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Abstract

A large literature has documented violations of expected utility consistent

with a preference for certainty (the “certainty effect”), but recent studies ques-

tion the prominence of this phenomenon. We design an experiment using lotter-

ies spanning over the entire probability simplex to establish the prevalence of

the certainty effect relative to its opposite. We find that violations of indepen-

dence consistent with the reverse certainty effect are much more common than

violations consistent with the certainty effect. Results hold as we test robust-

ness along three dimensions: varying the mixing lottery, moving slightly away

from certainty, and having a zero outcome.
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Consequently, I viewed the principle

of independence as incompatible

with the preference for security in

the neighborhood of certainty shown

by every subject.

Maurice Allais (2008)

I. INTRODUCTION

Experimental evidence has shown that individuals reliably violate the independence

axiom, the central tenet of expected utility theory (EU).1 In 1953, Maurice Allais

proposed one of the earliest, and still to-date most famous, counter-examples, now

known as the “Allais Paradox.”2 Ask a decision maker the following two binary

choices:

Option A: Option B:

Q1: 100% chance of $100 million vs. 98% chance of $500 million

2% chance of $0

Q2: 1% chance of $100 million vs. 0.98% chance of $500 million

99% chance of $0 99.02% chance of $0

Allais hypothesized that many individuals would choose Option A in the first decision

and would choose Option B in the second decision. This choice pattern violates the

independence axiom, since the lotteries in Question 2 are the same as the lotteries

in Question 1, just multiplied by a common chance of the low outcome.3 This choice

pattern is now known as the “common ratio effect,” and decision problems of this form

have been studied extensively in the literature with many formulations confirming

Allais’s intuition (see Kahneman and Tversky, 1979 for an early example).

Allais attributed these violations to a preference for security, quoted above, now

referred to as the “certainty effect” (Kahneman and Tversky, 1979). Kahneman and

1Independence states that for any three lotteries p, q, and r, and any number λ in [0,1], if p is

preferred to q, then λp+(1−λ)r is preferred to λq+(1−λ)r. That is, mixing both lotteries p and q with

a common lottery r, and in common proportions, should not change the relative preference between p

and q.
2Both the “common ratio” and “common consequence” violations of Independence are often re-

ferred to as the Allais Paradox. We focus on the common ratio effect in this paper.
3To see how the choices violate independence, let λ= 0.01 and r be 100% chance of $0.
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Tversky describe the certainty effect as the phenomenon in which “people overweight

outcomes that are considered certain, relative to outcomes which are merely proba-

ble” (Kahneman and Tversky, 1979, p. 265). The intuition behind the certainty effect

in the Allais Paradox is that the preference of Option A over Option B in Q1 is driven,

in part, by the fact that Option A offers a sure payoff. When both options are risky, as

in Q2, neither offers the appeal of certainty, so preferences can reverse. Allais’s orig-

inal intuition, shared by many and confirmed by experimental evidence, has led to

large theoretical and experimental literatures in search of a descriptive non-expected

utility model. We review these papers in Section II.4

While previous papers have shown violations of independence consistent with the

certainty effect, we aim to test independence systematically to see the relative pro-

portion of EU violations that are in the direction predicted by the certainty effect.

Given the prominence of the Allais Paradox, a persistent thread in the literature is

that the certainty effect is the main contributor to independence violations. For ex-

ample, Schmidt (1998) says that “the bulk of observed violations of the independence

axiom is due to the certainty effect.” Allais himself conjectured that, far from cer-

tainty, individuals would act as expected utility maximizers (Allais, 1953; Andreoni

and Sprenger, 2010). This suggests that common ratio violations of independence

would be relatively uncommon absent a certain option, and that violations would be

relatively uncommon in situations where individuals prefer risk over certainty.5

On the other hand, more recent work has shown examples of the reverse certainty

effect (Starmer, 1992; Humphrey and Verschoor, 2004; Blavatskyy, 2013), and a re-

cent meta-analysis by Blavatskyy et al. (2022) shows that the common ratio effect is

not universal and can be affected by various choices in the experimental design and

parameters. Despite these examples, most common ratio tests involving certainty

focus on a small region of the probability simplex. Indeed, among all of the papers

surveyed in Blavatskyy et al. (2022), about one-third use the exact parameter config-

uration that was used in Kahneman and Tversky (1979) (as noted by McGranaghan

et al., 2023). This suggests need for a a broader exploration of tests of the indepen-

4The certainty effect also has been invoked to explain behaviors outside the domain of simple lot-

teries, such as present bias (Halevy, 2008) and aversion to gradual pieces of information (Dillenberger,

2010).
5For example, if we were to reduce the prize in Option A from 100 million to 10 million in the

example above, we would expect most people to prefer Option B in Question 1. Since the appeal of

certainty does not drive the preference in Question 1, intuition relying on certainty effect suggests

that we would not see violations of expected utility anymore.
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dence axiom. We aim to document the prevalence of the certainty effect—and its

opposite—in a unified and systematic test of independence throughout the simplex.

We view our paper as complementary to Blavatskyy et al. (2022) and results therein,

providing supportive evidence from a unified experimental paradigm.

We fix a probability simplex, which, in our experiment, is the set of possible lotter-

ies over {$10, $20, $30}. We pick 45 lotteries uniformly across this simplex. Subjects

face binary choices between $20 for sure and a lottery selected at random from these

uniformly-distributed risky lotteries. We then mix both alternatives according to

three different mixture weights to see if preferences reverse, constituting a violation

of independence.

Given the wide range of lotteries we sample, subjects will prefer $20 to the risky

lottery in some questions, while in other questions they will prefer the risky lottery

to $20. Questions of the latter type are relatively uncommon in the literature; as

noted by Blavatskyy (2010), in most experimental studies, “the sure monetary pay-

off is deliberately selected... so that the majority of people are likely to choose the

sure alternative over the risky lottery. In a sense, the common ratio effect is already

pre-programmed in this setup.”6 Instead of deliberately selecting questions this way,

our systematic test allows us to detect independence violations when certainty is pre-

ferred to risk—consistent with the certainty effect—and compare them to those when

risk is preferred to certainty, consistent with the reverse certainty effect.7 The stan-

dard parameterizations in the literature tend to deliver situations where subjects

prefer $20 to the risky lottery, while our design allows us to compare these situations

to parallel situations where subjects prefer the risky lottery.

We find that reverse certainty effect violations are far more common than certainty

effect violations in our data. Conditional on preferring certainty to risk, individuals

violate independence 15% of the time. In stark contrast, individuals violate indepen-

dence almost 40% of the time conditional on preferring risk to certainty. This result

holds when we control for “strength-of-preference” effects, indicating that we cannot

6For example, in one of the most well-known examples of the common ratio effect Kahneman and

Tversky, 1979, 80% of subjects prefer the sure payment in Q1. In their paper, as in most papers in the

literature, there is no equivalent comparison question where most subjects prefer the risky lottery in

Q1.
7Following this intuition, Blavatskyy (2010) also includes binary comparisons where risk is likely

preferred to certainty, and finds evidence of the reverse common ratio effect. While both common ratio

and reverse common ratio examples have been documented, our contribution is to test the relative

frequencies of these violations and their interaction with certainty.
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attribute these different patterns to pure noise. Our design also allows us to look

at a more rigorous test of the independence axiom, comparing choices across all four

mixing probabilities. This analysis confirms our main results, with most violations

coming from instances where individuals choose the risky lottery over certainty and

then switch to choosing the safer lottery as the alternatives are mixed away from

certainty.

