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Abstract

We introduce Safe Implementation, a framework for implementation theory that

adds to the standard requirements the restriction that agents’ deviations induce out-

comes that are acceptable. Our primitives therefore include both a Social Choice Cor-

respondence, as standard, and an Acceptability Correspondence, each mapping every

state of the world to a subset of allocations. This framework generalizes standard

notions of implementation, and can accommodate a variety of questions, including ro-

bustness with respect to mistakes in play, behavioral considerations, state-dependent

feasibility restrictions, limited commitment, etc.

We provide results both for general solution concepts and for Nash Equilibrium.

For the latter, we identify necessary and sufficient conditions (namely, Comonotonicity

and safety-no veto) that restrict the joint behavior of the Social Choice and Accept-

ability Correspondences, which generalize Maskin’s (1977) conditions. We also show

that these conditions are quite permissive in important economic applications, but

also that Safe Implementation can be very demanding in environments with ‘rich’

preferences, regardless of the underlying solution concept.
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1 Introduction

Since Maskin (1977, 1999)’s seminal work, implementation theory has played a central

role in developing our understanding of market mechanisms, institutions, and their foun-

dations. The theory starts out by specifying a set of agents, a set of states – that pin

down agents’ preferences over the feasible allocations – and a Social Choice Correspon-

dence (SCC) that specifies, for each state, the set of allocations that the designer wishes

to induce. While commonly known by the agents, the state of nature is unknown to the

designer, and hence in order to choose the allocation the designer must rely on agents’ re-

ports. The main objective of the theory is to study the conditions under which it is possible

to specify a mechanism in which, at every state, the allocations selected by the SCC are

sustained as the result of agents’ strategic interaction. The latter is suitably modeled via

game theoretic solution concepts, each giving rise to different notions of implementation.1

In its baseline form, the theory imposes no restriction on the mechanisms that may

achieve implementation, nor on the outcomes that may arise from agents’ deviations,

beyond the fact that they provide the right incentives. 2 For instance, a standard argument

in the literature is the idea that incentives may sometimes be easily provided by applying a

“shoot the deviator” kind of logic. In practice, though, the designer does not always have

this freedom, or perhaps not independent of the kind, the circumstances, or the number

of deviations. In some contexts, especially harsh punishments may not be acceptable, and

hence certain allocations may be used to incentivize the agents in some states of the world,

but not in others; also, depending on the states, the designer himself may be able to commit

to certain outcomes of the mechanism, but not to others. As we will explain, whenever

these considerations are present, the insights we receive from the classical literature that

ignores such concerns for deviations are not applicable. We provide some examples:

(i) In a juridical context, for instance, prescribing punishments and rewards in re-

sponse to ‘deviant’ behavior are often restricted by other constraints or desiderata, such

as constitutional rights, higher level legislation, culture, or social norms.3

(ii) A central banker wants to allocate loans to commercial banks in a way that leads

to the optimal level of financial stability for the economy. But the central banker also

1For instance, Nash (Maskin, 1999) and Subgame Perfect (Moore and Repullo, 1988), or more recently
Rationalizable (Bergemann et al. (2011), Jain et al. (2022); Jain and Lombardi (2022)), Level-k (De Clippel
et al., 2019), and Behavioral (De Clippel, 2014) Implementation. Maskin and Sjöström (2002) survey the
early literature.

2Restrictions on the mechanisms have sometimes been imposed, but by and large the literature has not
paid attention to a mechanism’s outcomes at profiles that are not consistent with the solution concept.
Some exceptions are Bochet and Tumennasan (2022a,b), Shoukry (2019), and Eliaz (2002). These and
other related papers will be discussed in Section 7 and (in the case of Eliaz (2002)) throughout the paper.

3Juridical problems have been among the prime class of institutions about which implementation theory
has been insightful. The recent literature on implementation with evidence, for instance (cf. Kartik and
Tercieux (2012); Ben-Porath et al. (2019), etc.), is largely motivated by this kind of application, although
it did not tackle the aspects that we will focus on, i.e. the designer’s constraints on the outcomes induced
by agents’ deviations.

2



wants to ensure that a minimal level of stability is reached even in the event that some

commercial banks have incorrectly interpreted the current state.

(iii) A competition authority wants to induce a certain market arrangement, which

depends on information that is only available to the firms, but is subject to political

constraints that limit its ability to use certain punishments and rewards at certain states

(see Ex. 1).

(iv) The designer may also care that the outcomes of deviations are acceptable, or

very close the first-best ‘target’ allocation, if he is concerned that the agents may make

mistakes, that they are boundedly rational, or that their preferences are misspecified, etc.4

To account for these considerations, we enrich the baseline framework by adding an

acceptability correspondence that specifies, for each state of the world, the set of alloca-

tions that the designer wishes to ensure, if up to k agents deviate from the profiles that

are consistent with the solution concept at that state. The resulting notion of Safe Imple-

mentation thus requires that, besides achieving implementation, a safe mechanism should

also ensure that outcomes arising from up to k deviations are still acceptable to the de-

signer. Besides the illustrative examples above, this notion provides a flexible framework

to study a variety of robustness notions, related to a mechanism’s safety and resilience

properties, and it may also accommodate important and understudied problems within the

implementation literature, such as the case of state-dependent feasible outcomes (see, e.g.,

Postlewaite and Wettstein 1989), limited commitment on the designer’s part (see Example

1 below), a variety of robustness concerns, behavioral considerations, and others.

This modeling change, however, raises a number of challenges. These are due to

a tension between the eliciation of the state of the world, the outcomes that need to be

implemented, and the punishments that the designer can use to discipline agents’ behavior,

which are state-dependent themselves. Intuitively, if achieving standard (i.e., non-safe)

implementation can be thought of as providing agents with the incentives to reveal the

state, through a suitable scheme of punishments and rewards, with Safe Implementation

the punishments that can be used are restricted by the very information they are designed

to extract. Hence, not only must agents be given the incentives to induce socially desirable

allocations, but also to reveal which prizes and punishments can be used to achieve this

task.

This interplay becomes apparent in the necessary and sufficient conditions that we

provide, respectively in Sections 4 and 5, for Safe Nash Implementation, i.e. when the un-

derlying solution concept is Nash Equilibrium.5 Our necessary condition, Comonotonicity,

4For an example of undesirable outcomes of a mechanism due to preference misspecification, see the
famous case of the Israeli Day Care fees by Gneezy and Rustichini (2000), also popularized by Levitt and
Dubner (2006).

5While we will also discuss results for general solution concepts, our main focus is on Nash Equilib-
rium, as it is the standard workhorse for conceptual innovations within implementation theory. See, e.g.,
Kartik and Tercieux (2012) and Ben-Porath et al. (2019) for evidence-based implementation, Kartik et al.
(2014) and Lombardi and Yoshihara (2020) for preferences for honesty, De Clippel (2014) for Behavioral
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entails a joint restriction on the Social Choice and on Acceptability Correspondences. For

single-valued SCC (or Social Choice Functions, SCF), for instance, if Maskin Monotonicity

requires that an allocation that is selected by the SCF at one state must also be selected at

any other state in which it has (weakly) climbed up in all agents’ rankings of the feasible

alternatives, Comonotonicity strengthens it in two ways: first, it states that for such an

allocation to be selected by the SCF at the second state, it suffices that it climbs (weakly)

up in everyone’s ranking only compared to the alternatives that are acceptable at the first

state; second, it requires the acceptability correspondence (not the SCF) to satisfy a form

of monotonicity akin to Maskin’s. As for sufficiency, our results show that Comonotonicity

is almost sufficient as well, since it always ensures Safe Nash Implementation in combi-

nation with a generalization of Maskin’s No-Veto condition that we call Safe No-Veto,

which is often automatically satisfied.6 Both Comonotonicity and Safe No-Veto coincide

with Maskin’s conditions whenever the acceptability correspondence is vacuous, in which

case Safe Nash Implementation also coincides with (non-safe) Nash Implementation; but

they are stronger in general. For the necessity part of our results, this is because the

safety requirement that we impose does make implementation harder to obtain, and the

conditions we provide directly reflect the extent to which this is the case.7 Consider the

following example:

Example 1 (Competition Policy with Non-Credible Punishments) Three firms,

1, 2 and 3, are monopolists within their respective countries. While currently active only

on their local markets, firms 1 and 2 could operate in any country. Firm 3 instead is

a highly indebted company, who can only operate in its own country. A competition

authority needs to choose between maintaining the status quo (allocation a), or changing

the level of competition in the three markets by implementing alternatives b or c. In

alternative b, all firms are active on all markets they can access, which they share equally

with the competing firms. Alternative c is the same as the status quo, except that the

regulator lets firm 3 go bankrupt, splits 3’s market equally between 1 and 2, but these

firms must each pay half of the debt of firm 3.

There are three possible states for the demand in market 3, which can be low (L),

medium (M) or high (H). The true state is known to the firms but not to the designer.

Firm 3’s ranking is such that the status quo is always at the top. When the demand is low,

then it prefers to be bailed out rather than face others’ competition, but not otherwise.

Hence, its ranking is such that a ≻ b ≻ c, except in state L, when it is a ≻ c ≻ b. As

Implementation, etc.
6For our general results on SCC, we distinguish between a weak and a strong version of Comonotonicity.

The two notions coincide for SCF. For SCC, the first notion is necessary, the second is for sufficiency.
7This result highlights an important difference between our approach and Eliaz’s (2002). Namely that,

unlike in our approach, the restrictions on the mechanism in Eliaz (2002) cannot be thought of as an extra
desideratum on top of Nash implementation. In fact, implementation in the sense of Eliaz (2002) may
obtain even if Nash Implementation is impossible. This is reflected in the necessary condition that he
obtains, which unlike ours is not stronger than Maskin Monotonicity. This point will be further explained
below.
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Figure 1: Firms 1, 2 and 3’s preference orderings over the three alternatives, at the three
states, L, M , andH. The acceptability correspondence, shown in dashed lines, is such that
A(L) = A(M) = {a, b}, A(H) = {a, b, c}. In this setting, the SCF such that f(L) = a and
f(M) = f(H) = b is Nash Implementable, but not Safely so, with respect to acceptability
correspondence A.

for the other firms, when demand in country 3 is medium, both firms 1 and 2 prefer to

compete with each other in their local market, in order to access market 3 at no cost, but

they would not be willing to enter it (even if splitting it in half) if they have to pay 3’s

debt. Hence, their ranking at this state is b ≻ a ≻ c. When the demand in country 3 is

low, neither firm 1 nor 2 are willing to give up their monopolies in order to access the third

market, and their ranking is a ≻ b ≻ c. When the demand is high, instead, both firms 1

and 2 prefer to absorb half of the third market and pay the debt of the bankrupt firm,

over the status quo, over the fully competitive outcome in all countries. Their preferences

therefore are c ≻ a ≻ b. (See Fig.1.)

The competition authority would like to induce the competitive outcome, b, unless all

firms prefer to maintain the status quo. Then, the SCF they wish to implement is such

that f(L) = a and f(M) = f(H) = b. Based on Maskin’s results, absent safety concerns,

this SCF is Nash Implementable in this setting.

But now suppose that alternative c is not acceptable at the states where it is at the

bottom for a majority of the firms, even as the outcome of a punishment designed to

implement the SCF above. This may be because it would not be desirable for the designer

to let firm 3 go bankrupt, or because it would not be politically credible to commit to

enforcing such an outcome, if needed, in response to someone’s deviation (for instance, the

three firms can be from three different European countries, and it may not be credible that

the competition authority would get the political support to let country’s 3 firm go burst,

if needed, at a state when it is the worst outcome for the majority). That is, suppose

that outcome c does not belong to the acceptability correspondence at states L and M .

Then, it turns out that the SCF above cannot be Safely Implemented in this case. Thus,

if the designer is subject to such political constraints, which make outcome c not credible

at some states, then the insights based on the classical results are misleading.

Specifically, our results imply that in order to fulfill the Safety requirement, the de-
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signer in this case must settle for the status quo also at state H, thereby implementing a

SCF that induces the competitive outcome less often. The intuition is that if b and not a

has to be selected at state H (as entailed by SCF f above), in order to avoid the existence

of a Nash equilibrium at H in which firms collude so as to induce the non-competitive

outcome, the designer must rely on outcome c as a deterrent, since at such a state all

agents prefer a over b. But if this were allowed, then c could emerge as the outcome of a

deviation from an equilibrium at state L, where it is not acceptable. As a consequence,

c cannot be used to discipline behavior at state H either, and hence only a SCF that

chooses the same outcome at both L and H can be implemented. �

After providing the general necessary and sufficient conditions for Safe Nash Imple-

mentation, in Section 6 we move on to consider special cases of interest, in which we

provide both positive and negative results. For instance, in economies that satisfy a stan-

dard single-crossing condition, we show that any SCF can be Safely Nash Implemented,

whenever the acceptability correspondence at every state includes an arbitrarily small

neighborhood of the allocation prescribed by the SCF. This means that, in these settings,

any SCF can be implemented in the Almost Perfectly Safe sense, i.e. ensuring that the

allocation remains arbitrarily close to the desired one even if up to k agents deviate from

the equilibrium profiles, for any k < n
2 (where n is the number of agents in the economy).

The intuition for this result is that, in environments with a continuum and convex outcome

space, and if preferences are continuous and satisfy standard single-crossing properties,

incentives can effectively be provided with small deviations from the allocations that the

designer wishes to implement. This insight is clearly in stark contrast with Example

1 above, which obviously features indivisibilities. Indeed, it is generally the case that

safety concerns are harder to accommodate when indivisibilities are present. Nonetheless,

positive results can also be obtained in important economic settings with indivisibilities.

Specifically, we show that in a single-good assignment problem the efficient allocation

can always be Safely Nash Implemented, whenever there is some null allocation that is

acceptable at all states.

The results above show that there are interesting and important economic environ-

ments in which Safety concerns can be accommodated at minimal or no cost. But Safe

Implementation also has its limits: as we further show, seemingly plausible safety re-

quirements can never be implemented, regardless of the underlying solution concept (be

it Nash Equilibrium or not), when preferences are ‘rich’ or when the SCF is surjective

on the space of feasible allocations. Thus, safety requirements are demanding in general,

and there are serious limits to their implementability. Nonetheless, economically impor-

tant settings exist in which they can be guaranteed under standard and generally weak

conditions.

We discuss the related literature in Section 7, and conclude with Section 8, where we

explain how our approach may contribute to the literature on behavioral implementation
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(see, e.g., Eliaz (2002); Renou and Schlag (2011); Tumennasan (2013); De Clippel (2014),

De Clippel et al. (2019), Crawford (2021), etc.), both by favoring its integration with

classical notions and by providing a ‘detail free’ way of accounting for the possibility of

behavioral deviations, without necessarily ascribing to a particular theory thereof.

