularized optimal port-
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folios are hold for one year. The resulting time series of out-of-sample optimal portfolio returns

are then used to compute the out-of-sample performance for both our regularized portfolios and the

benchmark portfolios.

We implement our regularized portfolios using three sets of monthly portfolios obtained from

Kenneth French’s website, covering the period spanning from July 1980 to June 2017: the monthly

30-industry portfolios (FF30), the 48 industry portfolios (FF48), and the monthly 100 portfolios

formed based on size and book-to-market (FF100). Following the approach outlined in Barberis

(2000), investors are allowed to rebalance their portfolios annually. This involves constructing the

optimal portfolios at the end of June of each year, covering the period from July 1980 to June 2017,

using a designated estimation window (EW). In our study, we consider two different estimation win-

dows: 60 and 120. Subsequently, investors hold these optimal portfolios for one year, realizing gains

and losses, updating information, and recalculating optimal portfolio weights for the subsequent year.

As shown by DeMiguel, Garlappi and Uppal (2009); DeMiguel, Garlappi, Nogales and Uppal (2009),

this procedure yields results consistent with those obtained when rebalancing optimal portfolios on a

monthly basis.

The procedure outlined above is iterated for each year within the dataset, resulting in a time series

of out-of-sample portfolio returns. This time series is subsequently used to evaluate and compare the

out-of-sample performance of both our regularized portfolios and benchmark portfolios based on the

Generalized Sharpe ratio. We consider an appropriate range for the tuning parameter to conduct our

portfolio optimization, which varies depending on the regularization approach employed. Specifically,

for the Ridge approach, we employ a grid spanning the interval [0,1], with a precision set at 10−2.

In the case of the Spectral Cut-off (SC) approach, the parameter ranges from 1 to a maximum value

N−1, where N represents the number of assets. For the Landweber-Fridman (LF) approach, we set a

maximum number of iterations at 300.

Subsequently, we evaluate the performance of each optimal portfolio setting the investor’s degree

of disappointment aversion at l = 2. The investor’s risk aversion γ is held constant at 2, and the

threshold for the investor’s certainty equivalent, below which outcomes are deemed disappointing,

is set at κ = 0.95. Additional results, not included in this report but available upon request, were

obtained by exploring alternative values for the coefficients γ , l, and κ .
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Table 8: Out-of-sample generalized Sharpe (GSR) ratio for standard mean-variance portfolio

MvP
P FF30 FF48 FF100

EW 60 120 120 240 120 240
GSR 0.069 0.095 0.076 0.099 0.078 0.106

Table 9: Out-of-sample generalized Sharpe ratio of our regularized portfolios, regularized
mean-variance portfolios, and naive portfolio

Portfolios EW
MvP Optimal portfolio Naive

PortfolioR SC LF Lasso R SC LF Lasso

FF30
60 0.1001 0.1862 0.1167 0.1293 0.3419 0.3186 0.3478 0.2541 0.2385

120 0.1545 0.2569 0.1845 0.1857 0.3803 0.3191 0.3744 0.2694 0.2335

FF48
120 0.1201 0.1985 0.1858 0.1698 0.1568 0.3120 0.3519 0.3597 0.2389
240 0.1865 0.2754 0.2098 0.2189 0.3840 0.3350 0.3745 0.3687 0.2468

FF100
120 0.1432 0.2120 0.1858 0.2167 0.3518 0.3119 0.3597 0.3467 0.2415
240 0.2619 0.2966 0.2930 0.2572 0.3880 0.3463 0.3741 0.3815 0.2690

Tables 8 and 9 present the results of the out-of-sample analysis using the three data sets FF30,

FF48, and FF100. Our results show that our regularized portfolios significantly outperform both the

standard and regularized mean-variance portfolios, as well as the naïve portfolios, in maximizing

the out-of-sample generalized Sharpe ratio. This empirical evidence underscores the importance of

incorporating asymmetries and addressing the ill-posed inverse of the covariance matrix of returns

when optimizing portfolios. Additionally, we observe that the performance of all portfolios improves

as the estimation window (EW) increases. This improvement might be attributed to the reduction in

estimation error associated with unknown parameters, thereby positively impacting the performance

of the selected portfolio.

8 Conclusion

We investigated the portfolio choice problem for an investor dealing with asymmetries in returns

and risk attitudes in an economy with a large number of assets. This selection problem requires esti-

mating the covariance matrix of returns and computing its inverse. However, inverting the covariance

matrix can be challenging, as it may become ill-conditioned when dealing with a substantial number
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of assets.

We proposed addressing the portfolio choice problem in the presence of asymmetries and high-

dimensional covariance matrices of asset returns by employing four regularization techniques: Ridge,

spectral cut-off, Landweber-Fridman, and Lasso. These regularization approaches involve a tuning

parameter that must be carefully selected. To this end, we introduced a data-driven approach for se-

lecting the optimal tuning parameter by minimizing the distance between the inverse of the estimated

covariance matrix and the inverse of the population covariance matrix. To assess the performance of

our chosen portfolio, we derived the generalized Sharpe ratio (GSR), which accounts for asymmetries

through higher moments of the return distribution.

Furthermore, we conducted an extensive Monte Carlo simulation to assess the performance of

our regularized optimal portfolios in the presence of asymmetries and large number of assets. We

compared the performance of our portfolios with those of several benchmark portfolios including the

portfolio proposed by Dahlquist et Dahlquist et al. (2017), the regularized mean-variance portfolios,

and the naïve portfolio. The simulation results demonstrated that our regularized portfolios outper-

formed all benchmark portfolios in terms of the generalized Sharpe ratio and the expected loss in

utility.

Finally, we applied our portfolio approaches to three sets of portfolios: the 30 industry portfolios,

48 industry portfolios, and 100 portfolios formed based on size and book-to-market. The empirical

findings indicate that by accounting for asymmetries and stabilizing the inverse of the covariance ma-

trix, we significantly enhance the performance of the optimal portfolio in maximizing the generalized

Sharpe ratio.
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