We test the robustness of these results along three dimensions. First, we move

slightly away from certainty by comparing with a lottery that gives $20 with 90%

chance (otherwise a 5% chance of $30 and a 5% chance of $10) rather than $20 with

certainty. Second, we vary the “mixing lottery” from one in the spirit of the Allais

Paradox—mixing with the lowest possible outcome—to one less commonly studied—

mixing with a lottery that puts equal weight on all three outcomes. Finally, we run a

version of the experiment with $0 as the lowest payoff—in contrast with $10 in our

main experiments. Overall, our results are robust to these perturbations.

Our results contribute to a large experimental literature testing the independence

axiom in common ratio questions. Ours benefits from being a systematic test around

certainty, providing evidence on the frequency and location of independence viola-

tions. We believe our results will be particularly useful to incorporate into theoreti-

cal models of choice under risk. Recent theories seek to characterize and axiomatize

the certainty effect in building descriptive models of choice (Cerreia-Vioglio et al.,

2015). Our results suggest that these theories may miss an important pattern of

behavior: In our data, we could explain significantly more choices by modeling the

exact opposite phenomenon.

II. LITERATURE REVIEW

Our paper contributes to the literature on the certainty effect as well as the literature

testing and relaxing expected utility theory (EU). We quickly review the theoretical

literature before turning to the most closely related experimental papers.

The prominence of the certainty effect in the experimental literature has led to

theoretical work attempting to capture the documented choice patterns. Some of

the popular alternative theories to EU that are able to accommodate the certainty

effect in common ratio choices include disappointment aversion (Gul, 1991), cumula-

tive prospect theory (Tversky and Kahneman, 1992), rank dependent utility theory
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(Quiggin, 1982), and cautious expected utility theory (Cerreia-Vioglio et al., 2015).

While many of these theories can accommodate the reverse certainty effect in the

“opposite” way, most, if not all, were designed to capture the certainty effect.

Each non-EU theory listed above can accommodate the certainty effect, but we

highlight here Cautious Expected Utility (Cerreia-Vioglio et al., 2015) because it was

designed explicitly to characterize certainty-effect preferences. Cerreia-Vioglio et al.

weaken independence by requiring it to hold only when risk is already preferred to

certainty, allowing for independence violations when certainty is preferred to risk.

Formally, they replace independence with an axiom, Negative Certainty Indepen-

dence (NCI), first introduced in Dillenberger (2010). NCI states that for all lotteries

p, q ∈∆(X ), prizes x ∈ X , degenerate lotteries δx, and probabilities λ ∈ [0,1],

p ⪰ δx ⇒λp+ (1−λ)q ⪰λδx + (1−λ)q.

This requires that independence holds when a lottery, p, is preferred to $x for sure,

but does not require independence to hold in the opposite case where certainty is pre-

ferred to risk. As such, this theory exactly characterizes the preference for certainty

underlying the common ratio effect and other well-documented patterns of behavior.

Cautious expected utility theory is a very appealing model that can accommodate

other behavioral phenomena (e.g., the endowment effect), but it is important to note

that its central axiom characterizes the certainty effect.

The authors cite the large body of evidence on the certainty effect, but point out

that “no comprehensive tests of NCI have been conducted thus far” (Cerreia-Vioglio

et al., 2015, p. 713). We see our paper as a natural step in this dialogue between the-

ory and experiments. Our results suggest that the certainty effect is not always the

main obstacle for the independence axiom—in our data, the reverse certainty effect is

the main obstacle for independence. Indeed, in a more recent paper, Cerreia-Vioglio

et al. (2020) characterize preferences with the opposite axiom, Positive Certainty In-

dependence (PCI), which requires independence hold instead when a sure payment

is preferred to a risky lottery but allows for violations otherwise. One could interpret

our experiment as a test of the relative prevalence of NCI and PCI violations, finding

more violations of NCI than PCI.

Hand-in-hand with theoretical advancements is a large experimental program

aimed at testing these theories. The experimental literature is vast (see, for example,
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Figure I: Lotteries Used in Our Experiment
Notes: These points represent the main lotteries used in our experiment. Each of these lotteries is

compared against receiving $20 for sure. In contrast, in most of the literature, common ratio

questions focus on comparing certainty with lotteries along the hypotenuse.

Conlisk, 1989; Harless, 1992; Starmer, 1992; Neilson, 1992a,b; Sopher and Gigliotti,

1993; Camerer and Ho, 1994; Loomes and Sugden, 1998; Schmidt, 1998; Humphrey

and Verschoor, 2004; Huck and Müller, 2012; Incekara-Hafalir et al., 2020), so we

cannot summarize every paper here. Camerer (1995) and Starmer (2000) review the

older literature, and we refer the interested reader to those surveys. A paper that is

closely related in spirit to ours, but very different in methodology, is a recent meta-

analysis by Blavatskyy et al. (2022). They survey 143 common ratio experiments

involving a certain outcome. They find that the prevalence of the common ratio ef-

fect (synonymous with the certainty effect in these questions) varies predictably with

features of the experimental design, including the value of the common ratio itself,

real vs. hypothetical stakes, etc. Given that the papers in this meta-analysis vary

on many dimensions in addition to these identified, we conduct our experiment to

validate these findings in a simple and controlled environment. Importantly, we fo-

cus on the location of common ratio and reverse common ratio effects in the simplex;

therefore, we hold fixed many of the factors that the meta-analysis identifies as rel-

evant (e.g., real vs. hypothetical stakes, presenting lotteries as simple probabilities

vs. compound lotteries or frequencies, and the distance between the middle and high

outcome).
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Perhaps more importantly, we aim to span the space of lotteries in a more system-

atic way. Most common ratio tests that involve certainty compare a certain outcome

to one lottery or a few lotteries over a low and high prize (as in the papers surveyed

in Blavatskyy et al., 2022). In contrast, we compare a certain outcome to 45 points

uniformly selected across the simplex; see Figure I for a visualization of our lotter-

ies. Some of these are lotteries over the low and high outcome (i.e., lotteries on the

hypotenuse), but most also put probability on the middle outcome. Interior lotteries

have certainly been used in expected utility tests—and in common ratio tests—but

rarely in questions involving certainty (Camerer, 1989; Harless, 1992; Sopher and

Gigliotti, 1993). Furthermore, many papers in the literature (including a large ma-

jority of the papers surveyed in Blavatskyy et al., 2022) use the same or similar pa-

rameterizations when studying the common ratio effect, e.g., putting 80% probability

on the high outcome of the risky lottery in the unmixed question following Kahne-

man and Tversky (1979). Taken together, this highlights that, despite the abundance

of common ratio tests in the literature, we know very little about the certainty effect

in a large part of the simplex; most papers in the literature include only a single

common ratio effect question with certainty, and there is no uniform variation in the

probabilities of the lotteries. This gap emphasizes the need for a systematic test.