2 Model

We consider environments with complete information, with a finite set of agents, N =

{1, ..., n}, and an outcome space X. Each agent i has a bounded utility ui : X ×Θ → R,

where Θ is the set of states of nature, with typical element θ ∈ Θ, which we assume is

commonly known by the agents unknown to the designer. We let E =
〈

N,Θ, X, (ui)i∈N
〉

denote the environment from the viewpoint of the designer, and for any θ ∈ Θ, we let

E (θ) :=
〈

N,X, (ui (·, θ))i∈N
〉

denote the environment in which agents commonly know

that preferences are (ui (·, θ))i∈N . Finally, for any i ∈ N , θ ∈ Θ and x ∈ X, we let

Li(x, θ) := {y ∈ X : ui(y, θ) ≤ ui(x, θ)} denote i’s lower contour set of x in state θ.

A social planner aims to choose an outcome (or a set of outcomes), as a function of

the state of nature. These objectives are represented by a social choice correspondence

(SCC), F : Θ → 2X \ ∅.The special case when F (θ) is a singleton for every θ is referred to

as social choice function (SCF), and denoted by f : Θ → X. States of nature are known

to the agents but not to the designer.

A mechanism is a tuple M = 〈(Mi)i∈N , g〉, where for each i ∈ N , Mi denotes the set of

messages of agent i, and g : M → X is an outcome function that assigns one allocation to

each message profile, where we letM = ×i∈NMi andM−i = ×j 6=iMj . Similarly, for subsets

of players D ⊂ N , we let MD and M−D denote, respectively, the set of message profiles

of all agents that are inside and outside the set D. For each θ ∈ Θ, any mechanism M =

〈(Mi)i∈N , g〉 induces a complete information game GM(θ) := 〈N, (Mi, U
θ
i )i∈N 〉, where Mi

is the set of strategies of player i, and payoff functions are such that U θ
i (m) = ui(g(m), θ)

for all i ∈ N and m ∈ M . Agents’ behavior is described by a solution concept, C, which

for any given mechanism M induces a correspondence CM : Θ → 2M that assigns a

(possibly empty) set of message profiles to every state of the world. For any mechanism

M = 〈(Mi)i∈N , g〉 and state θ ∈ Θ, we let g(CM(θ)) := {x ∈ X : ∃m ∈ CM(θ) : g(m) = x}

denote the set of outcomes that are induced by action profiles that are consistent with the

solution concept C, at the state of the world θ. Full implementation is defined as follows:

Definition 1 (Implementation) A SCC is (fully) C-implementable (or, it is fully im-

plementable with respect to solution concept C), if there exists some mechanism M s.t. (i)

CM(θ) 6= ∅, and (ii) g(CM(θ)) = F (θ) for all θ ∈ Θ.

For instance, if C is such that CM(θ) denotes the set of Nash Equilibria of GM(θ) (i.e.,

CM(θ) := {m∗ ∈ M : ∀i ∈ N,U θ
i (m

∗) ≥ U θ
i (mi,m

∗
−i)}), then the standard notion of Nash

Implementation (Maskin, 1999) obtains.
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Next we introduce the new primitives that are needed for Safe Implementation. As we

discussed in the introduction, the idea is that the designer not only wishes to attain C-

implementation, but also ensure that the implementing mechanism has the property that,

should a number of agents deviate (perhaps due to irrationality, a mistake, or because the

planner’s model of their preferences or of their behavior is misspecified), the mechanism

still induces outcomes that the designer regards as acceptable. Like the ‘target’ allocations

in the SCC, what is regarded as acceptable may depend on the state. This is modelled by

an acceptability correspondence, A : Θ → 2X \ ∅, where A(θ) denotes the set of outcomes

that the social planner regards as acceptable at state θ. A natural requirement – which,

in fact, would follow immediately as a necessary condition from Def. 2 below, and which

therefore we maintain throughout – is that F (θ) ⊆ A(θ) for all θ ∈ Θ.

Example 2 (Some Examples and Special Cases)

1. Minimal Safety Guarantees: In some settings, it may be natural to require that no

agent should receive their least preferred outcome, even as the result of deviations.

This can be modelled letting the acceptability correspondence A : Θ → 2X \ ∅ be

minimally safeguarding, i.e. such that for all θ ∈ Θ,

A(θ) = X\

{

x ∈ X : ∃j ∈ N s.t. x ∈ argmin
x∈X

uj(x, θ)\ argmax
x∈X

uj(x, θ)

}

(1)

2. Planner’s Welfare Guarantees: The acceptability correspondence may explicitly rep-

resent the concerns of a social planner under second best considerations. For in-

stance, if the planner has state-dependent preferences over allocations, W : X×Θ →

R, then it is natural to think about the SCC as the set of optimal outcomes at ev-

ery state (i.e., F (θ) = argmaxx∈X W (x, θ) for all θ), and to consider acceptable

allocations that ensure that the planner attains at least a certain (possibly state-

dependent) reservation value w̄(θ). In this case, the acceptability correspondence is

defined such that, for all θ ∈ Θ, A(θ) = {x ∈ X : W (x, θ) ≥ w̄(θ)}.

3. Perfect Safety: Another interesting special case is when A(θ) = F (θ) for all θ ∈ Θ.

This is in a sense the most demanding notion of safety, in that it requires that also

the deviations do not induce outcomes inconsistent with the SCC.

4. ǫ-Perfect Safety: When X is a metric space, one reasonable restriction is that the

acceptable allocations are within a given distance from the choices in the SCC or

SCF. For instance, one could define A(θ) = Nǫ(f(θ)) for all θ ∈ Θ, where Nǫ is an

epsilon neighbourhood with respect to the metric on X. In this sense, the acceptable

allocations would be close to the ‘optimal’ ones in the literal sense.

5. Limited Commitment Interpretation: The A(·) correspondence may also represent

other constraints that the planner faces in designing the mechanism. For instance, in
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designing punishments and rewards for the agents, the designer may be constrained

in what he can commit to, and for instance mechanisms that prescribe especially

harsh punishments may not be credible at certain states after a small number of

deviations. Then, for each θ, A(θ) can be taken as a primitive that encompasses the

set of outcomes that the planner can credibly commit to using at that state.

6. State-Dependent Feasible Allocations: Our framework can also be used to accommo-

date the case in which the very set of feasible allocations is state-dependent, and the

outcomes of a mechanism are required to be feasible not only at equilibrium, but also

after deviations. This can be accommodated within our framework by reinterpreting

A(θ) as the set of allocations that are feasible at state θ.8

Next, let k ∈ {1, ..., n} denote the safety level that the designer wishes to impose. That

is, the maximum number of deviations from the solutions m∗ ∈ CM(θ) that the designer

wants to ensure they induce outcomes in A(θ), for all θ. If k = n, then the safety level

is such that the mechanism is never allowed to select an allocation outside of A(θ). This

is the relevant case, for instance, for the case of state-dependent feasible allocations that

we just discussed (cf. Postlewaite and Wettstein (1989)). Another relevant case is when

k = 1. In this case, like baseline Nash Implementation, (A, k)-Safe Implementation is only

concerned with unilateral deviations, but it requires that they are not only unprofitable

for the agents, but also acceptable to the designer.

For any k ∈ {1, ..., n} let Nk denote the set of all subsets of N with k elements (that is,

Nk := {C ∈ 2N : |C| = k}), and further define a distance function dN (m,m′) := |{i ∈ N :

mi 6= m′
i}| and a neighbourhood Bk(m) := {m′ ∈ M : dN (m,m′) ≤ k}, which consists of

the set of message profiles m′ that differ from m for at most k messages. Also, we say that

A∗ : Θ → 2X \ ∅ is a sub-correspondence of A : Θ → 2X \ ∅ if it is such that A∗(θ) ⊆ A(θ)

for all θ ∈ Θ. With this, (A, k)-Safe Implementation is defined as follows:9

Definition 2 ((A, k) Safe Implementation) Fix a solution concept C, k ∈ {1, ..., n}, a

SCC F : θ → 2X \ ∅, and let A : Θ → 2X \ ∅ denote an acceptability correspondence, such

that F (θ) ⊆ A(θ) for all θ ∈ Θ. We say that F is (A, k)-Safe C-implementable if there

exists a mechanism M = ((Mi)i∈N , g) such that: (i) F is C-Implemented by M, and (ii)

for all θ ∈ Θ, m∗ ∈ C(θ), and for all m′ ∈ Bk(m
∗), g(m′) ∈ A(θ).

If, furthermore, the acceptability correspondence, A, admits no sub-correspondence A∗

for which (A∗, k)-Safe C-Implementation is possible, then we say that A is maximally safe.

8State-dependent feasibility have been considered by Postlewaite and Wettstein (1989) in the context of
Walrasian Implementation, but the problem has been thoroughly neglected by the literature. Our necessity
results directly imply necessary conditions for implementation with state-dependent feasible allocations,
for general SCC, thereby filling an important gap in the literature.

9Most of our analysis will focus on the case in which C is Nash Equilibrium. Nonetheless, this general
definition is useful to clarify the connections with the related literature, and to provide some general
results.
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Figure 2: Firms 1, 2 and 3’s preference orderings over the three alternatives, at the three
states, L, M , and H. For each state, the allocation chosen by SCF f∗ in Ex. 3 is indicated
by a square. The acceptability correspondence A from Ex.1 is shown by the dotted lines,
and is not maximally safe for this SCF. Acceptability correspondence A∗ in Ex. 3 is
maximally safe, and is represented by the dashed lines in the figure.

First note that, for any C, this notion generalizes the standard notion of (non-safe)

implementation of Def. 1, which obtains as the special case in which condition (ii) is moot

in the sense that A(θ) = X for all θ. Def. 2 also generalizes notions in the literature that

share a similar motivation to ours, such as Shoukry (2019), and (Eliaz, 2002).10

Second, for any k, if a SCC is (A, k)-Safe Implementable, then it is (Â, k)-Safe Imple-

mentable for any ‘more permissive’ correspondence, Â : Θ → 2X \∅, such that A(θ) ⊆ Â(θ)

for all θ ∈ Θ. This observation motivates the notion of Maximally Safe acceptability

correspondence in Def. 2: if a SCC is (A, k)-Safe C-Implementation, but not with re-

spect to any sub-correspondence of A, then it means that A reflects the most demanding

acceptability correspondence that the designer could impose, while still retaining Safety.

Example 3 Consider again the environment in Ex.1: it will follow from our results that

a SCF such that f∗(L) = f∗(H) = a and f∗(M) = b is Safe Implementable (letting the

solution concept, C, be Nash equilibrium) with respect to the A correspondence in Ex.1

(see Fig.2). That acceptability correspondence, however, is not maximally safe for such

a SCF, because it can be shown that the same SCF can also be Safe Implemented with

respect to a sub-correspondence of A that rules out outcome c also at state H. Formally,

A∗ : Θ → 2X \ ∅ s.t. A∗(θ) = {a, b} for all θ. �

With this in mind, it should also be clear that the case A(θ) = F (θ) for all θ ∈ Θ is

the most demanding one, and will be referred to as Perfectly Safe Implementation.11

10Both of these papers will be discussed extensively. Shoukry (2014) considers restrictions similar to
minimal safety guarantees, but as we discuss in Section 7, the main notion of implementation in that paper
is very different.

11For the case of SCF, Shoukry’s (2019) outcome-robust implementation corresponds to this case, with
C equal to Nash Equilibrium, but allowing transfers and assuming that players have preferences for
truthtelling. For the case of non-single valued SCC, his notion is more restrictive than Perfectly Safe
Implementation, since not only it requires that the outcome stays within the SCC, but that it doesn’t
change at all.
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We will instead use the term Almost Perfectly Safe Implementation to refer to the

case in which, for all ǫ > 0, Safe Implementation can be obtained with respect to an

ǫ-Perfectly Safe acceptability correspondence (case 4 in Ex.2).

Third, if the solution concept is held fixed across k (e.g., if C is Nash Equilibrium, as

in the next sections), then for any acceptability correspondence A : Θ → 2X \ ∅, a SCC is

(A, k)-Safe Implementable only if it is (A, k′)-Safe Implementable for all k′ ≤ k. That is,

if C is constant, then increasing the k parameter does make the safety requirement more

demanding. This is not necessarily true if instead the solution concept depends on k, as

it is the case for instance with the notion of Fault Tolerant Implementation (FTI, (Eliaz,

2002)), in which implementation may fail for some k, and be possible for some k′ > k.12

3 Safe Nash Implementation

For the time being, we will take Nash Equilibrium to be the underlying solution concept,

and hence for any mechanism M, the correspondence CM : Θ → 2M in Definition 2 coin-

cides with the Nash Equilibrium correspondence. This is what we refer to as Safe Nash

Implementation. (We will return to general solution concepts in Section 6.3). Also, as

in Def. 2, if the acceptability correspondence A is such that Safe Nash Implementation is

impossible for all sub-correspondences, then we say that A is maximally safe.

The natural benchmark is obviously Nash Implementation (Maskin, 1999), which ob-

tains as a special case when the extra safety requirement is moot (i.e., if A(θ) = X for all

θ ∈ Θ). Also, it is straightforward to check that the following hold: (i) if a SCC is (A, k)-

Safe Nash Implementable, then it is (Â, k)-Safe Nash Implementable for all Â : Θ → 2X \∅

s.t. A(θ) ⊆ Â(θ) for all θ ∈ Θ – that is, making the acceptability correspondence more

permissive makes implementation easier to achieve; (ii) since the solution concept does

not depend on k, if a SCC is (A, k)-Safe Nash Implementable, then it is (A, k′)-Safe Nash

Implementation for all k′ ≤ k – that is, increasing the number of deviations the mecha-

nism must be resilient to makes implementation harder. Maskin (1999) showed that the

following condition is necessary for Nash Implementation:

Definition 3 (Maskin Monotonicity) A SCC is (Maskin) monotonic if for any θ, θ′,

if x ∈ F (θ) is such that Li (x, θ) ⊆ Li (x, θ
′) for every i ∈ N , then x ∈ F (θ′).

Maskin (1999) also showed that, together with the following ‘no veto condition’, mono-

tonicity is also sufficient for Nash Implementation, whenever n ≥ 3:

12FTI obtains as the special case of Def.2, letting the acceptability correspondence be s.t. A(θ) = F (θ)
for all θ ∈ Θ, and taking k-Fault Tolerant Nash Equilibrium (k-FTNE) as solution concept. The reason
why, under this notion, increasing k does not necessarily tighten the implementation requirement, is that
under k-FTNE, if M is such that CM

k (θ) 6= ∅ 6= CM
k′ (θ), and k′ < k, then it may be that CM

k (θ) ⊆ CM
k′ (θ).

The monotonicity in k that holds when C is held constant, as with Nash Equilibrium, is thus not guaranteed
for FTI.
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Definition 4 (Maskin No Veto) A SCF satisfies the ‘no veto property’ if whenever θ

is such that there exist x and i s.t. x ∈ argmaxy∈X uj (y, θ) for all j 6= i, then x ∈ F (θ).

Obviously, Def. 4 has no bite if preferences rule out ‘almost unanimity’, as is the case

in economic environments, where agents have strictly opposing interests (e.g., Mirrlees

(1976), Spence (1980), Arya et al. (2000), Kartik and Tercieux (2012), etc.).

In the next two sections we provide necessary and sufficient conditions for Safe Nash

Implementation. Since Nash Implementation is a special case of Safe Nash Implementa-

tion, the necessary conditions for Safe Nash-Implementation will have to be a generaliza-

tion of Def. 3. Our sufficient conditions will also be a generalization of Maskin’s, and they

coincide with the necessary conditions under an ‘economic condition’ analogous to Kartik

and Tercieux (2012)’s, or if the designer is allowed to adopt stochastic mechanisms.

4 Necessity

We introduce next a generalization of (Maskin) Monotonicity, which will be shown to be

necessary for (A, k)-Safe Nash Implementation:

Definition 5 (Weak Comonotonicity) A SCC, F : Θ → 2X \ ∅, and an acceptability

correspondence, A : Θ → 2X \ ∅, are weakly comonotonic if they satisfy the following:

1. [A-Constrained Monotonicity of F ] If θ, θ′ ∈ Θ and x ∈ F (θ) are such that Li(x, θ)∩

A(θ) ⊆ Li(x, θ
′) ∩A(θ) for all i ∈ N , then x ∈ F (θ′).

2. [weakly F -Constrained Monotonicity of A] If θ, θ′ ∈ Θ are such that, ∀x ∈ F (θ),

Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ) for all i ∈ N , then A(θ) ⊆ A(θ′).

To understand this condition, first note that weak Comonotonicity implies (Maskin)

Monotonicity: If θ, θ′ ∈ Θ are such that Li(x, θ) ⊆ Li(x, θ
′), and x ∈ F (θ), then the

condition in part 1 of Def. 5 is satisfied for any A, and hence x ∈ F (θ′).

Second, if A(θ) = X for every θ – i.e., if the safety requirement is vacuous – then part

2 in Def. 5 holds vacuously, and part 1 coincides with (Maskin) Monotonicity. Other-

wise, part 1 of Def. 5 restricts the SCC more than (Maskin) Monotonicity does. For a

SCF, for instance, this condition requires that f(θ) = f(θ′) whenever Li(f(θ), θ)∩A(θ) ⊆

Li(f(θ), θ
′) ∩ A(θ), which may be the case even if Li(f(θ), θ) 6⊆ Li(f(θ), θ

′). In the latter

case, (Maskin) Monotonicity alone would leave the SCF free to set f(θ′) 6= f(θ), but weak

Comonotonicity would not (see Ex. 1 in the Introduction). Thus, when the acceptability

correspondence is non-trivial, weak Comonotonicity forces the SCF to be relatively more

constant than Maskin’s monotonicity would, and more so as the acceptability correspon-

dence gets less permissive. More broadly, note that part 1 of Def. 5 gets less restrictive as

the acceptability correspondence gets more inclusive: if A satisfies part 1 of Def. 5, and

Â is such that A(θ) ⊆ Â(θ) for all θ ∈ Θ, then also Â satisfies it.
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Part 2 of Def. 5 states a monotonicity property of the acceptability correspondence,

akin to Maskin’s monotonicity for SCC, which imposes a lower bound on its inclusivity.

Looking at the contrapositive statement, if some allocation is acceptable at state θ but

not at state θ′, then there must exist a ‘target’ allocation x ∈ F (θ) that, going from state

θ to θ′, has moved down in the ranking of the allocations within A(θ) for at least one of

the agents. Note that, in this case, the bite of the condition depends on the SCC: the

more inclusive the SCC, the less stringent part 2 of Def. 5. This suggests, for instance,

that compared with the case of SCF, this condition leaves more freedom for the set of

acceptable allocations to vary with the state when the designer aims to implement a (non

single-valued) SCC.

Finally, note that weak Comonotonicity is no harder to check than Maskin monotonic-

ity (except, of course, that one also needs to check for the A correspondence, besides the

F ).

We can now turn to our main results on necessity. As discussed in Section 2, Safe im-

plementation becomes more restrictive as the A correspondence gets finer. Hence, as far

as necessary conditions are concerned, it is natural to start with the case when the accept-

ability correspondence is Maximally Safe, which puts the most stringent constraints on

safe implementation (if a SCC is (maximally) safe implementable with respect to A, then

it would also be Safe-Implementable with respect to any ‘coarser’ acceptability correspon-

dence, A∗, such that A(θ) ⊆ A∗(θ) for all θ). We show next that weak Comonotonicity is

necessary for maximally safe Nash implementation:

Theorem 1 (Necessity) A SCC, F : Θ → 2X \∅, is maximally (A, k)-Safe Nash Imple-

mentable only if (F,A) are weakly Comonotonic.

To gain some intuition for this result, note that if the SCC is (A, k)-Safe Nash Imple-

mentable and A is maximally safe, then for each θ ∈ Θ, A(θ) comprises all the outcomes

that the designer can use to deter agents’ deviations, and no more than those. Thus, from

the viewpoint of providing agents with the right incentives within the mechanism, at any

given θ, it is only agents’ preferences over the set A(θ) that matter. So, if going from one

state θ to another θ′, one of the ‘target’ allocations x climbs (weakly) up in everyone’s

ranking within the restricted set A(θ) of acceptable allocations (not over all of X), and if –

by the Nash implementation requirement – x must be a Nash equilibrium outcome at state

θ for some mechanism, then it would also have to be a Nash equilibrium outcome at state

θ′. But then x should be within the SCC at both states, otherwise Nash implementation

would not obtain. This explains the necessity of part 1 of Def. 5.

To understand part 2, if going from state θ to θ′ we have that all the allocations in F (θ)

(weakly) ‘climb up’ in everyone’s ranking within the A(θ) set, then all such allocations

would be Nash Equilibrium outcomes at both states θ and θ′, and would each be induced

by some Nash equilibrium profile m∗ in some mechanism. But then, in such a mechanism,
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the set of outcomes that are within k deviations from m∗ at state θ, would also be within

k-deviations from a Nash equilibrium at state θ′, and thus they must also be acceptable at

that state. It follows that A(θ′) must contain at least all of the outcomes that are within

k deviations from Nash equilibria at θ, and hence in A(θ).

As we discussed, moving to the case of non-maximally safe acceptability correspon-

dences, Safe Nash implementation gets less demanding. Nonetheless, it is easy to see from

the argument above that, if A is not maximally safe, then the first part of Def. 5 is still

necessary. The second part, however, need not hold:

Example 4 Consider again the environment in Example 3 (see Fig.2). As discussed, the

SCF f∗ from that example is safe implementable with respect to both correspondences A

and A∗, but only the latter is maximally safe with respect to f∗ (A cannot be, since A∗ is a

sub-correspondence of A). It is easy to check that, as it follows from Theorem 1, A∗ satisfies

both conditions in Def. 5, and hence that it is (weakly) comonotonic with respect f∗. In

contrast, the A correspondence only satisfies part 1 of Def. 5 (as implied by Proposition

1), but not part 2: moving from state θ = H to θ′ = L, allocation a = f∗(H) moves

(weakly) up in everyone’s ranking within the set A(H) = {a, b, c}. Yet, A(H) * A(L).

This is obviously not the case for the A∗ correspondence, since A∗(H) = A∗(L) = {a, b} .

�

Proposition 1 (Non-maximally safe implementation (necessity)) F : Θ → 2X \

∅, is (non-maximally) (A, k)-Safe Nash Implementable only if (F,A) satisfy part 1 of Def.

5.

The results above formalize a trade-off between the restrictiveness of the acceptability

correspondence and the way in which the SCC correspondence varies with θ. This is easier

to see considering the case of a SCF. Suppose that the designer starts with a (Maskin)

Monotonic SCF. Then, among the A∗ : Θ → 2X\∅ correspondences that satisfy parts 1 and

2 of Def.5, those (if they exist) that are minimal with respect to set inclusion at every state,

identify the most demanding acceptability requirements that the designer can impose,

if he wishes to achieve Safe Nash Implementation. If, however, the safety desiderata

are more stringent than this (i.e., if no such ⊆-minimal A∗ is a sub-correspondence of

the acceptability correspondence that the designer wishes to impose), then Safe Nash

Implementation necessarily forces the SCF to be more constant than what is implied by

(Maskin) Monotonicity (Ex.1 in the Introduction provides an instance of this). 13

Theorem 1 also has the following direct implication:

Corollary 1 (Impossibility of Perfectly Safe Implementation of SCF) For any k ≥

1, if f : Θ → X and A : Θ → 2X \ ∅ is s.t. A(θ) = {f(θ)} for some θ, then f is (A, k)-

13As already mentioned, this is not the case for notions in which the solution concept varies with k, as
in Eliaz (2002). This point is further discussed below (see also footnote 12).
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Safely Nash Implementable only if f is constant. It follows that only constant SCFs can

be Perfectly Safely Nash-Implemented.

This result follows directly from part 1 of Def. 5: if A(θ) = {f(θ)}, then Li(f(θ), θ) ∩

A(θ) = {f(θ)} ⊆ Li(f(θ), θ
′) for any θ′, and the necessity of Comonotonicity implies that

f is (A, k)-Safely Nash Implementable only if x = f(θ′) for all θ′.

Corollary 1 is especially relevant to understand the connection with the related notions

put forward by Eliaz (2002) and Shoukry (2019), which for SCFs are a special case of

Def. 2 in which the acceptability correspondence is set to be the most demanding, in

that it requires Perfect Safety (cf. point 3 in Ex. 2). More specifically, Corollary 1

suggests a certain trade-off between the restrictiveness of the acceptability correspondence

and the solution concept underlying the notion of implementation. In Eliaz (2002), for

instance, positive results for non-constant SCFs are made possible by the weakening of

the implementation requirement due to the adoption of a refinement of Nash Equilibrium:

since k-FTNE refines Nash Equilibrium (and more so, as k increases), it makes it easier

to avoid ‘bad’ equilibria.14 Shoukry (2019), instead, maintains both the Perfect Safety

requirement and Nash Equilibrium as a solution concept, and in order to recover possibility

results for SCFs, he allows for transfers and a preference for the truth.15

Despite this impossibility of Perfectly Safe Nash Implementation, however, we will

show that in an important class of environments it is possible to get arbitrarily close

to Perfect Safety. Specifically, in environments that satisfy a standard single-crossing

condition, Safe Nash Implementation will be possible for any (Maskin) Monotonic SCF

in the Almost Perfectly Safe sense (i.e., for all ǫ > 0, (A, k)-Safe Nash Implementation is

possible for an acceptability correspondence that satisfies the condition in point 4 of Ex.

2). Also, we stress that the negative result above holds for SCF, but as the next example

shows, Perfectly Safe Nash Implementation may be achieved if the SCC is non-single

valued.

Example 5 Let the environment be such that Θ = {L,R}, X = {a, b, c}, N = {1, 2, 3, 4}.

Preferences are as follows: In state L, players 1 and 2 prefer a to b to c, while players 3

and 4 prefer b to c to a. In state R players 1 and 2 prefer c to b to a, while players 3 and

4 prefer a to c to b. The designer wishes to implement a SCC that selects the alternatives

that are at the top of at least half of the agents (hence, F (L) = {a, b} and F (R) = {a, c}),

but ensuring perfect safety, in the sense that only the outcomes consistent with the SCC

are deemed acceptable (that is, A(L) = {a, b} = F (L) and A(R) = {a, c} = F (R).) Fig. 3

summarizes as usual agents’ preferences, the SCC, and the acceptability correspondence.

As it will follow from Theorem 3 in the next section, such a SCC can be perfectly safe

14With unrestricted mechanisms and complete information, the ease with which undesirable equilibria
can be ruled out is the main driver of necessity results, more than ensuring non-emptiness of the solution
concept.

15Shoukry (2019) obtains a slightly weaker version of Corollary 1, in that A(θ) = {f(θ)} is required at
all states as opposed to some.
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implemented. To see this, first notice that the intersection of player 3’s lower contour set

of b at state L with the acceptable allocations at that state, are not a subset of his lower

contour set at state R. Hence, comonotonicity does not require that b ∈ F (R). Similarly,

comonotonicity does not require that c ∈ F (L), even if c ∈ F (R), because the relevant

contour set of player 1 at state L is not a subset of that at state R. Indeed, it will be easy

to verify that this environment satisfies the sufficient conditions that we provide within

the next section, and hence the result will follow directly from Theorem 3. �

Figure 3: Players 1, 2, 3 and 4’s preference orderings over the three alternatives, at the
two states, L and R. For each state, the allocation chosen by SCC F in Ex. 5 is indicated
by a square. The acceptability correspondence A is shown by the dashed lines, and is
perfectly safe, as it coincides with the SCC at every state.

Theorem 1 follows directly from the next result, which describes a structural property

of any mechanism that safely implements the SCC. To this end, for any mechanism M,

for any k ≥ 1, and for any θ ∈ Θ, let Rk(θ) =
⋃

m∗∈CM(θ)Bk(m
∗), where CM(θ) denotes

the set of Nash equilibria of GM(θ). That is, Rk(θ) consists of all message profiles that,

given M, are within k deviations from some Nash equilibrium at state θ. Finally, given

an acceptability correspondence A∗ : Θ → 2X \ ∅ and k ≥ 1, we say that a mechanism

M = ((Mi)i∈N , g) is k-surjective on A∗ if, for every θ ∈ Θ, g(Rk(θ)) = A∗(θ).

Theorem 2 (On the Structure of Safe Mechanisms) Any mechanism that (A, k)-

Safe Nash Implements F must be k-surjective on some weakly Comonotonic sub-correspondence

of A. If, moreover, A is maximally safe, then the implementing mechanism is k-surjective

on A itself.

Theorem 2 ties together the restrictions on the acceptability correspondence imposed

by weak Comonotonicity, with the safety level parameter k. First, this result says that

if a mechanism (A, k)-Safely Nash Implements F , then the Ak correspondence defined

as Ak(θ) := g(Rk(θ)) for all θ ∈ Θ is weakly Comonotonic and a sub-correspondence of

A. This directly implies that Ak and F are weakly Comonotonic, and hence Theorem 1

follows from Theorem 2 when Ak = A, as well as the following further necessary condition

for (non-maximal) Safe Implementation:
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Corollary 2 F : Θ → 2X \ ∅, is (non-maximally) (A, k)-Safe Nash Implementable only

if A admits a sub-correspondence, A∗ such that (A∗, F ) satisfy part 2 of Def. 5.16

Finally, notice that holding a mechanism M fixed, increasing k (weakly) enlarges the

set of outcomes that are within k deviations from the Nash Equilibria at state θ, Ak.

As long as the corresponding Ak defined as above is weakly Comonotonic and such that

Ak(θ) ⊆ A(θ) for all θ ∈ Θ, then the necessary condition for (A, k)-Safe Nash Implementa-

tion is satisfied. But if, as k increases, the Ak correspondence is not a sub-correspondence

of A, or not weakly Comonotonic, then M cannot (A, k)-Safe Nash implement the SCC. In

that case, Safe Implementation by M requires either relaxing the requirement by making

A more inclusive (if Ak is not a sub-correspondence of A, or if it violates part 2 of Def.