By selecting our lotteries uniformly, we cover much more area than the previous

literature has done which allows us to identify potential regions of the simplex that

exhibit different patterns. We can also compare the “amount” of certainty effect to the

amount of reverse certainty effect in a meaningful way. Furthermore, a few recent

papers in various domains suggest that the certainty effect requires true certainty

(probability one), and differs predictably from “near certainty” (Halevy, 2008; An-

dreoni and Harbaugh, 2010; Andreoni and Sprenger, 2010, 2011, 2012). To explore

this, we also systematically compare these same 45 lotteries to a lottery that is “close”

to certainty. Also importantly, we cover (within-subject) areas where individuals are

likely to prefer the riskier option and areas where individuals are likely to prefer the

safer option, which allows us to compare the prevalence of common ratio and reverse

common ratio violations. We discuss these design details more below.

Thus, while a large number of common ratio tests have been conducted in the liter-

ature, and while there is already evidence of the reverse common ratio effect and the

reverse certainty effect (particularly from Blavatskyy, 2010 and Blavatskyy, 2013),

our goal in this paper is to replicate and establish these findings in a systematic
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manner so that we can interpret the prominence of these various choice patterns.

We fix the lottery prizes, framing, and other aspects that vary across existing stud-

ies. We ask a large number of questions involving certainty and near certainty to

obtain a rich picture of the certainty effect, and we include questions where both

risk is preferred to certainty and certainty is preferred to risk in order to obtain a

deeper understanding of adherence to independence in the simplex. Furthermore,

we include all of this within-subject, so that we can conduct individual-level tests as

well as aggregate tests. To the best of our knowledge, our paper is the first to conduct

such a widespread test of the certainty effect in a single simplex. We conclude that

the certainty effect is not the main contributor to common ratio violations of indepen-

dence, and that the reverse certainty effect is a nontrivial phenomenon in observed

choices.

III. THEORETICAL FRAMEWORK

We describe the theoretical framework in the context of our experimental design. All

questions involve lotteries over US dollars. The set of possible prizes in our experi-

ment is X = {10,20,30}. We represent the set of lotteries with prizes in X by ∆(X ),

with weak preferences ⪰ defined over ∆(X ). We denote generic prizes in X by x, y, z,

and denote generic lotteries in ∆(X ) by p, q, r, s. The probability of receiving prize x

under lottery p is denoted p(x). We represent the three-outcome lottery, p, giving $10

with probability p(10), $20 with probability p(20), and $30 with probability p(30) by

($30, p(30);$20, p(20);$10, p(10)). We represent the degenerate lottery giving $x for

sure as δx.

The independence axiom states that for all p, q, r ∈∆(X ) and for all λ ∈ [0,1],

p ⪰ q ⇔λp+ (1−λ)r ⪰λq+ (1−λ)r.

We consider only “one-stage” lottery mixtures, rather than two-stage compound lot-

teries.8 In our experiment, we will test the independence axiom by presenting sub-

jects with binary choices over these one-stage lotteries.

There are two ways individuals can violate independence when one option is cer-

tain. The certainty effect (CE) captures the idea that individuals place disproportion-

8In other words, we study mixture independence, rather than compound independence, as defined

in Segal (1990).
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ate weight on an outcome when it is certain (Kahneman and Tversky, 1979). Indi-

viduals with a preference for certainty will be more likely to violate independence

when certainty is preferred to a risky lottery before mixing. The intuition is that the

preference of δx over p may be driven, in part, by the certainty appeal of receiving $x

for sure. When these lotteries are mixed as in independence, λδx + (1−λ)r does not

carry the same certainty appeal, which might result in a preference for λp+ (1−λ)r

over λδx + (1−λ)r. When individuals violate independence in this way, we call it a

“CE” violation.

The reverse certainty effect (RCE) is the exact opposite pattern. This refers to an

individual who chooses p over δx and then chooses λδx + (1−λ)r over λp+ (1−λ)r.

We refer to this as an “RCE” violation. Our main research question is documenting

the prevalence of independence violations and comparing the frequency of these two

patterns of violations in a systematic way.

IV. EXPERIMENTAL DESIGN

We chose three payments—$10, $20, and $30—and all questions involve lotteries

over these three payments.9,10 In order to compare CE and RCE violations, we needed

to ask questions where a risky lottery is likely to be preferred to certainty, as well

as questions where certainty is likely to be preferred to the risky lottery. To ensure

this, we selected 45 points uniformly across the simplex. These 45 questions are

denoted with circles in the top left graph of Figure II, and we refer to these as the

“unmixed lotteries.” We asked binary questions comparing these lotteries against a

sure payment of $20: a choice of p vs. δ20.

9There is evidence that independence violations under certainty are more prevalent with large

stakes than small stakes, reviewed in Cerreia-Vioglio et al. (2015). Therefore, we wanted to pick

payments that were fairly high. Our payments averaged to around $20 per person, and sessions took

only 30 minutes. Subjects knew this ahead of time. We felt this $40/hr average payment would be

reasonably high stakes based on the literature.
10One limitation of our study is that we do not consider systematic variation in the payment out-

comes, aside from the Zero Treatment noted below. We believe systematic variation in payments—

analogous to our systematic variation in probabilities—is an important avenue for future work.
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Figure II: Questions

Notes: The top left panel shows the “unmixed” questions, and the other three panels show the lotteries after mixing.

Subjects report binary preferences between δ20 or q∗ and the lotteries shown. Each subject makes 68 binary choices.

To test independence, we mixed these lotteries with r = ($10,1). We used three

different mixing probabilities, λ = {0.25,0.50,0.75}. This results in 45 new binary

choices for each value of λ: λp vs. λδ20. The lotteries after mixing are shown in the

remaining three panels of Figure II.11

We test the robustness of the certainty effect by moving δ20 slightly away from

certainty, comparing these unmixed lotteries against ($30,0.05;$20,0.90;$10,0.05),

denoted by a diamond in Figure II. This lottery is “close” to a sure payment of $20,

11Though we sometimes refer to lotteries “before” or “after” mixing for ease of exposition, there is

no temporal component to the experiment. As we explain, questions were presented to subjects in

random order.

11



but does not offer the same security. For simplicity, we’ll call this lottery q∗, and

we’ll refer to these questions as “near-certain.” Subjects face both certain and near-

certain questions, as we explain below. When talking about alternatives in these

binary comparisons, we refer to p and λp as the “risky lotteries” and refer to either

δ20 and λδ20, or q∗ and λq∗, as the “safer lotteries.” We reserve “certainty” only for

δ20.