5), or to ‘reduce’ the dependence of the SCC on θ (if Ak violates part 1 of Def. 5). In this

sense, the structural properties of any implementing ‘safe’ mechanism in the statement of

Theorem 2 reflect a trade-off between the safety level parameter k ≥ 1, the strictness of

the acceptability correspondence, and the responsiveness of the SCC to the state of the

world.

5 Sufficiency

Our sufficiency results rely on the following stronger version of Comonotonicity:

Definition 6 (Strong Comonotonicity) A SCC, F : Θ → 2X \ ∅, and an acceptability

correspondence, A : Θ → 2X \ ∅, are strongly comonotonic if they satisfy the following:

1. [A-Constrained Monotonicity of F ] If θ, θ′ ∈ Θ and x ∈ F (θ) are such that

Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ) for all i ∈ N , then x ∈ F (θ′).

2. [strongly F -Constrained Monotonicity of A] If θ, θ′ ∈ Θ are such that ∃x ∈ F (θ) s.t.

Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ) for all i ∈ N , then A(θ) ⊆ A(θ′).

First, notice that the difference between Strong and Weak Comonotonicity (Def. 5)

is only in the quantifier of the x ∈ X in part 2 of the definition: in the weak version,

the property A(θ) ⊆ A(θ′) is only required for states θ, θ′ ∈ Θ in which Li(x, θ) ∩ A(θ) ⊆

Li(x, θ
′) ∩ A(θ) holds for all i ∈ N and for all x ∈ F (θ). In contrast, in Def. 6, this

property is required to hold for all θ, θ′ ∈ Θ in which Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ)

holds for all i ∈ N and for some x ∈ F (θ). The latter definition therefore is clearly more

demanding in general, except when the SCC is single-valued (that is, when the designer

16Putting Proposition 1 and Corollary 2 together, the following is also true: F : Θ → 2X \ ∅, is (non-
maximally) (A, k)-Safe Nash Implementable only if A admits a weakly Comonotonic subcorrespondence.
We note, however, that a non-maximally safe acceptability correspondence may still satisfy part 2 of Def.
5, i.e. with A∗ in Corollary 2 be such that A∗(θ) = A(θ) for all θ. We provide an illustrative example in
the online appendix.
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wishes to implement a SCF, f : Θ → X), in which case the two notions of Comonotonicity

coincide.

Strong monotonicity ensures that, when any allocation x that is selected at θ climbs

up in the ranks for all agents when moving to θ′, all acceptable allocations that are used

within the mechanism to prevent deviation at θ can also be used at θ′.

Our main sufficiency result will show that, under the following generalization of Maskin’s

No-Veto condition, Strong Comonotonicity is sufficient for (A, k) Nash Implementation for

general SCC (in the case of SCFs, this will imply that Comonotonicity (either Def. 5 or

6) is both necessary and sufficient):

Definition 7 (Safe No-Veto) (F,A) satisfy Safe No-Veto if x ∈ F (θ) and A(θ) = X

whenever x ∈ X and θ ∈ Θ are s.t. ∃i, θ′ ∈ N×Θ : ∀j ∈ N\{i}, x ∈ argmaxy∈A(θ′) uj(y, θ).

This property restricts both the SCC and the acceptability correspondence at states θ

in which all agents but one agree that a particular allocation x ∈ X is “best” among the

set of allocations A(θ′) that are acceptable at some other state θ′. At any such state, the

condition requires that the SCC include such x and that all allocations be acceptable.

First note that, if the safety requirement is vacuous (i.e., if A(θ) = X for all θ ∈ Θ),

then Def. 7 coincides with Maskin’s no veto condition. In all other cases, the condition is

stronger than Maskin’s No-Veto for two reasons: first, because it suffices that x be at the

top for ‘almost everyone’ only within the set A(θ′) ⊂ X, for some θ′ ∈ Θ, which is implied

by being at the top among all allocations in X, as requested by the condition for Maskin’s

No-Veto; second, because it entails a restriction also on the acceptability correspondence,

which is required to be vacuous at least such states θ.

Theorem 3 (Sufficiency) If n ≥ 3, and (F,A) are strongly Comonotonic and satisfy

Safe No-Veto, then F is (A, k)-Safe Nash Implementable for all k ∈ N : 1 ≤ k < n
2 .

Obviously, Def. 7 has no bite if preferences rule out ‘almost unanimity’ on any subset

of allocations, as is the case in many economic settings, such as the single-crossing envi-

ronments that we will consider in Section 6, or whenever the following (weaker) ‘economic’

restrictions hold (cf. Kartik and Tercieux (2012)):

Definition 8 (Economic Restrictions) The acceptability restrictions are Economic if,

for all θ, θ′ ∈ Θ and x ∈ X,
∣

∣

∣
{i ∈ N : x ∈ argmaxy∈A(θ′) ui(y, θ)}

∣

∣

∣
< n− 1.17

Corollary 3 If the acceptability restrictions are ‘economic’, Strong Comonotonicity of

(F,A) is sufficient for F to be (A, k)-Safe Nash Implementable for all k ∈ N : 1 ≤ k < n
2 .

Since Def. 5 and 6 coincide for SCFs, Theorems 1 and 3 also imply the following:

17Kartik and Tercieux (2012)’s ’economic condition’ obtains if A(θ) = X for all θ.
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Corollary 4 Let f : Θ → X be s.t. (f,A) satisfy Safe No-Veto.18 Then: (i) f is

maximally (A, k)-Safe Nash implementable only if (f,A) are Comonotonic; (ii) (f,A) are

Comonotonic only if f is (A, k)-Safe Nash implementable for all k ∈ N : 1 ≤ k < n
2 .

In the next subsections we further discuss the Safe No-Veto condition, the sense in

which it is almost necessary, and various ways in which it can be weakened or dispensed

with. The proofs of these results are relegated to the online appendix.

5.1 Safe-No Veto: Almost Necessity in Unrestricted Domains

The aspect of Safe No-Veto that selects the allocation is almost necessary in a similar

sense to Maskin’s No Veto being almost necessary for Nash Implementation. In the case

of Maskin, a unanimity property is necessary, which requires that if all agents agree on an

allocation being amongst their most preferred at some θ, and is implemented at another θ′,

then such an allocation must be implemented at θ. No Veto is very similar to this necessary

condition, as it differs from it in requiring that if all but one agree on an allocation being

amongst their most preferred at θ, then such an allocation must be implemented at θ. An

analogous necessary condition holds for (A, k)-Safe Nash Implementation:

Result 1 Fix a mechanism that (A, k)-Safe Nash Implements F , and let m∗ be a Nash

Equilibrium at θ (hence, it is such that g(m∗) ∈ F (θ)). If for some θ′ ∈ Θ we have

x ∈ g(Bk−1(m
∗)) ∩ argmaxy∈A(θ) ui(y, θ

′) ∀i ∈ N , then x ∈ F (θ′).

This condition differs from Safe No-Veto in two ways: First, it requires x to be within k−1

deviations from an equilibrium at state θ, which need not be the case for all allocations in

A(θ); Second, it requires unanimity of agents’ ranking of x at the top of the set A(θ), as

opposed to all but one agreeing on this top element of A(θ). In this sense, Safe No-Veto

is almost necessary, as it almost coincides with the necessary condition above.

The other restrictive aspect of Safe No Veto is that, at states where such a ‘unanimity

condition’ is met, it requires the acceptability restriction to be vacuous. This concession

is needed when preferences are unrestricted, but it can be weakened or dispensed with

under minor restrictions on the preferences domain. We discuss some of these weakenings

next.

5.2 Weakenings and Dispensability of Safe-No Veto

Safe No-Veto holds in most standard environments, as it is unusual to have preferences

where almost all agents agree. An example of this are the single-crossing environments

that we discuss in Section 6, or those that satisfy the economic condition in Def. 8,

where Safe-No Veto can be enirely dispensed with (cf. Corollary 3). But even outside of

18Which is the case, for instance, if the acceptability restrictions satisfy the economic condition in Def.8.
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these cases, its requirement that A(θ) = X can be weakened to the much more permissive

condition that A(θ) ⊆ A(θ′), in environments that satisfy a weak ‘no unanimity’ condition:

Definition 9 (No unanimity in A) An environment satisfies no unanimity in A if for

all θ, θ′ ∈ Θ and x ∈ X,
∣

∣

∣
{i ∈ N : x ∈ argmaxy∈A(θ′) ui(y, θ)}

∣

∣

∣
< n.

Definition 10 (weak Safe No-Veto) (F,A) are said to satisfy weak Safe No-Veto if

x ∈ F (θ) and A(θ) ⊆ A(θ′) whenever x ∈ X and θ ∈ Θ are such that ∃i ∈ N, θ′ ∈ Θ :

∀j ∈ N\{i}, x ∈ argmaxy∈A(θ′) uj(y, θ).

Result 2 (Safe Implementation under weak Safe-No Veto) For any n ≥ 3, if (F,A)

are strongly Comonotonic, satisfy no unanimity in A and weak Safe No-Veto, then F is

(A, k)-Safe Nash Implementable for all k ∈ N : 1 ≤ k < n
2 − 1.

5.2.1 Stochastic Mechanisms

Under mild conditions on the environment, Safe No-Veto can be dropped from the suffi-

cient conditions via the use of a stochastic mechanism. Hence, if stochastic mechanisms are

allowed, Strong Comonotonicity is sufficient on its own, which in turn provides a full char-

acterisation for Social Choice Functions.19 Formally: first assume that ui(·, θ) represent

von Neumann-Morgenstern preferences, and say that a SCC is (A, k)-Safely Nash Imple-

mentable by a stochastic mechanism if there exists M = ((Mi)i∈I , g) s.t. g : M → ∆(X),

that (i) Nash Implements it and (ii) such that, for all θ, for all Nash equilibria m∗ of

GM(θ), and for all m ∈ Bk(m
∗), supp(g(m)) ∈ A(θ). Then, Strong Comonotonicity is

sufficient under the following mild domain restriction:

Definition 11 (F,A) satisfy No Total Indifference across F and A if, for all θ, θ′ ∈ Θ,

x ∈ F (θ′) and y ∈ A(θ′)\{x}, ∃i ∈ N s.t. ui(x, θ) 6= ui(y, θ).

Result 3 (Safe Implementation via Stochastic Mechanisms) Under the condition

in Def. 11, for all n ≥ 3 and finite X, if (F,A) are strongly Comonotonic, then F is

(A, k)-Safe Nash Implementable by a stochastic mechanism for all k ∈ N : 1 ≤ k < n
2 − 1.

For SCFs, this result immediately implies that comonotonicity (weak or strong) is both

necessary and sufficient for Safe Nash Implementation via stochastic mechanisms:

Corollary 5 Let n ≥ 3 and X be finite. Under the condition in Def. 11: f is maximally

(A, k)-Safe Nash implementable by a stochastic mechanism only if (f,A) are Comonotonic;

(ii) (f,A) are Comonotonic only if f is (A, k)-Safe Nash implementable by a stochastic

mechanism for all k ∈ N : 1 ≤ k < n
2 − 1.

19This result is analogous to those in Bochet (2007) and Benôıt and Ok (2008), who showed that
Maskin Monotonicity is both necessary and sufficient for (non-safe) Nash Implementation via stochastic
mechanisms.
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5.2.2 Weak Preferences for ‘Correctness’

A beaten path within the implementation literature is to consider behavioral preferences

that favor ‘truthfully’ reporting the state and allocation (for similar ideas, see Matsushima

(2008), Dutta and Sen (2012), Kartik et al. (2014), and Lombardi and Yoshihara (2020)).

In this case, we show that even if such preferences are ‘weak’ in the sense of being lex-

icographically subordinated to the actual outcome of the mechanism, then Safe Nash

implementation can be obtained under a mild Unanimity restriction. Formally:

Definition 12 (Weak Preferences for Correctness) Consider a mechanism M with

message space Mi = X × Θ × N for all i ∈ N . Agents have a weak preferences for

correctness if, for all i ∈ N , ui : X × Θ × Mi → R are such that ui(x, θ, (x, θ, n)) >

ui(x, θ, (y, θ, n)) = ui(x, θ, (x, θ
′, n)) > ui(x, θ, (y, θ

′, n)) when θ′ 6= θ and y 6= x.

Definition 13 (Unanimity within all Acceptable Allocations) (F,A) satisfy Una-

nimity within all Acceptable Allocations (UAA) if y ∈ F (θ) whenever there exists some

θ′ ∈ Θ such that, for some m ∈ M , y ∈ argmaxx∈
⋃

θ′∈Θ A(θ′) ui(x, θ,mi) for all i ∈ N .

Result 4 Under weak preferences for correctness, and for all n ≥ 3, if (F,A) satisfy

UAA, then F is (A, k)-Safe Nash Implementable for all k ∈ N : 1 ≤ k < n
2 − 1.

Note that here Safe Nash implementation obtains under the UAA restriction, even without

Comonotonicity. In fact, under weak preferences for correctness even weak Comonotonic-

ity is not necessary for Safe Nash Implementation. Hence, despite the weakness of these

behavioral preferences (they are lexicographically subordinated to the ‘standard’ prefer-

ences over outcomes), they have a profound impact on the possibility of implementation.

5.3 On the Gap Between Weak and Strong Comonotonicity

As we discussed, Strong andWeak Comonotonicity coincide for SCFs, but when the SCC is

not single valued, there is a gap between the condition for necessity and that for sufficiency.

In this subsection we show that in fact a stronger condition than Weak Comonotonicity is

necessary and almost sufficient, thereby reducing the gap between necessity and sufficiency.

Similar to Moore and Repullo (1990)’s ‘Condition µ’, this condition relies on identifying

which sub-correspondences of A are used, within an implementing mechanism, to support

each of the different allocations in the SCC. Like the comparison between Moore and

Repullo (1990)’s ‘Condition µ’ and Maskin Monotonicity, however, this condition too is

harder to check than Weak Comonotonicity.

Specifically, let M = ((Mi))i∈N , g) be a mechanism that (A, k)-Safe Nash Implements

F . For any θ and x ∈ F (θ), let NE(x, θ) ⊆ M denote the (non-empty) set Nash equilibria

at state θ that induce x. Then, for each m∗(x, θ) ∈ NE(x, θ) we know that (i) x = g(m∗),

and (ii) g(m) ∈ A(θ) for any m ∈ Bk(m
∗) (i.e., for any m that is within k deviations from
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m∗). Next, let Gk(x, θ) := ∪m∗∈NE(x,θ)Bk(m
∗). By definition of Safety, Gk(x, θ) ⊆ A(θ).

Essentially, for each θ and x ∈ F (θ), Gk(x, θ) is the subset of A(θ) that consists of all the

allocations that are used to ‘sustain’ the implementation of outcome x.

Notice that, for k = 1, the set G1(x, θ) consists of the set of allocations that can be

induced by unilateral deviations from one of the Nash equilibria m∗ ∈ NE(x, θ), and

similar to Moore and Repullo (1990), let Ci(x, θ) ⊆ G1(x, θ) denote the set of allocations

that can be induced by unilateral deviations of player i alone. Then, Ci(x, θ) ⊆ Gk(x, θ) ⊆

A(θ) and x ∈ argmaxy∈Ci(x,θ) ui(y, θ) for all i ∈ N .20 Next notice that if for some θ′ it

holds that x ∈ argmaxy∈Ci(x,θ) ui(y, θ
′) for all i, then all m∗ ∈ NE(x, θ) are also equilibria

at θ′, and hence NE(x, θ) ⊆ NE(x, θ′). It follows that (i) x ∈ F (θ′), and (ii) Gk(x, θ) ⊆

Gk(x, θ′).21 With this, we obtain that the following condition is necessary:

Definition 14 (A,F ) satisfy the Safe-µ Condition if there exist correspondences G : X×

Θ ⇒ X and Ci : X × Θ ⇒ X s.t. G(x, θ) ⊆ A(θ) and Ci(x, θ) ⊆ Li(x, θ) ∩ G(x, θ) for

all i, θ and x ∈ F (θ), which satisfy the following: if θ, θ′ ∈ Θ and x ∈ F (θ) are such that

Ci(x, θ) ⊆ Li(x, θ
′) for all i, then: (i) x ∈ F (θ′), and (ii) G(x, θ) ⊆ G(x, θ′).

Theorem 4 F is (A, k)-Safe Nash Implementable only if the Safe-µ Condition is satisfied.

If, moreover, A is maximally safe, then ∪x∈F (θ)G(x, θ) = A(θ) for each θ.

The gap between Comonotonicity and Def. 14 is analogous to the gap between Mono-

tonicity and Condition µ of Moore and Repullo (1990). Similarly, under the appropriate

No-Veto condition, the Safe-µ Condition can be shown to be sufficient for (A, k)-Safe

Nash Implementation when k < n
2 . All the results in Section 5.2 would also hold under

the suitable adaptations of No Unanimity and No Total Indifference, and hence a tight

characterization can be provided for general SCC in those environments.

This condition also identifies the exact source of the gap between strong and weak

Comonotonicity when the SCC is non-single valued: if, for some state θ, F (θ) contains

multiple allocations, say x, x′ ∈ F (θ), different subsets of A(θ) may be used to sustain

them, namely Gk(x, θ) and Gk(x′, θ). When x ‘climbs up’ from θ to θ′, then it must

be that the x ∈ F (θ′) and that all Gk(x, θ) must also be acceptable at θ′. However,

unless this happens for all allocations in F (θ) (cf. point 2 in Def. 5), we cannot con-

clude that A(θ) ⊆ A(θ′), even under maximal (A, k)-Safe Implementation. We may only

conclude that some subset of allocations of A(θ) are a subset of A(θ′) (more precisely,

that Gk(x, θ) ⊆ Gk(x, θ′) ⊆ A(θ′)). Clearly, A(θ) ⊆ A(θ′) would follow immediately if

Gk(x, θ) = A(θ) for all θ ∈ Θ and x ∈ F (θ), in which case in fact Safe-µ boils down

precisely to Strong Comonotonicity. But when the Gk are strict subcorrespondences of A,

20To see why the latter condition holds, for any m∗ ∈ NE(x, θ), let Ci(m
∗) := {y ∈ X : ∃mi ∈

Mi s.t. y = g(mi,m
∗
−i)}. Then, Ci(x, θ) = ∪m∗∈NE(x,θ)Ci(m

∗), and since x ∈ argmaxy∈Ci(m∗) ui(y, θ) for
all i and for all m∗ ∈ NE(x, θ), it follows that x ∈ argmaxy∈Ci(x,θ)

ui(y, θ) for all i ∈ N .
21Point (i) follows from implementation; point (ii) from the fact that NE(x, θ) ⊆ NE(x, θ′).
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then the condition becomes much harder to check. For these reasons, we elect to provide

Weak and Strong Comonotonicity as more transparent and easy to check conditions.

6 Special Environments and Applications

We now turn to two canonical applications of Nash Implementation, and include safety

concerns. In the first application we explore implementation of SCFs in environments that

satisfy a standard single-crossing condition. In these settings, we show that essentially any

SCF can be implemented in the Almost Perfectly Safe sense that we discussed in p. 11.

We then go on to explore the problem of allocating one unit of an indivisible good. We

show that, when there is an appropriate null allocation that is acceptable at all states of

the world, Safe Nash Implementation of the efficient SCF is possible. Finally, we provide

some negative results for both Nash implementation and for general solution concepts, in

environments that satisfy a strong but standard ‘richness condition’ on preferences.

6.1 Environments with Private Goods and Single-Crossing Preferences

For each i ∈ {1, ..., n}, let Xi := R2
+ denote the consumption space, with generic element

xi = (x1i , x
2
i ), with xgi denoting the quantity of good g consumed by agent i. The space of

feasible allocations is X ⊆ ×i∈NXi, assumed compact and convex, with generic element

x = (xi)i∈N , which is sometimes convenient to write as x = (xi, x−i), to separate i’s own

consumption bundle from the profile of consumption bundles of the others. For each agent

i, there is a set of types Θi = {θ1i , ..., θ
li
i } ⊂ R+ that pin down i’s preferences over X,

labelled so that θ1i < ... < θlii . The agents’ preferences profiles therefore are pinned down

by states θ ∈ Θ = ×i∈NΘi. The assumption of private goods is reflected in that each

agent i’s utility over X is constant in x−i, and hence utility functions can be written as

ui(xi, θi), assumed to be continuously differentiable and strictly increasing in both x1i and

x2i for each θi ∈ Θi. Finally, we assume that preferences are single-crossing in the sense

that for each i, the marginal rate of substitution between good 1 and good 2 is increasing

in θi.

Letting f : Θ → X denote the SCF, it seems sensible to include in the acceptability

correspondence allocations that are sufficiently close to f(θ) at every θ ∈ Θ. (This would

be natural, for instance, if the social planner chooses f(θ) to be in the argmax of its welfare

criterion, and if the latter is continuous). Formally, for some ǫ > 0 and neighbourhood

Nǫ(f(θ)) = {(x1, x2) ∈ X : d(f(θ), (x1, x2)) < ǫ}, where d(·, ·) is the Euclidean distance,

we assume that Nǫ(f(θ)) ⊆ A(θ).

Lemma 1 Under the maintained single-crossing condition, if A : Θ → 2X \ ∅ is such

that, for some ǫ > 0, we have that Nǫ(f(θ)) ⊆ A(θ) for all θ ∈ Θ, then for any SCF s.t.

f(θ) ∈ int(X) for all θ ∈ Θ then (f,A) satisfies (weak and strong) Comonotonicity.
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In addition to implying Comonotonicity, this weak condition on the acceptability cor-

respondence also suffices for Safe Nash Implementation:

Proposition 2 Suppose that n ≥ 3, and that the single crossing condition above is

satisfied. If (f,A) is such that f(θ) ∈ int(X) for all θ ∈ Θ and ∃ǫ > 0 such that

Nǫ(f(θ)) ⊆ A(θ) for all θ ∈ Θ, then f can be (A, k)-Safe Nash Implemented for any

k < n
2 .

6.2 Efficient Allocation of an Indivisible Good

A social planner wants to allocate an indivisible good to one of the agents in N , or to

no agent. The set of feasible outcomes therefore is X = N ∪ {∅}. Like Eliaz (2002),

we assume that the set of states and agents’ preferences are such that: (P.1) agents

always prefer getting the object themselves than having it assigned to someone else; (P.2)

conditional on not obtaining the object, agents always prefer it being assigned to agents

with a higher utility, and prefer it not being assigned at all over being assigned to someone

other than the highest utility agent; and (P.3) at any state of the world, there is always

a single agent with the highest valuation.22 Finally, we assume that the SCF and the

acceptability correspondence are such that: (A.1) the SCF is efficient; (A.2) not assigning

the object is always acceptable; and (A.3) whenever agent i is the designated winner, some

other allocation is also acceptable.23 Under these assumptions, the following possibility

result obtains:

Proposition 3 If n ≥ 3 and preferences satisfy assumptions P.1-3, any (f,A) that sat-

isfies assumptions A.1-3 is (A, k)-Safe Nash Implementable for all k < n
2 .

The assumptions on the preferences (P.1-3) are the same as in Eliaz 2002), and they

are mild. Given the weakness of A.1-3, this proposition provides a rather permissive result

for Safe Nash Implementation of the efficient SCF in single-good assignment problems.

6.3 Environments with ‘Rich’ Preferences

In this subsection we focus on environments that satisfy the following richness condition,

analogous to the Universal Domain assumption in Social Choice Theory:

Definition 15 We say that Θ is ‘rich’ if for every possible profile ≻= (≻i)i∈N of strict

preference orderings over X, there exists θ ∈ Θ s.t. ui(·, θ) represents ≻i for all i ∈ N .

22Formally, for all i and θ: (P-1) ui(i, θ) > ui(j, θ) for all j ∈ N\{i}; (P.2) ∀j, k ∈ N\{i},
ui(j, θ) > ui(k, θ) if uj(j, θ) > uk(k, θ), and ui(∅, θ) > ui(j, θ) if j /∈ argmaxi∈N ui(i, θ); and (P.3)
| argmaxi∈N ui(i, θ)| = 1.

23Formally: (A.1) f(θ) ∈ argmaxi∈N ui(i, θ) for all θ ∈ Θ; (A.2) ∀θ ∈ Θ, {∅, f(θ)} ⊂ A(θ); and (A.3)
For any i, whenever f(θ) = i, ∃x 6= i, ∅ s.t. x ∈ A(θ).
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Under this condition, we provide two negative results for Safe Implementation. For

the first result, we go back to the general definition of Safe Implementation, for general

solution concepts C (cf. Definition 2), and we consider the minimal safety guarantee that

we introduced in point 1 of Ex. 2. Under these restrictions, the social planner wishes to

ensure that, in the case of deviations from the profiles admitted by the solution concept, no

agent receives their least preferred outcome. This is a plausible, seemingly weak criterion

for safety restrictions. Yet, under richness, we obtain the following negative result:

Proposition 4 Suppose that Θ is rich, 1 < |X| ≤ n. No SCF is (A, k)-Safe C-Implementable

for some k ≥ 1, if A satisfies the minimal safeguarding guarantee.

Hence, contrary to what could perhaps be surmised from the previous subsections, Safety

is not a trivial restriction, regardless of the underlying solution concept. For Safe Nash Im-

plementation, this message is further reinforced by the following result, which shows that

under richness, if the SCF is onto, then the Safety requirement can only hold vacuously:

Proposition 5 Suppose that Θ is rich, and that the SCF, f , is surjective. Then, f is

(A, k)-Safe Nash-Implementable for some k ≥ 1 only if A(θ) = X for all θ.

7 Related Literature

The closest paper to ours is Eliaz (2002), who studies an implementation problem imposing

the requirement that the mechanism’s outcome is not affected by deviations of up to k

agents. In that sense, the robustness desideratum in Eliaz is more demanding than ours,

as it coincides with the special case of ‘perfect safety’ (which will be discussed below),

in which the acceptability correspondence coincides with the SCC. Another important

difference is in the solution concept: in Eliaz (2002)’s k-Fault Tolerant (FT) equilibrium,

agents reports are required to be optimal not only at the equilibrium profile, but also

at all profiles in which up to k agents have deviated. Thus, the solution concept in

Eliaz (2002) is stronger than Nash equilibrium, and more so as k increases, with the

implementation notion approaching dominant-strategy implementation as k approaches

the number of opponents. This has important implications for the comparison with our

approach: first, it may be that a SCF is implementable in the sense of Eliaz (2002)

but not Nash Implementable – hence, unlike our notion, k-FT Implementation is not

necessarily more demanding than baseline Nash Implementation; second, it may be that

fault-tolerant implementation is possible for some k, but not for some smaller k′ – hence,

unlike our notion, the implementation notion in Eliaz (2002) does not necessarily become

more demanding as k increases.

Eliaz (2002) also inspired Shoukry (2019), which maintains Nash equilibrium as a so-

lution concept, but like Eliaz (2002) focuses on the special case of ‘perfect safety’, in which

the implementing mechanism is supposed to induce outcomes consistent with the SCF also
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in the event that up to k agents deviate.24 As noted, this implies that the SCF is constant.

To obtain positive results, the author introduces transfers and non-standard preferences.

In contrast, here we follow the standard approach of full implementation, with standard

preferences and study SCC that select subsets of the whole space of outcomes.25As for the

safety requirement, our framework allows a wide range of acceptability correspondences,

beyond the case of ‘perfect safety’, and we insist that all equilibria be safe.

Another related paper is Hayashi and Lombardi (2019), which studies Nash implemen-

tation in a two-sector economy. Within this setting, there is a mechanism for each sector,

each determining the allocation of goods within that sector. But while agents’ preferences

may display complementarities between the goods, and the social planner’s objective is to

affect the allocation of both goods, he only has freedom to design the mechanism for one

sector, taking the other mechanism as given. The possibility of preference interdependence

between the two goods leads to a constraint on the planner’s ability to elicit preferences

using only the freedom that he has to design the mechanism in one sector. This constraint

is akin to our acceptability correspondence because only certain allocations within the

fixed sector can be achieved by deviations from a candidate equilibrium.

Postlewaite and Wettstein (1989) and Hong (1995) study continuous implementation

in a Walrasian economy. They show that the implementing mechanism can be designed

so that the outcome function is continuous, and hence such that small deviations from the

equilibrium messages lead to small changes in the allocation. This ensures that, even if

all agents misreport, if their messages remain sufficiently close to the equilibrium reports,

then the outcome will be close in the allocation space, which can also be seen as a special

instance of our acceptability correspondence. More broadly, also the literature on feasible

implementation (Postlewaite and Wettstein, 1989; Hong, 1995, 1998) is related to our

approach. Specifically, as the allocations that occur upon deviations must be feasible at

a given state, and the feasibility constraints in this literature may themselves be state-

dependent, the notion of implementation indirectly restricts the allocations that can be

used upon deviations, much like our notion of Safe Implementation.26

Another strand of literature includes concerns for robustness primarily focusing on

24Shoukry (2019) also considers SCCs. In that case, he imposes an even stronger restriction than Eliaz’s
(2002) and our ‘perfect safety’, in that he demands that the outcome does not change if up to k agents
deviate, not just that it stays within the SCC at that state. The two approaches are thus substantially
different. In a working paper (Shoukry, 2014) a distinct special case of our acceptability correspondence is
considered, where a number of agents cannot obtain alternatives that are too low in their rankings, which
yields an impossibility under rich preferences and the solution concept of Nash Equilibrium. To regain
positive results, the implementation requirement is then weakened so as to effectively allow some equilibria
to not be safe. With this, also this approach is profoundly different from ours, and not nested.

25That is, we do not leave dimensions of the outcome space, such as transfers, outside of the SCC’s
codomain.