In total, we have 360 possible questions–the 45 unmixed lotteries compared with

$20 in the certain condition (45 questions) and compared with q∗ in the near-certain

condition (45 questions). These 90 questions comprise the “unmixed” comparisons,

and each is mixed by λ= {0.75,0.50,0.25} (90×4 = 360). Since it might be unreason-

able for individuals to answer all 360 questions, each subject instead answered 68

binary questions from the set of 360 possible questions.12 To perform the random

selection, we created a bank of 90 questions—the 45 unmixed lotteries compared

against $20 and the same 45 unmixed lotteries compared against q∗. We randomly

and independently selected 17 of these 90 questions for each subject. For those 17

questions, we asked subjects the unmixed question and all three λ= {0.25,0.50,0.75}

mixtures. This gives a total of 17×4= 68 binary choices per subject.

This random selection process helps ensure that, on average for each subject, we

will have observations where the risky lottery is preferred to the safer lottery and

vice versa, and we will also have observations for both certain and near-certain com-

parisons. It also allows us to test independence more rigorously than in single binary

choices, as independence requires an individual to choose either the risky or safer op-

tion in all four λ comparisons. This design also rules out the possibility that indepen-

dence violations result from indifference, which is a common critique of experiments

that observe preference reversals (Blavatskyy, 2010). Given the number and diver-

sity of questions we ask, systematic and persistent violations of independence cannot

be explained through indifference.13

Finally, we conducted two between-subject treatments. The first, which we have

explained above, mixes lotteries with the bottom right of the simplex, r = ($10,1).

This is closest in spirit to the original Allais Paradox where the lotteries were mixed

with the lowest possible payoff. We refer to this as the “Allais Mix” treatment. To

1268 was calibrated based on duration of the experiment.
13Given the structure of our lotteries, subjects could be exactly indifferent to $20 on one “ray” from

the origin, which is at most 5 questions.
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further test the robustness of independence violations, we ran a separate treatment

that mixes lotteries instead with the midpoint of the simplex, r = (30, 1
3 ;20, 1

3 ;10, 1
3 ),

which we refer to as the “Middle Mix” treatment. We include this mixture lottery

since this region is relatively under-explored in the literature.14 Furthermore, cau-

tious expected utility, which is characterized by the certainty effect, predicts that the

indifference curve through the origin is steepest and linear, so the middle mix treat-

ment allows us to focus on this region of the simplex (Cerreia-Vioglio et al., 2015).

Each subject participated in either the Allais Mix or Middle Mix treatment, but not

both. We defer explanation of the Middle Mix treatment to Section V.

IV.A. Procedures

We present results from 14 experimental sessions with a total of 265 subjects, 118 in

the Allais Mix treatment and 147 in the Middle Mix treatment. Subjects were mainly

undergraduates from Ohio State University, recruited using ORSEE (Greiner, 2004).

The experiment was programmed using z-Tree (Fischbacher, 2007). Sessions lasted

approximately 30 minutes and subject payments averaged $20.

The experimenter read instructions out loud to all subjects. Instructions explained

the binary choices and how the probabilities would translate into payoffs. Computer

screens displayed the written probabilities and payoffs, as well as color-coded pie

charts. Figure VIII in the Appendix shows a screenshot, and we also include instruc-

tions in the Appendix. All 68 questions were displayed in random order, randomized

separately across subjects. In particular, it was not necessarily the case that subjects

first saw the unmixed question, then the λ = 0.75,0.5,0.25 questions, and subjects

were not aware that questions were related to each other in any way. Furthermore,

each question was displayed on a separate screen, and we randomized the left-right

screen position of the risky and safer lottery.

Subjects were paid after everyone in the session completed the experiment. We

used physical randomization devices to determine payments, and subjects knew this

ahead of time. The experimenter rolled two 10-sided dice at the front of the room

to generate a number 1–68.15 This determined the random question that would be

14There are other regions of the simplex that remain under-explored in the literature, including

mixing with the best possible outcome in the lottery. We believe this is an interesting open avenue for

future work.
15If the number came up larger than 68, she rolled again.
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paid. Then, the experimenter rolled the dice again to generate a number 1–100 to

resolve any risk in the randomly-selected lottery. Subjects were paid the realization

from whichever lottery they had chosen in the randomly-selected decision. Therefore,

subjects were paid based on exactly one decision they made in the entire experiment.

This payment method, denoted the “random payment selection” (RPS) mechanism,

has been used in many binary choice experiments. As discussed in Azrieli et al.

(2019), by using the RPS mechanism, we are assuming that compound independence

holds (Segal, 1990).16 Brown and Healy (2018) give evidence that compound inde-

pendence holds when presenting choices on separate screens, as we do in our exper-

iment. Segal (1990) shows that compound independence and reduction of compound

lotteries together imply mixture independence, which is the form of independence we

study. Therefore, by using this payment mechanism, we assume that individuals

do not always satisfy reduction of compound lotteries, since we observe violations of

mixture independence.

Given that we study the certainty effect, there might be a worry that individuals

don’t view certainty here as truly certain given that they are paid for one random

decision. We acknowledge this weakness, and view our paper as a comparison to the

rest of the literature which uses a similar payment structure. We rely on prior work

that finds no difference in independence violations when comparing across different

incentive structures (Starmer and Sugden, 1991; Cubitt et al., 19989). In addition,

Nielsen (2020) studies preferences over the timing of uncertainty resolution—also

motivated by the NCI axiom (Dillenberger, 2010)—and finds no differences in prefer-

ences for one-shot resolution when using the random payment selection mechanism

versus implementing a single decision.

V. RESULTS

We focus our main results on the certain comparisons in the Allais Mix treatment.

These are questions where subjects chose between a risky lottery and $20 for sure in

the unmixed question, and separately made the same binary comparison when both

were mixed with 100% chance of $10, for three different mixing probabilities λ =

16Let A and B be two-stage lotteries over the simple lotteries in our experiment. That is,

A=(αp, p;αq, q; ...;αr, r; ...;αs, s) is a two-stage lottery that gives simple lottery p with probability αp,

lottery q with probability αq, etc. Let B=(αp, p;αq, q; ...;αr, t; ...;αs, s), meaning that lottery B differs

from lottery A only in that B gives lottery r with probability αr while A gives lottery t with that same

probability. Compound independence says that A is preferred to B if and only if r is preferred to t.

14



{0.75,0.50,0.25}. In aggregate, 25% of all of such paired choices revealed a violation

of independence.17

Figure III shows the violations of independence in the simplex, separated by mix-

ing probability. We find higher violations of independence as λ decreases.18 We find

individuals violate independence in 22% of decisions when λ = 0.75, 26% when λ =

0.50, and 27% when λ = 0.25 (Wilcoxon ranksum p-values, 0.75 vs. 0.25 p = 0.007,

0.75 vs. 0.50 p = 0.074, 0.50 vs. 0.25 p = 0.361). We also see that violations appear

more common for risky lotteries with higher expected value (lotteries to the north-

west). These are lotteries where individuals are more likely to have chosen the risky

option in the unmixed question. We formalize this observation below, showing that

individuals indeed violate independence more when the risky lottery is preferred to

certainty.

V.A. Certainty Effect vs. Reverse Certainty Effect

We denote a violation of independence as a “reverse certainty effect” (RCE) violation

when individuals prefer the risky lottery to δ20 in the unmixed question but reverse

their preference in the mixed question. We refer to the opposite as a “certainty ef-

fect” (CE) violation, when individuals prefer δ20 to the risky lottery in the unmixed

question but reverse their preference in the mixed question. The first set of bars in

Figure IV presents our main results. We find that, conditional on choosing the safe

option in the unmixed question, individuals violate independence in 15% of possible

opportunities. In contrast, conditional on choosing the risky option in the unmixed

question, individuals violate independence in 39% of possible opportunities (15% vs.

39%, Fisher-Pitman permutation test p < 0.001). Thus, RCE violations are signifi-

cantly more common than CE violations.

Analyzing the data differently, we can look at all observed violations of indepen-

dence and ask whether these violations come from situations where individuals chose

the risky option in the unmixed question or from situations where individuals chose

the safe option in the unmixed question. In other words, given an observed inde-

17This percentage likely would change as we change payoffs, unmixed lotteries, etc. Therefore, we

do not emphasize the raw percentage of violations, and leave it to the reader to decide whether this is

a large number or not.
18This could be because the lotteries converge as λ decreases, so they become closer to one another

in expected value. Decision error could lead to more violations of independence as alternatives become

closer together McGranaghan et al., 2023.
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(1) λ= 0.75
(2) λ= 0.50

(3) λ= 0.25

Figure III: Independence Violations in the Simplex
Notes: Figures show percentage of independence violations in the Allais Mix questions, compared

with δ20. Size and shape of markers denote frequency of violations, with percentages as indicated in

the legend.
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Figure IV: Violations of Independence Consistent with the Certainty Effect and Re-

verse Certainty Effect
Notes: The left two columns show independence violations in the Certain condition, where subjects

choose between δ20 and a risky lottery. The right two columns show violations in the Near Certain

condition, where subjects choose between q∗
= ($30,0.05;$20,0.90;$10,0.05) and a risky lottery. The

darker bars show, among all questions where individuals chose the safer option (δ20 or q∗) in the

unmixed question, the percentage of comparisons constituting an independence violation. The

lighter bars show the same thing among questions where individuals chose the riskier option in the

unmixed question.

pendence violation, we can characterize whether it is more likely to be a CE or RCE

violation. We find that two thirds of all independence violations in the data are RCE

violations, where individuals chose the risky option in the unmixed question (66% vs.

34%, Fisher-Pitman permutation test p < 0.001).

Our main result is surprising in light of a large literature on the certainty ef-

fect. We find that independence violations are much more common when individuals

prefer risk to certainty in the absence of mixing. This is exactly the opposite of Al-

lais’s intuition, which hypothesized that independence violations would be driven by

a “preference for security.” Instead, two-thirds of our violations result when a risky

lottery is preferred to certainty. These are also violations of negative certainty inde-
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pendence, the core axiom in cautious expected utility (Cerreia-Vioglio et al., 2015).

V.B. The Role of Noise

Prior work has demonstrated how noise can generate a common ratio effect, even

if underlying noise-free preferences are consistent with expected utility (Ballinger

and Wilcox, 1997; Loomes, 2005; Hey, 2005; Wilcox, 2008; Blavatskyy, 2007, 2010;

Bhatia and Loomes, 2017; McGranaghan et al., 2023). The argument is that scaling

down lotteries by multiplying probabilities by a common ratio brings the lotteries

in the decision closer together in expected utility, thus making the impact of noise

larger in the scaled down decisions. This can bias toward finding a CRE or RCRE

depending on whether individuals are more likely to choose the safe or risky option in

the unmixed question. Intuitively, if individuals always choose the safe option in the

unmixed question and noise only has an impact in the mixed question, then we can

only observe a CRE; the opposite is true if individuals choose the risky option in the

unmixed question, leading to observed RCRE. Thus, it is important for us to account

for the impact of noise in comparing the prevalence of CRE vs. RCRE. In our design,

this is particularly true given that the simplex we consider is “balanced” only for

risk-neutral participants. For risk-averse participants, there will be fewer questions

where the individual strongly prefers the risky lottery—and independence violations

are relatively unlikely—compared to questions where the individual strongly prefers

the safe lottery.19

We do not have individual-level measures of strength of preference in a given de-

cision. Instead, we proxy for this using the aggregate choice probabilities in the

population. Specifically, we create a “strength-of-preference” measure that takes val-

ues from 0.5 to 1, defined as the percentage of subjects in the study who chose the

more-commonly-chosen alternative in a given unmixed question. As an example,

this measure would equal 0.7 both when 70% of individuals chose the safe option in

a given unmixed comparison and when 70% of subjects chose the risky option in a

given unmixed comparison. We interpret values close to 0.5 as reflecting that partic-

ipants were, on average, close to indifferent in that decision. When values are close

19As noted by Rabin, such small-stakes risk aversion presents challenges to extrapolating risk

preferences to higher stakes decisions. Our results are consistent with other experiments, and prior

work has proposed explanations such as reference-dependence Bleichrodt et al., 2020 and narrow

bracketing Zhang, 2021.
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(1) Total Independence Violations
(2) CRE vs. RCRE

Figure V: Strength-of-Preference Effects
Notes: The left panel shows the percentage of total independence violations as a function of our

strength-of-preference measure, where strength-of-preference is defined as the percentage of sub-

jects in the study who chose the more-commonly-chosen alternative in a given unmixed question. The

right panel shows the percentage of CRE violations for questions where a majority of individuals chose

the safe option in the unmixed question and shows the percentage of RCRE violations for questions

where a majority of individuals chose the risky option in the unmixed question, both as a function of

strength-of-preference in the unmixed question. Data include only comparisons involving certainty in

the unmixed question.

to 1, this indicates that participants all preferred either the safe or the risky lottery.

We find that overall violations strongly correlate with strength-of-preference. In-

dividuals are much more likely to violate independence when this value is close to

0.5; we document this in panel (1) of Figure V. To ensure that unbalanced strength-

of-preference between risky and safe lotteries does not drive our results, we conduct

the following exercise. For unmixed questions where a majority of individuals prefer

the safe lottery, we calculate the percentage of CRE violations; for unmixed questions

where a majority of individuals prefer the risky lottery, we calculate the percentage

of RCRE violations. Noisy expected utility would predict these values to be the same

controlling for strength-of-preference.

Panel (2) of Figure V shows that this is not the case. Controlling for strength-of-

preference, individuals are more likely to exhibit a RCRE than a CRE (p < 0.001 from

a probit regressing violations on choice in the unmixed question and the strength-of-

preference measure).
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V.C. The Role of Certainty

The original intuition of the certainty effect claimed that “certainty” held a funda-

mentally different appeal from “near certainty.” We test this by analyzing differ-

ences in independence violations when comparisons involve true certainty (δ20) ver-

sus near-certain (q∗
= ($30,0.05;$20,0.90;$10,0.05)) options. We find the overall per-

centage of independence violations is slightly but significantly higher under certainty

(25% vs. 22%, Fisher-Pitman Permutation Test, p = .00415).