26This prevents, for instance, that non-equilibrium messages require the designer to import resources.
Hurwicz (1979) and Schmeidler (1980), for example, provide positive results for Nash Implementation, and
refinements of Nash, in a Walrasian Economy, but deviations from equilibrium may result in non-feasible
allocations.
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changes to the solution concept. For instance, Renou and Schlag (2011) study an im-

plementation problem where agents are unsure about the rationality of others, using a

solution concept based on ǫ-minmax regret. Similarly, Tumennasan (2013) studies imple-

mentation under quantile response equilibrium, letting the logit parameter approach the

perfect rationality benchmark. Barlo and Dalkıran (2021) explicitly model the possibility

of preference misspecification, letting the states not pin down agents’ preferences, and

pursuing a notion of implementation where agents act a la Nash for all preferences that

are consistent with each state.27 In our paper, in contrast, we maintain Nash equilib-

rium and capture the possibility of mistakes (or preference misspecification) as an extra

desideratum, on top of the standard notion of implementation. Bochet and Tumennasan

(2022b) also maintain Nash Equilibrium, but add the extra requirement that, in a direct

mechanism, not only all non-truthful profiles admit a profitable deviation (as required by

baseline Nash implementation), but that deviating to truthful revelation is profitable in

such instances. This notion is motivated by resilience considerations. A related notion

can also be found in De Clippel (2014), in which the designer takes into account that

agents may have specific kinds of deviations in mind, related to various behavioral con-

siderations. For further recent approaches to behavioral implementation, see De Clippel

et al. (2019), Crawford (2021), Kneeland (2022), Barlo and Dalkıran (2022), and Bochet

and Tumennasan (2022a).

Finally, our results are also connected with the literature on implementation with

evidence (e.g., Kartik and Tercieux (2012); Ben-Porath et al. (2019)), which also enriches

the baseline Nash implementation framework with an extra desideratum (in that case, the

ability to produce evidence). Similar to our Comonotonicity, the main condition in that

literature is also a suitably adjusted version of monotonicity.

8 Conclusions

We introduce Safe Implementation, a notion that adds to the standard implementation

requirements the restriction that deviations from the baseline solution concept induce

outcomes that are acceptable. This is modelled by introducing, next to the Social Choice

Correspondence (which represents the ‘first best’ objectives when agents behave in ac-

cordance with the solution concept), an Acceptability Correspondence that assigns to

each state of the world the set of allocations that are considered acceptable. This frame-

work generalizes standard notions of implementation and can accommodate a variety of

questions, including robustness with respect to mistakes in play, model misspecification,

27In that sense, Barlo and Dalkıran (2021) can be seen as an original take on the broader idea of robust
implementation, where the types that are relevant for the allocation rule pin down agents’ preferences,
but not their beliefs, which however matter since implementation is required to be achieved for all beliefs
consistent with the designer’s information (cf. in Bergemann and Morris (2005, 2009a,b), Ollár and Penta
2017, 2022, 2023).
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behavioral considerations, state-dependent feasibility restrictions, limited commitment,

etc.

Robustness concerns for mistakes in play and other behavioral considerations have been

considered in the literature, mainly through changes to the solution concept (e.g., Eliaz

(2002); Renou and Schlag (2011); Tumennasan (2013); De Clippel (2014), De Clippel

et al. (2019), Crawford (2021), etc.) Our approach differs mainly in that we impose

restrictions also on the outcomes of players’ deviations, and may thus be adopted to

capture concerns for misspecification of agents’ behavior of any kind, as something which

can be superimposed on any solution concept, be it ‘classical’ or ‘behavioral’.28 Besides

being able to extend robustness concerns to behavioral concepts, modeling them not as

part of a specific solution concept has the further advantage of addressing the frequent

critique of behavioral models, of being ad hoc: in our approach, the deviations that are

the object of Safety considerations are unrestricted in their nature, and hence model-free.

Decoupling these concerns from the outcomes of the solution concept, however, raises

some challenges: on the one hand, like in the standard approach, the outcomes that ensue

from deviations must provide the agents with the incentives to induce socially desirable

outcomes, consistent with the criteria that are embedded in the underlying solution con-

cept; on the other hand, our concerns for safety limit precisely the designer’s ability to

specify such outcomes, and the fact that the acceptable allocations are themselves state-

dependent, like the SCC, means that not only must agents be given the incentives to

induce socially desirable allocations, but also to reveal which outcomes can be used as

punishments to achieve this objective. Our main results, which refer to Nash equilibrium

as the underlying solution concept, precisely formalize this interplay: the necessary and

sufficient conditions that we provide entail joint restrictions on the structure of the SCC

and of the acceptability correspondence, and formally generalize the standard conditions

for baseline Nash Implementation (Maskin, 1999). While we also offer some results for

general solution concepts, that identify substantive limits to the possibility of achieving

non-trivial Safety desiderata, a systematic exploration of solution concepts other than

Nash equilibrium is beyond the scope of this paper, and provides an interesting direction

for future research in this area.

Our framework is also general in the specification of the acceptability correspondence,

which can be used to accommodate different special cases, which include: (i) “perfectly

Safe implementation”, which deems acceptable only the outcomes of the SCC (e.g. Eliaz

(2002)); (ii) “ almost perfectly Safe implementation”, when only outcomes that are ar-

bitrarily close to those in the SCC are acceptable, which provides a connection with the

literature on continuous implementation (e.g., Postlewaite and Wettstein (1989); Hong

(1995)); (iii) the case in which the acceptability correspondence reflects feasibility con-

28This way, the model can also be used to accommodate general robustness concerns, to account for
the possibility that even a behavioral model, which may have been developed in order overcome certain
limitations of “classical” notions, may of course also be misspecified.
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straints, which provides a new link to the classical literature on feasible implementation

(e.g., Postlewaite and Wettstein (1989); Hong (1995, 1998)); (iv) minimal guarantees based

on a variety of welfare criteria (cf. Ex. 2); (v) the possibility to accommodate issues of

limited commitment, when the designer can only commit to carrying through, depending

on the state, certain punishments but not others (cf. 1). But these are only some of

the possibilities that can be cast within our framework. Further exploring these or other

special cases of the acceptability correspondence, explicitly tailored to address specific

concerns in more applied settings, may provide another promising direction for future

research.

Finally, as it is customary when conceptual innovations are introduced within imple-

mentation theory, and in order to better focus on the key features of our approach, we have

maintained the complete information assumption and imposed no further restrictions on

the mechanisms. Combining safety considerations with incomplete information, or with

other restrictions on the class of mechanisms (e.g., Jackson (1992), Ollár and Penta (2017,

2022, 2023), etc.), is yet another direction for future research.

A Proofs

Proof of Theorem 1: Suppose that F is (A, k)-Safe Nash Implementable. Further,

suppose that it is maximally so. Therefore there is some mechanism M that (A, k)-Safe

Implements F and is such that A(θ) = g({m ∈ M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}).

We will show that F and A are weakly comonotonic in two steps.

Firstly, we will show that if for some θ, θ′ ∈ Θ, if there exists x ∈ F (θ) such that

Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all i ∈ N , then x ∈ F (θ′). To do so, take m∗ to be

a Nash Equilibrium at θ that induces x. Hence g(m∗) = x ∈ F (θ). Let θ′ ∈ Θ be a state

such that x /∈ F (θ′). Therefore m∗ is not a Nash Equilibrium at θ′ and hence ∃i ∈ N ,

m′
i ∈ Mi such that ui(g(m

′
i,m

∗
−i), θ

′) > ui(x, θ
′). It follows that g(m′

i,m
∗
−i) ∈ X\Li(x, θ

′)

and g(m′
i,m

∗
−i) ∈ g({m ∈ M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}) = A(θ). However, as m∗ is a

NE at θ we have that g(m′
i,m

∗
−i) ∈ Li(x, θ) ∩ A(θ). Therefore it cannot be the case that

Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ), a contradiction.

Now we show that if for some θ, θ′ ∈ Θ, all x ∈ F (θ) are such that Li(x, θ) ∩ A(θ) ⊆

Li(x, θ
′) ∩ A(θ) for all i ∈ N , then A(θ) ⊆ A(θ′). Suppose that θ and θ′ are states such

that Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∀i ∈ N for all x ∈ F (θ). Suppose by contradiction that

A(θ) 6⊆ A(θ′), and let m∗ be a Nash Equilibrium at θ that induces x ∈ F (θ).

We consider two cases: (1) If m∗ is a Nash Equilibrium at θ′, then Bk(m
∗) ⊆ A(θ′) by

definition. (2) Ifm∗ is not a Nash Equilibrium at θ′. In this case, there must be some i ∈ N ,

who at the state θ′ has a profitable deviation from m∗, i.e. ui(g(m
′
i,m

∗
−i), θ

′) > ui(x, θ
′).

We conclude that g(m′
i,m

∗
−i) ∈ X\Li(x, θ

′). By (A, k)-Safe Nash Implementation, and

by definition we have that A(θ) = g({m ∈ M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}), it must be
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that g(m′
i,m

∗
−i) ∈ Li(x, θ) ∩ A(θ). A contradiction to Li(x, θ) ∩ A(θ) ⊆ Li(x, θ

′) for all

x ∈ F (θ).

We conclude that all m∗ that are Nash Equilibria at θ and induce x, are also Nash

Equilibria at θ′. Now notice that if this holds for all y ∈ F (θ) then all Nash Equilibria at

θ are also Nash Equilibria at θ′. Given this, the outcomes induced by k agents deviating

from Equilibrium at θ are also reached within k deviations of an Equilibrium at θ′, and

hence A(θ) ⊆ A(θ′). Thus, (F,A) must be weakly comonotonic. �

Proof of Proposition 1: Suppose that F is (A, k)-Safe Nash Implementable. There-

fore there is some mechanism M that (A, k)-Safe Implements F . We will show that if for

some θ, θ′ ∈ Θ, if there exists x ∈ F (θ) such that Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ) for all

i ∈ N , then x ∈ F (θ′). That is, A-Constrained Monotonicity of F is satisfied. To do so,

takem∗ to be a Nash Equilibrium at θ that induces x. Hence g(m∗) = x ∈ F (θ). Let θ′ ∈ Θ

be a state such that x /∈ F (θ′). Therefore m∗ is not a Nash Equilibrium at θ′ and hence

∃i ∈ N , m′
i ∈ Mi such that ui(g(m

′
i,m

∗
−i), θ

′) > ui(x, θ
′). It follows that g(m′

i,m
∗
−i) ∈

X\Li(x, θ
′) and g(m′

i,m
∗
−i) ∈ g({m ∈ M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}) ⊆ A(θ) by defi-

nition of Safety. However, as m∗ is a NE at θ we have that g(m′
i,m

∗
−i) ∈ Li(x, θ) ∩ A(θ).

Therefore it cannot be the case that Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ). �

Proof of Theorem 2: Suppose that F is (A, k)-Safe Nash Implementable. Therefore

there is some mechanism M that (A, k)-Safe Implements F and is such that g({m ∈

M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}) ⊆ A(θ). Take A∗ to be a sub-correspondence of A such

that g({m ∈ M |d(m,m∗) ≤ k, m∗ ∈ CM(θ)}) = A∗(θ) for all states. By definition, M is

k-surjective on A∗. Moreover, for maximal safety, we would require that A∗(θ) = A(θ) for

all θ, else some alternatives could be removed, contradicting maximally safe. With this,

the logic of theorem 1 holds exactly, as the proof only relies on the outcomes obtainable

within k deviations of the implementing mechanism. That is, one could replace A(θ) with

A∗(θ) throughout. �

Proof of Theorem 3: For each i ∈ N , let Mi =
⋃

θ′∈ΘA(θ′) × Θ × N, with typical

element mi = (xi, θi, ni). Let g(m) be as follows:

(i) If mi = (x, θ, ni) ∀i ∈ N and x ∈ F (θ) then g(m) = x

(ii) If mi = (x, θ, ni) ∀i ∈ N\{j} with x ∈ F (θ) and mj = (y, ·, ·) then

g(m) =







y if y ∈ Lj(x, θ) ∩A(θ)

x if y 6∈ Lj(x, θ) ∩A(θ)

(iii) if k > 1 and mi = (x, θ, ·), x ∈ F (θ), ∀i ∈ N\D, 2 ≤ |D| ≤ k s.t. ∀j ∈ D

mj 6= (x, θ, ·)

g(m) =







xi
∗

if D∗(θ,D) 6= ∅

x if D∗(θ,D) = ∅
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where D∗(θ,D) = {j ∈ D|xj ∈ A(θ)}, i∗ = min{i ∈ D∗(θ,D)|ni ≥ nj j ∈

D∗(θ,D)}

(iv) Otherwise, let g(m) = xi
∗
where i∗ = min{i ∈ N |ni ≥ nj ∀j ∈ N}

From here we can complete the proof in three steps: showing that all x ∈ F (θ) are

induced by a Nash Equilibrium at θ, showing that there is no y /∈ F (θ) such that y is

induced by an Equilibrium at θ, and finally showing that the mechanism is indeed (A, k)-

Safe.

Step 1. First we show that all x ∈ F (θ) are induced by Nash Equilibria at θ.

Consider m∗ such that m∗
i = (x, θ, ·), ∀i ∈ N where x ∈ F (θ) at the state θ. To

be a Nash Equilibrium we need to rule out the possibility that ∃j ∈ N,m′
j ∈ Mj such

that uj(g(m
∗
−j ,m

′
j), θ) > uj(g(m

∗), θ). However, g(m∗
−j ,m

′
j) = y must be such that

y ∈ Lj(x, θ) by rule (ii), therefore it is not possible that uj(y, θ) > uj(x, θ). Given this,

m∗ is a Nash Equilibrium leading to x ∈ F (θ).

Step 2. We show there is no Nash equilibrium m∗ at θ such that g(m∗) = y /∈ F (θ).

Case 1. Suppose m∗ is a Nash equilibrium in rule i) at state θ such that g(m∗) =

y /∈ F (θ). It must be that m∗
i = (y, θ′, ni) for all i ∈ N and, necessarily as y /∈ F (θ),

that θ′ 6= θ. Given this, it must be that there is no profitable deviation as m∗ is a Nash

equilibrium. As deviations may only lead to rule (ii), it must be that for all i ∈ N , for any

z ∈ Li(y, θ
′)∩A(θ′) we have that z ∈ Li(y, θ), as there is no profitable deviation to report

mi = (z, θ, ·) inducing outcome z from rule (ii). With this, Li(y, θ
′) ∩ A(θ′) ⊆ Li(y, θ) ∩

A(θ′). Therefore, by strong comonotonicity, we have that y ∈ F (θ), a contradiction.

Case 2. Now suppose that there is a Nash equilibriumm∗, which is in rule (ii), at state

θ such that g(m∗) = y /∈ F (θ). It must be that ∃j ∈ N such that, ∀i ∈ N\{j} we have

m∗
i = (x, θ′, ni), while m∗

j 6= (x, θ′, ·). For this to be a Nash equilibrium it must be that

there is not an incentive for any agent to deviate. If k > 1 a deviation can lead to rule (i),

(ii), or (iii), regardless, as m∗ is a Nash equilibrium at θ, no agent i 6= j to wish to change

their report, inducing rule (iii), it must be that y ∈ argmaxz∈A(θ′) ui(z, θ). By Safe No-

Veto, it must therefore be that y ∈ F (θ), a contradiction to y /∈ F (θ). For k = 1 we have

that a deviation can lead to rule (i), (ii), or (iv), which in the case of rule (iv) can induce

any outcome. Those that can deviate to impose rule (iv) are all agents other than j. With

this, we have that, as there is no incentive to deviate, that y ∈ argmaxz∈
⋃

θ′′∈Θ A(θ′′) ui(z, θ)

for all i ∈ N\{j}. With this, it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N\{j},

and therefore by Safe No-Veto we have that y ∈ F (θ), a contradiction.

Case 3. Now suppose that there is a Nash equilibrium m∗, which is in rule (iii), at

state θ and g(m∗) = y /∈ F (θ). Suppose that |D| < k and m∗
i = (x, θ′, ·) for all agents

i /∈ D. Given this, it must be that there is no profitable deviation for any agent. As

there exists a message for any player that leads to any allocation in A(θ′) via rule (iii),

we conclude that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N . Therefore by Safe No-Veto, we

have that y ∈ F (θ). Now suppose that |D| = k. For there to be no profitable deviation,

31



it must be that for ∀i ∈ D, y ∈ argmaxz∈A(θ′) ui(z, θ). For all agents in i ∈ N\D it must

be that for any x ∈
⋃

θ′′∈ΘA(θ′′) ⊇ A(θ′), we have that ui(y, θ) ≥ ui(x, θ), as there is no

profitable deviation. Given this, we conclude that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N ,

and therefore by Safe No-Veto we conclude that y ∈ F (θ), a contradiction.

Case 4. Finally, if there is a Nash equilibrium m∗ at θ in rule (iv), we can see that a

unilateral deviation can lead to any outcome in
⋃

θ′′∈ΘA(θ′′) via rule (iv). With this, it

must be that for m∗ with g(m∗) = y to be a Nash equilibrium in this state we have that

y ∈ argmaxz∈
⋃

θ′′∈Θ A(θ′′) ui(z, θ) for all i ∈ N . Therefore, y ∈ argmaxz∈A(θ′) ui(z, θ) for

some θ′, and therefore by Safe No-Veto we have that y ∈ F (θ).

Step 3. We will now show that all Nash equilibria are safe. We consider four cases:

Case 1. If m∗ is a Nash equilibrium at θ that falls into rule (i) it must be that

m∗
i = (y, θ′, ni). By the previous analysis, we know that y ∈ F (θ). If θ′ = θ, we conclude

that safety is satisfied as k deviations can only lead to rule (ii) or (iii). Either way, we

remain in A(θ). Now suppose that θ′ 6= θ while m∗ is a Nash equilibrium at θ. Notice that

regardless, k deviations must lead to remaining within A(θ′) via rule (ii) or (iii). By the

previous analysis, we know that this only occurs when Li(y, θ
′) ∩A(θ′) ⊆ Li(y, θ) ∩A(θ′)

for all i ∈ N . Given this, A(θ′) ⊆ A(θ) must hold for strong comonotonicity to be

satisfied. Therefore any deviation from this Nash equilibrium must remain inA(θ′) ⊆ A(θ),

maintaining safety.

Case 2. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (ii). It

must be that ∀i 6= j m∗
i = (x, θ′, ni) while m∗

j 6= (x, θ′, ni). Notice that k deviations can

lead to rule (i), rule (iii) if k > 1, and rule (iv). Notice k deviations can lead to rule (iii)

for some state θ′′ 6= θ′ if k = n
2 − 1, depending on the report of j. Regardless, safety

will require that A(θ) =
⋃

θ′′∈ΘA(θ′′) for this mechanism. To see this is implied by the

condition of Safe No-Veto we only have a Nash equilibrium at such a state if ∀i /∈ N\{j}

they prefer g(m∗) = y rather than inducing any outcome in rule (iii), in the case k > 1,

or rule (iv), in the case, that k = 1. Given this, it must be that y ∈ argmaxz∈A(θ′) ui(z, θ)

for all i /∈ N\{j}, and hence by Safe No-Veto A(θ) = X ⇒ X =
⋃

θ′′∈ΘA(θ′′) so safety is

not violated.

Case 3. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (iii),

and therefore k > 1. It must be that all agents in i ∈ N\D for some D ⊂ N with

|D| ≤ k, are reporting m∗
i = (x, θ′, ni). By the structure of the mechanism, k deviations

can lead to rules (i), (ii) if n = 3 and k = 1 or k ≥ |D| > n
4 if all those in D report

mj = (z, θ′′, nj), (iii), or (iv). With this, it is possible that for safety to be achieved we

require that A(θ) =
⋃

θ′′ A(θ′′). Notice that for y = g(m∗) to be a Nash equilibrium at

state θ, by the previous analysis it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N .

With this, it must then be that by safety no veto A(θ) =
⋃

θ′′∈ΘA(θ′′). Therefore Safety

is necessarily achieved.

Case 4. Finally, suppose that m∗ is a Nash equilibrium at θ with g(m∗) = y. Note
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that by the rules of the mechanism, k deviations can lead to any outcome via rule (iv).

If we have a Nash equilibrium within this rule, it must be that y ∈ argmaxz∈X ui(z, θ)

for all i ∈ N , as else any agent could deviate to induce any outcome in
⋃

θ′′∈ΘA(θ′′)

they wish via announcing a higher integer. With this, we conclude that it must be that

y ∈ argmaxz∈A(θ′) ui(z, θ) for any A(θ′) such that y ∈ A(θ′). With this, by Safe No Veto,

we conclude that A(θ) = X ⇒
⋃

θ′′∈ΘA(θ′′) = X, and therefore Safety is achieved. �

Proof of lemma 1: Take θ, θ′ ∈ Θ such that f(θ) = x 6= f(θ′). Let agent i be

such that θi 6= θ′i. Without loss of generality, suppose that θ′i > θi. We need to show

∃y ∈ A(θ) such that y ∈ Li(f(θ), θ) while y 6∈ Li(f(θ), θ
′). By Taylor’s theorem, ∃ǫ > 0

such that for Nǫ(x) the remainder term of the 1 Taylor expansion is sufficiently small to

preserve inequalities. Therefore we need to show that there exists y ∈ Nǫ(x) such that

(yi1−xi1)
∂ui(f(θ),θi)

∂xi
1

+(yi2−xi2)
∂ui(f(θ),θi)

∂xi
2

< 0 while (yi1−xi1)
∂ui(f(θ),θ

′
i)

∂xi
1

+(yi2−xi2)
∂ui(f(θ),θ

′
i)

∂xi
2

>

0 as Nǫ(f(θ)) ⊆ A(θ). With some rearranging we find

∂ui(f(θ),θ
i)

∂xi
2

∂ui(f(θ),θi)

∂xi
1

< −
yi1−xi

1

yi2−xi
2
<

∂ui(f(θ),θ
′
i)

∂xi
2

∂ui(f(θ),θ′i)

∂xi
1

,

which as θ′i > θi is satisfied by single crossing, as we can find −
yi1−xi

1

yi2−xi
2
satisfying the

inequalities needed in the neighbourhood. �

Proof of proposition 2: Let each agent i ∈ N announce an outcome, which excludes

all reports that would be their maximal allocation, and the state. ThereforeMi = int(X)×

Θ, with typical element mi = (x(i), θ(i)) Let g(m) be as follows:

(i) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈ N then g(m) = f(θ).

(ii) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈ N\{j} where mj = (x(j), θ′), θ′ 6= θ

g(m) =







x(j) if x(j) ∈ Lj(f(θ), θ) ∩N ǫ
2
(f(θ))

f(θ) if x(j) 6∈ Lj(f(θ), θ) ∩N ǫ
2
(f(θ))

(iii) If ∃D ⊂ N such that k ≥ |D| > 1, where mi = (x(i), θ(i)) and θ(i) = θ, ∀i ∈ N\D,

then g(m) is constructed by the following: Let ǫ be fixed across agents such that

Nǫ(f(θ)) ⊆ A(θ). ∀i ∈ D let x̃(i) = x(i) if x(i) ∈ N ǫ
|D|

(f(θ)). x̃(i) = λix(i) +

(1 − λi)f(θ) such that d(f(θ), x̃(i)) = ǫ
|D|+1 , λ

i ∈ (0, 1) otherwise. where Now let

g(m) = f(θ) +
∑

i∈D(x̃(i)− f(θ)).

(iv) Otherwise, let g(m) = 1
n

∑

i∈N x(i).

Step 1. First to show that x = f(θ) is a Nash Equilibrium at θ. Considerm∗ satisfying

rule (i) Any unilateral deviation of agent i leads to rule (ii), where the only way to change

the allocation is in Li(f(θ), θ), which cannot give a strictly higher utility by definition.

Therefore all m∗ satisfying rule (i) are Equilibria.

Step 2. We want to show that ∄m∗ that is an Equilibrium at θ with g(m∗) 6= f(θ).
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Case 1: Suppose that there is an Equilibrium in Rule (i) where g(m∗) 6= f(θ), where

the true state is θ. It follows that all agents are announcing some state θ′ 6= θ. With this,

there exists some agent who announces their own type to be θj(j) = θ′j 6= θj . For this

agent ∃xj s.t. xj ∈ Lj(f(θ
′), θ′) ∩ N ǫ

2
(f(θ′)) while xj 6∈ Lj(f(θ

′), θ) ∩ N ǫ
2
(f(θ′)) by the

same logic as lemma 1 via the single crossing condition. Therefore m∗ cannot be a Nash

Equilibrium.

Case 2: There are no Nash Equilibria for any θ in rule (ii). Suppose that m∗ is

an equilibrium at that θ where for all i ∈ N\{j} we have that mi = (x(i), θ(i)) with

θ(i) = θ′ while mj = (x(j), θ(j)) with θ(j) 6= θ′. Regardless of whether g(m∗) = f(θ) or

g(m∗) = x(j), notice that any agent i 6= j can induce an increase in both dimensions of the

bundle by announcing mi = (x′(i), θ′(i)), where θ′(i) 6= θ′ and x′(i) such that x′j(i) = fj(θ)

and x′i(i) is chosen such that x′(i) ∈ N ǫ
2
(f(θ)) and

x
k,′
i (i)+x̃k

j (j)

2 > fk
i (θ), which is achievable

by the construction of rule (iii). As ui is strictly increasing, m∗ is not a Nash equilibrium.

Case 3: There cannot be an Equilibrium in Rule (iii), any agent i ∈ D can announce

an allocation to the north east of x̃(i) such that x(i) ∈ N ǫ
|D|

(f(θ)), leading to rule (iii) or

(iv), regardless, monotonically increase their allocation.

Case 4: The final case is within rule (iv). Again, this cannot be an Equilibrium,

as agents can deviate to announcing an allocation to the north east of the current one,

leading to rule (iv). This deviation is profitable given the assumption of increasing utility.

As the message can only be interior in X, such a profitable deviation always exists.

Step 3: Notice all Equilibria lie in Rule (i). Further, any such equilibrium m∗ at θ

lead to g(m∗) = f(θ) by Case 1 of Step 2. k deviations that remains in rule (i) must lead

to the same allocation, and therefore safety is guaranteed. k deviations that lead to rule

(ii) lead to allocations in N ǫ
2
(f(θ)) ⊂ Nǫ(f(θ)) ⊆ A(θ) and therefore safety is maintained.

The only check needed for this is that rule (iii) lies within an ǫ neighbourhood of f(θ),

and therefore within A(θ). To see this, notice that:

d(f(θ), g(m)) = d

(

f(θ), f(θ) +
∑

i∈D

(x̃(i)− f(θ))

)

= ‖
∑

i∈D

(x̃(i)− f(θ))‖

≤
∑

i∈D

‖x̃(i)− f(θ)‖ =
∑

i∈D

d(f(θ), x̃(i)) < |D|
1

|D|
ǫ = ǫ

(the weak inequality comes from the triangle inequality). Hence, g(m) ∈ Nǫ(f(θ)) for any

m within rule (iii) that is k deviations from an equilibrium at θ. �

Proof of proposition 4: If |X| ≤ n, by richness ∃θ ∈ Θ such that for every x ∈ X

∃i ∈ N such that {x} = argminy∈X ui(y, θ). Hence if A is minimally safeguarding then

X∗(θ) = ∅ and therefore no SCC can be safely C-implemented for any k ≥ 1 and any C.�

Proof of proposition 5: If it is not the case that A(θ) = X for some θ, then it must

be that some x ∈ X is not in A(θ). By surjectivity, there is some state where x = f(θ′),

and x 6= z = f(θ). By richness, ∃θ′′ ∈ Θ where x is the top ranked alternative for all
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players, while z is second ranked for all players. Hence, by Comonotonicity, both z and x

are chosen by the SCF at θ′′. But since x 6= z, and we have a SCF, this is a contradiction.

�

Proof of proposition 3: Let X = N ∪ {0}, where 0 represents the good not being

allocated. For each θ ∈ Θ let θ ∈ Rn
+ denote the vector of agents’ values. Let Mi = X×Rn

+

for all i ∈ N with a typical message mi = (j, v) ∈ N ∪ {0} × Rn
+. Let g(m) be as follows:

(i) If ∀i ∈ N mi = (j′, v) with v = θ ∈ Θ and j′ = f(θ) then g(m) = j′ = f(θ).

(ii) If mi = (j′, v) ∀i ∈ N\{j} with v = θ ∈ Θ and f(θ) = i′ and mj = (l, ·), then

g(m) =







l if l ∈ [Lj(j
′, θ) ∩ Ã(θ)]\{j′}

∅ if l /∈ [Lj(j
′, θ) ∩ Ã(θ)]\{j′}

(iii) If mi = (j′, v) such that v = θ ∈ Θ and j′ = f(θ) for ∀i ∈ N\D, 2 ≤ |D| < n
2 such

that ∀j ∈ D mj = (lj , ·), lj 6= j′ then

g(m) =







li
∗

if D∗(θ,D) 6= ∅

j′ if D∗(θ,D) = ∅

where D∗(θ,D) = {j ∈ D|lj ∈ Ã(θ)} and i∗ = min{i ∈ D∗(θ,D)|vii ≥ vjj j ∈

D∗(θ,D)}.

(iv) otherwise let g(m) = li
∗
where mi = (li, ·) and i∗ = min{i ∈ N |vii ≥ vjj j ∈ N}.

Where Ã(θ) =
⋂

θ′∈Θ|f(θ′)=f(θ)A(θ′).

Notice that, at state θ, with messages that fall into rule (i) with m∗ = (j′, θ), m∗ is a

Nash equilibrium, since any deviation from m∗ either leads to the good not being allocated

or it must be that a less deserving agent receives the good. To show all Nash Equilibria

are safe, we will do so by showing that rule i) constitute the only Nash Equilibria, and

always allocate the f(θ) at state θ.