Nevertheless, the second set of bars in Figure IV shows that our main result holds

equally under certainty as near certainty: Individuals are over three times more

likely to violate independence in questions where risk is preferred to certainty or

near-certainty.

Table I confirms these results in a probit regression. The dependent variable is

a dummy taking the value of 1 for a violation of independence, 0 otherwise. Inde-

pendent variables include an Unmixed Risky dummy, taking the value of 1 if the

individual chose the risky lottery in the unmixed question, 0 otherwise, a Certain

dummy taking the value of 1 when the unmixed question compared against δ20, 0 for

questions compared against q∗, the interaction between these two variables, and the

strength-of-preference measure described above. We cluster standard errors at the

subject level.

The results from the regression confirm the conclusions above: Violations of inde-

pendence are significantly more common when individuals choose the riskier option

in the unmixed question.

V.D. Individual-Level Results

Our main result holds on an individual level, as well. Figure VI shows the percentage

of independence violations per subject, broken down by CE and RCE types. That is,

for each individual, we separate the 17 unmixed questions they answered—including

both certain and near-certain comparisons—according to whether they preferred the

risky or safer lottery. Then, we compute the average independence violations, for

each individual, within these two sets. We see that the modal subject never violates

independence in questions where they preferred the safer lottery to the risky lottery.

When they preferred the risky lottery, however, the modal subject violates indepen-
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Dependent Variable: Violation of Independence

Unmixed Risky 0.838***

(0.105)

Certain 0.0638

(0.0799)

Unmixed Risky × Certain -0.175

(0.108)

Strength-of-Preference -2.620

(0.194)

Constant 878***

(0.165)

No. Observations 6,018

No. Clusters 118

Table I: Probit regression predicting violations of Independence

Notes: The dependent variable is a dummy taking the value of 1 for a violation of independence, 0

otherwise. Unmixed Risky is a dummy taking the value of 1 if the individual chose the risky lottery

in the unmixed question, 0 otherwise. The Certain dummy takes the value of 1 when the unmixed

question compared against δ20, 0 for questions compared against q∗. Strength-of-preference is

defined as the percentage of subjects in the study who chose the more-commonly-chosen alternative

in a given unmixed question. We cluster standard errors at the subject level.

dence one-third of the time.

In addition, for each subject, we take the difference between their likelihood of

RCE and CE violations (RCE - CE). For example, a subject who violated indepen-

dence in 25% of questions where they preferred the risky lottery over δ20 and vio-

lated independence in 15% of questions where they preferred δ20 over the risky lot-

tery would give a difference of 0.10. Figure VII shows the results. A large majority

of subjects (81%) demonstrate a positive difference in violations, meaning that a ma-

jority of our subjects express more RCE than CE violations. Therefore, we conclude

that RCE violations are more common both in aggregate and on an individual-level.
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Figure VI: Individual-Level Violations by Unmixed Risky vs. Unmixed Safe
Notes: Histogram shows the percentage of questions in which each individual violates the

independence axiom, separated out by CE violations (where the individual preferred δ20 to the risky

lottery) and RCE violations (where they preferred the risky lottery to δ20).

Figure VII: Individual-Level Difference Between Percentage of RCE and CE Viola-

tions
Notes: Histogram shows individual-level difference in the percentage of questions in which the

individual violates the independence axiom in preferring the risky lottery over δ20 minus the

percentage of questions in which the individual violates the independence axiom in preferring δ20

over the risky lottery.
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V.E. A More Rigorous Test

Given that each individual answers four questions all linked by independence—λ =

{1,0.75,0.50,0.75}—we can analyze violations of independence using all four choices

as a unit of observation. We define an individual’s four choices by a string of four

letters, each R (riskier) or S (safer). The first letter represents their choice in the

unmixed question (λ= 1), the second in the λ= 0.75 mixed question, the third in the

λ= 0.50 question, and the last in the λ= 0.25 question. Thus, the string represents

choices as we move towards the bottom right of the simplex.

Pattern Near-Certain Certain

SSSS 449 425

RRRR 191 159

RSSS 71 72

RRRS 41 36

RRSS 38 45

RRSR 32 38

SSSR 29 43

RSRR 24 24

RSRS 22 19

SSRS 22 18

RSSR 21 26

SRRR 18 29

SRSS 18 19

SSRR 15 12

SRSR 12 17

SRRS 6 15

Table II: Pattern of Choices Per Question
Notes: We define an individual’s four choices by a string of four letters, each R (riskier) or S (safer).

The first letter represents their choice in the unmixed question (λ= 1), the second in the λ= 0.75

mixed question, the third in the λ= 0.50 question, and the last in the λ= 0.25 question.

Independence requires the individual choose either R or S in all four questions.

This is a more stringent requirement than in our main analysis, as it requires in-

dividuals to be consistent in all three binary comparisons. Nevertheless, these are

the two most common patterns we see, first SSSS followed by RRRR—about 60% of

our data falls into one of those two patterns.20 Consistent with the analysis above,

20Recall that just looking at binary comparisons, about 75% of choices were consistent with inde-

pendence. Furthermore, we note that the strength-of-preference argument above again holds here;
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however, the next-most-common patterns involve choosing the riskier option in the

unmixed question and choosing the safer alternative as λ decreases. In the most

common independence violation, RSSS, individuals choose the riskier option only in

the unmixed question but then choose the safer option in all mixtures. In the second

most common violation, RRSS, individuals choose the riskier option in the unmixed

question and λ= 0.75, but choose the safer option in the λ= 0.50,0.25 mixtures. All

patterns can be found in Table II. We find no significant difference across certain and

uncertain questions (Chi-square p = 0.351).

Analyzing the data from all four questions also allows us to test whether viola-

tions of independence are less common in the interior of the simplex. Allais hy-

pothesized that “ ‘far from certainty,’ individuals act as expected utility maximizers”

(Allais, 1953, translated by Andreoni and Sprenger, 2010). If this were the case, we

would only see independence violations of the SRRR and RSSS types, where individ-

uals act consistently with independence in the λ= 0.75,0.50,0.25 mixtures but might

violate it near certainty. Instead, we find that these patterns make up only 24% of

independence violations in the certain comparisons in our sample. Over three quar-

ters of choice patterns violating independence involve violations in questions that lie

strictly on the interior of the simplex.21

Furthermore, the SRRR pattern most closely associated with the certainty effect

is very rare. These are instances in which individuals choose the safe option when it

is certain or near-certain, but then reverse their preferences when both alternatives

move away from certainty. Conditional on choosing S in the λ= 1 question, only 17%

of violations follow this pattern.

V.F. Robustness to the Mixing Lottery

We test the robustness of our results to the choice of r, the mixing lottery in the

definition of the independence axiom: p ⪰ q ⇔ λp+ (1−λ)r ⪰ λq+ (1−λ)r. In our

main treatment, we chose r to be ($10, 1), or 100% chance of the lowest payoff. This

is closest in spirit to the original Allais paradox, where the lotteries were mixed with

a large chance of receiving $0. In our robustness sessions, we conducted exactly

the same experiment, except we mixed all lotteries instead with the midpoint of the

there is a very strong relationship between strength-of-preference in the unmixed question and being

consistent with EU in all four questions (probit p < 0.001).
21All near-certain violations are also strictly interior.
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simplex, ($30, 1
3 ;$20, 1

3 ;$10, 1
3 ). Figure IX in the Appendix shows a visualization of

these lotteries in the simplex. We chose this point so that mixing would converge to

a different area of the simplex, one which has not been studied in detail based on our

review of the literature. Other than the choice of r, all procedures in these sessions

followed identically to those in the main session.

Overall, individuals violate independence in 21% of questions, which is slightly

but significantly lower than in our original treatment (21% vs. 23%, Chi-square

p < 0.001). Figures XI and XII in the Appendix show the distribution of violations

across the simplex.

Again we find that RCE violations are more common than CE violations. Table III

confirms that, for both certain and near-certain comparisons, individuals are more

likely to violate independence after choosing the risky lottery in the unmixed ques-

tion (p < 0.001). Figure XIII in the Appendix shows results controlling for strength-

of-preference, analogous to Figure V above; results again persist.

Percentage of Independence Violations

Certain Near-Certain

Chose Safer in Unmixed 14% 14%

Chose Risky in Unmixed 37% 21%

p-value < 0.001 < 0.001

Table III: Percentage of Independence Violations Conditional on Choice in Unmixed

Question, by Near-Certain and Certain, in the Middle Mix Treatment
Notes: The first column shows independence violations in the Certain condition, where subjects

choose between δ20 and a risky lottery. The second column shows violations in the Near Certain

condition, where subjects choose between q∗
= ($30,0.05;$20,0.90;$10,0.05) and a risky lottery. The

first row reports, among all questions where individuals chose the safer option (δ20 or q∗) in the

unmixed question, the percentage of comparisons constituting an independence violation. The

second row the same thing among questions where individuals chose the riskier option in the

unmixed question.

V.G. Robustness to Payoffs

Recent evidence has shown that the Allais Paradox may be driven, in part, by an

aversion to receiving a $0 payoff rather than a preference for certainty (Incekara-

Hafalir et al., 2020). In our main treatments, subjects did not receive a show-up

fee and the lotteries were expressed in terms of {$10, $20, $30} payoffs. To test the

sensitivity of our results to this “zero effect,” we run the same experiment with a $10
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show-up fee, where lotteries were expressed in terms of {$0, $10, $20} payoffs.22 We

call this new treatment the “Zero Treatment.”

Due to the COVID-19 pandemic, we ran these new experiments online. Specif-

ically, we re-programmed the experiment using oTree (Chen et al., 2016). We re-

cruited participants again from the OSU subject pool, but instead of holding a live

session, subjects were sent a link to the experiment and could participate anytime

during a pre-specified 24 hour window. Subjects were told to complete the experi-

ment all in one sitting. Uncertainty was resolved independently for each subject by

computerized randomization, and subjects were paid within 3 days via PayPal.

We recruited a total of 126 new participants to participate in the Zero Treatment.

In addition, we ran a small sample to replicate our original treatment using these

new protocols. These results can be found in the Appendix. The results from this

Baseline replication treatment are weaker than in our original sample, so the Zero

Treatment results, reported in Table IV, are stark relative to this. Once again, we

find that individuals are more likely to violate independence in questions where they

choose the risky option in the unmixed question.

Percentage of Independence Violations

Certain Near-Certain

Chose Safer in Unmixed 19% 15%

Chose Risky in Unmixed 33% 29%

p-value < 0.001 < 0.001

Table IV: Percentage of Independence Violations Conditional on Choice in Unmixed

Question, by Near-Certain and Certain, in the Zero Treatment
Notes: The first column shows independence violations in the Certain condition, where subjects

choose between δ20 and a risky lottery. The second column shows violations in the Near Certain

condition, where subjects choose between q∗
= ($30,0.05;$20,0.90;$10,0.05) and a risky lottery. The

first row reports, among all questions where individuals chose the safer option (δ20 or q∗) in the

unmixed question, the percentage of comparisons constituting an independence violation. The

second row the same thing among questions where individuals chose the riskier option in the

unmixed question.

22If subjects integrate the show-up fee into their payoffs, these lotteries are exactly the same as in

the main treatments. However, Incekara-Hafalir et al. (2020) also include a show-up fee, so we believe

the framing will prevent integration of payments in a way that would bury any zero effect.
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VI. DISCUSSION

We study the independence axiom and how violations of independence interact with

a preference for certainty. Contrary to a prominent thread in the literature, we find

that violations of independence in our data are not predominantly driven by this pref-

erence for certainty. Instead, violations are more common when individuals prefer

risk to certainty. We find this is also true when we move slightly away from certainty.

Our results are surprising in light of the large literature following up on the orig-

inal Allais Paradox counter-examples to independence. The certainty effect is well-

documented and is one of the primary pieces of evidence motivating new theoretical

models. Our paper aims to provide a more structured analysis to document violations

of the independence axiom near certainty. Our results suggest caution in attributing

violations of independence to the certainty effect primarily, but more evidence is re-

quired before making general statements on where and when to expect violations of

expected utility.

Related to this, it is still an open question as to which models in the literature

best approximate risk preferences. In addition to cautious expected utility theory

(Cerreia-Vioglio et al., 2015), models such as prospect theory (Kahneman and Tver-

sky, 1979) and disappointment aversion (Bell, 1985; Gul, 1991) are founded on evi-

dence of the common ratio effect. Thus, our data are incompatible with these classes

of models. Given that we observe both common ratio and reverse common ratio viola-

tions in different areas of the simplex—and that we observe both types of violations

within-subject—suggests need for more flexible models of decision-making.

Our results also highlight the importance of conducting such “systematic tests”

of axioms. As noted by Blavatskyy (2010), previous common ratio tests focused on

questions with a specific structure—where the sure payment was likely to be selected

over the risky lottery—leading to mechanical confirmation of the certainty effect. The

fact that these are the minority of independence violations in our data, but comprise

the majority of the past literature, shows the value of testing axioms uniformly and

agnostically.

We document consistent patterns of behavior, but leave open the question of what

drives these preferences. In particular, correlation of independence violations with

measures such as IQ, cognitive reflection test (CRT) scores, etc. remain an interest-

ing open question for future research. We also leave open the questions of how these
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patterns of violations change with payment amounts and other parameters of the

decision environment.
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A. ADDITIONAL RESULTS

Figure VIII: Screenshot of subjects’ display during the experiment

33



Figure IX: Questions in the Middle Mixture Treatment
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Figure X: Distribution of Risky Choices in the Unmixed Questions
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(1) λ= 0.75
(2) λ= 0.50

(3) λ= 0.25

Figure XI: Independence Violations in the Simplex
Notes: Figures show percentage of independence violations in the Middle mix questions, compared

with certainty. Size of bubbles denote frequency of violations.
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(1) λ= 0.75
(2) λ= 0.50

(3) λ= 0.25

Figure XII: Independence Violations in the Simplex
Notes: Figures show percentage of independence violations in the Middle mix questions, compared

with q∗. Size of bubbles denote frequency of violations.

37



(1) Total Independence Violations
(2) CRE vs. RCRE

Figure XIII: Strength-of-Preference Effects in the Middle Mix Treatment
Notes: The left panel shows the percentage of total independence violations as a function of our

strength-of-preference measure, where strength-of-preference is defined as the percentage of sub-

jects in the study who chose the more-commonly-chosen alternative in a given unmixed question. The

right panel shows the percentage of CRE violations for questions where a majority of individuals chose

the safe option in the unmixed question and shows the percentage of RCRE violations for questions

where a majority of individuals chose the risky option in the unmixed question, both as a function of

strength-of-preference in the unmixed question. Data include both certain and near-certain compar-

isons
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A.A. Online Replication

Given that the COVID-19 pandemic forced our zero treatment robustness test on-

line, we run our original treatment in this online environment to replicate our main

results. We recruited 95 new subjects to take part in the experiment. The online

protocols were the same as in the zero treatment, but we used our original {$10, $20,

$20} payoffs with no additional show-up fee.

Percentage of Independence Violations

Near-Certain Certain

Chose Risky in Unmixed 26% 24%

Chose Safer in Unmixed 19% 29%

p-value < 0.001 < 0.0067

Table V: Percentage of Independence Violations Conditional on Choice in Unmixed

Question, by Near-Certain and Certain
Note: Results are separated by choice in the unmixed question.

In the online replication, we do see significantly more violations of independence

conditional on choosing the safer option in the unmixed question for Certain compar-

isons.

While we do find more CE violations in the online sample, we still find substantial

RCE violations. Overall, aggregating certain and near-certain comparisons, among

those who chose the riskier alternative in the unmixed comparison, 25% of ques-

tions violate independence, and 24% violate independence among those who chose

the safer alternative (p = 0.313). Further, as Figure XIV shows, we find the same pat-

terns when controlling for strength-of-preference effects, but the difference between

CRE and RCRE violations is less dramatic, potentially due to more noisy decision-

making online. Thus, while not as stark of a difference as in our other treatments,

RCE violations cannot be ignored.
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(1) Online $10 Replication
(2) Online $0 Treatment

Figure XIV: Strength-of-Preference Effects in the Online Studies
Notes: The left panel shows the percentage of total independence violations as a function of our

strength-of-preference measure, where strength-of-preference is defined as the percentage of sub-

jects in the study who chose the more-commonly-chosen alternative in a given unmixed question. The

right panel shows the percentage of CRE violations for questions where a majority of individuals chose

the safe option in the unmixed question and shows the percentage of RCRE violations for questions

where a majority of individuals chose the risky option in the unmixed question, both as a function of

strength-of-preference in the unmixed question. Data include both certain and near-certain compar-

isons
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INSTRUCTIONS

 

This is an experiment in the economics of decision making. The Decision Sciences Collaborative at the 

Ohio State University has provided the funds for this research. Feel free to ask questions while we go 

over the instructions. Please do not speak with any other participants during the experiment and please 

put away your cell phones and anything that you might have brought with you.  

 
LOTTERIES

 

In this experiment, you will be making choices betǁeeŶ ͞lotteries.͟ A lotterǇ speĐifies the ĐhaŶĐe of 
receiving certain payoffs. In this experiment, the possible payoffs will be $30, $20, or $10. The chance of 

each payoff can be anything from 0% to 100%.  

For example, one lottery could give you an 80% chance of $30, 10% chance of $20, and a 10% chance of 

$10. Another lottery might give a 0% chance of $30, a 100% chance of $20, and a 0% chance of $10. 

There are many different possible lotteries.  

In each decision, you will see two lotteries on your screen—one on the left, and one on the right. Your 

screen will display the ǁritteŶ ǀalues for the paǇoffs aŶd proďaďilities. OŶ top of this, Ǉou ǁill see a ͞pie 
Đhart͟ that shoǁs Ǉou the proďaďilities of eaĐh paǇoff. This pie Đhart is to help you visualize the various 

proďaďilities, ďut it represeŶts the saŵe eǆaĐt proďaďilities aŶd paǇoffs as ǁhat’s ǁritteŶ oŶ Ǉour 
screen. The chance of $30 will always be in orange color, the chance of $20 will be in blue, and the 

chance of $10 will be in green. 

Your task is simply to choose the lottery you prefer, either the one on the left or the one on the right. 

You make your choice by clicking on the pie chart. The computer will record your choice and then will 

present you again with two lotteries, and so on.  

 
PAYMENT

 

In this experiment, you will be making 68 decisions, each choosing your more preferred lottery. Each 

decision will be presented on a different screen. At the end of the experiment, you will be paid for 

exactly ONE of these decisions. We will roll dice to generate a number 1--68 This will determine the 

decision that we will pay you for. Note, this means that each of your choices is equally likely to be paid, 

and one of them actually will be paid, so you should make each decision as if it will determine your 

payment. 

We will pay you the lottery that you chose in the one randomly selected decision. To do this, we will roll 

dice to generate a number 1—100. If this number is less than the probability of $10, you will receive 

$10. If the number is greater than the probability of $10 but less than the probability of $10 + the 

proďaďilitǇ of $ϮϬ, Ǉou ǁill reĐeiǀe $ϮϬ. If it’s greater thaŶ the proďaďilitǇ of $ϭϬ + the proďaďilitǇ of $ϮϬ, 
you will receive $30. 

For example, in the randomly selected problem, imagine you chose the lottery which gives 



$10 with 30% chance 

$20 with 50% chance 

$30 with 20% chance 

 

If we roll a number 1—ϯϬ, Ǉou’d reĐeiǀe $ϭϬ. There are ϯϬ out of ϭϬϬ possiďle Ŷuŵďers ďetǁeeŶ ϭ aŶd 
30, so this corresponds to a 30% chance of $10.  

If we roll a number 31—8Ϭ, Ǉou’d reĐeiǀe $ϮϬ. There are 5Ϭ out of ϭϬϬ possiďle Ŷuŵďers ďetǁeeŶ ϯϭ 
and 80, so this corresponds to a 50% chance of $20. 

If we roll a number 81—ϭϬϬ, Ǉou’d reĐeiǀe $ϯϬ. There are ϮϬ out of ϭϬϬ possiďle Ŷuŵďers ďetǁeeŶ 81 

and 100, so this corresponds to a 20% chance of $30.  

 

 

 


	Introduction
	Literature Review
	Theoretical Framework
	Experimental Design
	Procedures

	Results
	Certainty Effect vs. Reverse Certainty Effect
	The Role of Noise
	The Role of Certainty
	Individual-Level Results
	A More Rigorous Test
	Robustness to the Mixing Lottery
	Robustness to Payoffs

	Discussion
	Additional Results
	Online Replication