Suppose that there is a Nash Equilibrium in rule ii) m∗ at state θ. Let m∗
i = (j′, θ′) for

all i 6= j and m∗
j = (l, ·). It must be either g(m∗) = l ∈ Ã(θ′), l ∈ N\{j′}, or g(m∗) = 0.

Suppose that j = j′. Here there is a profitable deviation to announce mj = (j′, θ′) and

be allocated the good, which cannot be case under rule (ii). Suppose instead that j 6= j′.

Let i = j′, who can announce mi = (i, v′′) such that v′′i is strictly higher than the ith (or

equivalently j′,th) component of θ′ and receive the good by inducing rule (iii).

As all agents prefer to have the good allocated to themselves, there can be no Equilibria

in rule iii) and iv). To see that in the case of rule (iii) there is no Nash equilibrium, suppose

that the message of |N | − k agents is mi = (j′, v′), with v′ = θ′ and f(θ′) = j′, while m∗

is a Nash equilibrium. Given that there is some agent j ∈ Ã(θ′) such that g(m∗) 6= j by

(A.3.). Such an agent prefers to have the good allocated to themself, they can announce
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mj = (j, v′′), such that v′′j = maxi 6=j v
i
i + ǫ, and therefore would induce that the good

is allocated to them. For rule (iv), but any agent who is not allocated the good could

deviate.

Suppose that there is some Nash Equilibrium in rule i) m∗ at θ such that, for some θ′

we have g(m∗) = f(θ′) = j′ 6= f(θ). j′ is undeserving. Any agent can announce l = 0 (or

any l /∈ A(θ)), which given rule (ii) and (P.2.), induces no agent to receive the good, as is

not preferred at θ′. However, this is preferred at θ as reverting to the empty allocation is

attainable and by assumption gives a higher payoff than an undeserving agent.

Notice that they all lie within rule (i) with m∗
i = (j′, θ) at state θ′, where j′ has the

highest valuation in state θ′. Up to k deviations can only lead to rules (ii) or (iii), where

the majority still announces (j′, θ). With this, we remain in Ã(θ) ⊆ A(θ′). �
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A Online Appendix

A.1 An Example of a non-maximally safe acceptability correspondence

that still satisfies all properties of comonotonicity

To see that we may have a non-maximally safe acceptability correspondence that still

satisfies all properties of comonotonicity, consider the following example:

Figure 4: 1, 2 and 3’s preference orderings over the three alternatives, at the three states,
L, M , and H. For each state, the allocation chosen by SCF f∗ in Ex. 6 is indicated by
a square. The acceptability correspondence A from this example is shown by the dotted
lines, and satisfies the conditions of Weak Comonotonicity. Acceptability correspondence
A∗ such that A∗(θ) = {a, b} ⊆ A(θ) is maximally safe, and is represented by the dashed
lines in the figure.

Example 6 Let everything be the same as the leading example, except at state L player

3’s preference ordering is c ≻ a ≻ b. Let the SCF be f∗(L) = f∗(H) = a, f∗(M) = b,

with A(L) = A(M) = {a, b}, and A(H) = {a, b, c}, as in the leading example. First

note that, while it can be shown that f∗ can be Safely implemented with respect to

A, this acceptability correspondence is not maximally safe, since f∗ can also be safely

implemented with respect to the subcorrespondence A∗, such that A∗(θ) = {a, b} for all θ.

Figure A.1 summarizes as usual agents’ preferences, the SCC, and the two acceptability

correspondences. Nonetheless, we show that (A, f∗), in this case, satisfies both conditions

for comonotonicity. Part 1 of Def. 5 can be checked following the same logic as in the

earlier examples (and it also follows from Proposition 1). To see that part 2 of Def. 5

also holds, note that it cannot be violated due to moving from states L or M to any other

state, as A(L) = A(M) ⊆ A(H), and therefore the condition is satisfied regardless. To see

there is no violation moving from state H to state L, notice that relative to f∗(H) = a,

an acceptable allocation at H, c, moves up in the ranking of player 3 from state H to L.

Therefore we conclude that A(H) 6⊆ A(L) does not violate part 2 of Def. 5. To see that

there is no violation moving from state H to state M , notice that relative to f∗(H) = a,

an acceptable allocation at H, namely b, has moved up in player 1’s ranking from state H

to state M . With this, we also conclude that we do not violate part 2 of Def. 5 by setting
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A(H) 6⊆ A(L). Hence, A is not maximally safe, and yet it is comonotonic with respect to

f∗. �

A.2 Proofs from Section 5.1 and 5.2

Proof of Result 1: Suppose for somem⋆,θ we have that x ∈ g(Bk−1(m
⋆,θ))∩argmaxy∈A(θ) ui(y, θ

′)

∀i ∈ N . As x ∈ g(Bk−1(m
⋆,θ)) it follows that ∃Dk−1 ⊂ Nk−1,mDk−1

∈ MDk
with

g(mDk−1
,m⋆,θ

−Dk−1
) = x.

Any unilateral deviation leads to an allocation in A(θ) by definition of (A, k)-Safe

implementation and less than k agents are reporting a non-Equilibrium message. Therefore

mDk−1
,m⋆,θ

−Dk−1
is a Nash Equilibrium at θ′ and therefore g(mDk−1

,m⋆,θ
−Dk−1

) ∈ F (θ′). �

Proof of Result 2: Let each agent i ∈ N announce an outcome that is acceptable

at some state, a state, and a natural number. Thus Mi =
⋃

θ′′∈ΘA(θ′′) × Θ × N, with a

typical element mi = (xi, θi, ni). Let g(m) be as follows:

(i) If mi = (x, θ, ni) ∀i ∈ N and x ∈ F (θ) then g(m) = x

(ii) If mi = (x, θ, ni) ∀i ∈ N\{j} with x ∈ F (θ) and mj = (y, ·, ·) then

g(m) =







y if y ∈ Lj(x, θ) ∩A(θ)

x if y 6∈ Lj(x, θ) ∩A(θ)

(iii) mi = (x, θ, ·), x ∈ F (θ), ∀i ∈ N\D, 2 ≤ |D| < n
2 such that ∀j ∈ D mj 6= (x, θ, ·)

g(m) =







xi
∗

if D∗(θ,D) 6= ∅

x if D∗(θ,D) = ∅

where

D∗(θ,D) = {j ∈ D|xj ∈ A(θ)}

and i∗ = min{i ∈ D∗(θ,D)|ni ≥ nj j ∈ D∗(θ,D)}

(iv) Otherwise, let g(m) = xi
∗
where i∗ = min{i ∈ N |ni ≥ nj ∀j ∈ N}

From here we can complete the proof in three steps: showing that all x ∈ F (θ) are

induced by a Nash Equilibrium at θ, showing that there is no y /∈ F (θ) such that y is

induced by an Equilibrium at θ, and finally showing that the mechanism is indeed (A, k)-

Safe.

Step 1. First to show that all x ∈ F (θ) are induced by Nash Equilibria at θ.

Consider m∗ such that m∗
i = (x, θ, ·), ∀i ∈ N where x ∈ F (θ) at the state θ. To be a

Nash Equilibrium we need to rule out the possibility that ∃j ∈ N,m′
j ∈ Mj such that

uj(g(m
∗
−j ,m

′
j), θ) > uj(g(m

∗), θ).
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However, g(m∗
−j ,m

′
j) = y must be such that y ∈ Lj(x, θ) by rule (ii), it is not possible

that uj(y, θ) > uj(x, θ). Therefore it must be that m∗ is a Nash Equilibrium leading to

x ∈ F (θ).

Step 2. We will now show that no m∗ a Nash equilibrium at θ that is a such that

g(m∗) = y /∈ F (θ). We proceed by showing that in each section of the rule, no Nash

equilibrium leads to y /∈ F (θ).

Case 1. Suppose m∗ is a Nash equilibrium in rule i) at state θ such that g(m∗) = y /∈

F (θ). It must be thatm∗
i = (y, θ′, ni) for all i ∈ N and, necessarily as y /∈ F (θ), that θ′ 6= θ.

Given this, it must be that there is no profitable deviation and therefore, as deviations

may only lead to rule (ii), it must be that for all i ∈ N , for any z ∈ Li(y, θ
′) ∩ A(θ′) we

have that z ∈ Li(y, θ), as there is no profitable deviation to report mi = (z, θ, ·) inducing

outcome z from rule (ii). With this, Li(y, θ
′) ∩ A(θ′) ⊆ Li(y, θ) ∩ A(θ′). Therefore, by

strong comonotonicity, we have that y ∈ F (θ), a contradiction.

Case 2. Now suppose that there is a Nash equilibriumm∗, which is in rule (ii), at state

θ such that g(m∗) = y /∈ F (θ). It must be that ∃j ∈ N such that, ∀i ∈ N\{j} we have

m∗
i = (x, θ′, ni), while m∗

j 6= (x, θ′, ·). For this to be a Nash equilibrium it must be that

there is no incentive for any agent to deviate. If k > 1 a deviation can lead to rule (i), (ii),

or (iii), regardless, as m∗ is a Nash equilibrium at θ, no agent i 6= j to wish to change their

report, inducing rule (iii), it must be that y ∈ argmaxz∈A(θ′) ui(z, θ). By weak Safe No-

Veto, it must therefore be that y ∈ F (θ), a contradiction to y /∈ F (θ). For k = 1 we have

that a deviation can lead to rule (i), (ii), or (iv), which in the case of rule (iv) can induce

any outcome. Those that can deviate to impose rule (iv) are all agents other than j. With

this, we have that, as there is no incentive to deviate, that y ∈ argmaxz∈
⋃

θ′′∈Θ A(θ′′) ui(z, θ)

for all i ∈ N\{j}. With this, it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N\{j},

and therefore by weak Safe No-Veto we have that y ∈ F (θ), a contradiction.

Case 3. Notice that there can be no Nash equilibria within rule (iii). Suppose that m∗

were a Nash equilibrium in rule (ii) at state θ. Suppose that |D| < ⌊n2 ⌋ and m∗
i = (x, θ′.·)

for all agents i /∈ D. Given this, it must be that there is no profitable deviation for any

agent. As there exists a message for any player that leads to any allocation in A(θ′) via

rule (iii), we conclude that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈ N . Therefore it must be

that no unanimity in A is violated. Now suppose that |D| = ⌊n2 ⌋. For there to be no

profitable deviation, it must be that for ∀i ∈ D, y ∈ argmaxz∈A(θ′) ui(z, θ). For all agents

in i ∈ N\D it must be that for any x ∈ X ⊇ A(θ′), we have that ui(y, θ) ≥ ui(x, θ), as

there is no profitable deviation. Given this, we conclude that y ∈ argmaxz∈A(θ′) ui(z, θ)

for all i ∈ N , and therefore no unanimity in A is violated.

Case 4. Note that there can be no Nash equilibria within rule (iv). To see this,

suppose that m∗ is a Nash equilibrium at state θ that falls within rule (iv), with g(m∗) =

y. Notice that any agent can deviate to remain within rule (iv), inducing any out-

come that is acceptable at any state. Therefore for y to be a Nash equilibrium it
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must be that y ∈ argmaxz∈
⋃

θ′′∈Θ A(θ′′) ui(z, θ) for all i ∈ N . Therefore it follows that

y ∈ argmaxz∈A(θ′) ui(z, θ) for some θ′ ∈ Θ and for all i ∈ N . Therefore no unanimity in A

is violated.

Step 3.

We will now show that all Nash equilibria are safe. To do so, we will again split it into

cases. By the previous analysis, recall that if we maintain No Unanimity in A we know

that there can only be equilibria in rule (i) or rule (ii), and therefore we need only focus

on the safety of those equilibria in rules (i) and (ii).

Case 1. If m∗ is a Nash equilibrium at θ that falls into rule (i) it must be that

m∗
i = (y, θ′, ni). By the previous analysis, we know that y ∈ F (θ). If θ′ = θ, we conclude

that safety is satisfied as k deviations can only lead to rule (ii) or (iii). Either way, we

remain in A(θ). Now suppose that θ′ 6= θ while m∗ is a Nash equilibrium at θ. Notice that

regardless, k deviations must lead to remaining within A(θ′) via rule (ii) or (iii). By the

previous analysis, we know that this only occurs when Li(y, θ
′) ∩A(θ′) ⊆ Li(y, θ) ∩A(θ′)

for all i ∈ N . Given this, A(θ′) ⊆ A(θ) must hold for strong comonotonicity to be satisfied.

Given that A(θ′) ⊆ A(θ), we conclude that any deviation from such a Nash equilibrium

must remain in A(θ′), and therefore A(θ), maintaining safety.

Case 2. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (ii). It

must be that ∀i 6= j m∗
i = (x, θ′, ni) while m∗

j 6= (x, θ′, ni). Notice that k deviations can

lead to rule (i), rule (ii) or rule (iii), as k < ⌊n2 ⌋ − 1. By the structure of the mechanism,

even with k, in the extreme case where n
2 − 2 misreports from m∗, it remains that the

majority of agents are reporting mi = (x, θ′, ni). With this, any k deviations must lead

to A(θ′). Notice that for this to be a Nash equilibrium at θ, we therefore require that

g(m∗) = y ∈ argmaxz∈A(θ′) ui(z, θ) for all i 6= j. With this, by Weak Safe No-Veto, we

have that A(θ′) ⊆ A(θ). As k deviations remain in A(θ′) it is also true that k deviations

remain in A(θ). Therefore Safety is upheld. �

Proof of Result 3: Let each agent i ∈ N announce an outcome, a state, and a

natural number. Thus Mi = X×Θ×N, with a typical element mi = (xi, θi, ni). Let g(m)

be as follows:

(i) If mi = (x, θ, ni) ∀i ∈ N and x ∈ F (θ) then g(m) = x

(ii) If mi = (x, θ, ni) ∀i ∈ N\{j} with x ∈ F (θ) and mj = (y, ·, nj) then

g(m) =







nj

nj+1
y + 1

nj+1
x if y ∈ Lj(x, θ) ∩A(θ)

x ify 6∈ Lj(x, θ) ∩A(θ)
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(iii) if mi = (x, θ, ·), x ∈ F (θ), ∀i ∈ N\D, 2 ≤ |D| ≤ n
2 such that ∀j ∈ D mj 6= (x, θ, ·)

g(m) =























∑

y∈A(θ)
1

|A(θ)|+
∑

k∈D∗(θ,D) n
k y + ...

+...
∑

j∈D∗(θ,D)
nj

|A(θ)|+
∑

k∈D∗(θ,D) n
kx

j if D∗(θ,D) 6= ∅
∑

y∈A(θ)
1

|A(θ)|y if D∗(θ,D) = ∅

where D∗(θ,D) = {j ∈ D|xj ∈ A(θ)}.

(iv) Otherwise, let g(m) =
∑

x∈X
1

|X|+
∑

j∈N nj x+
∑

i∈N
1

|X|+
∑

j∈N nj x
i.

From here we can complete the proof in three steps: showing that all x ∈ F (θ) are

induced by a Nash Equilibrium at θ, showing that there is no y /∈ F (θ) such that y is

induced by an Equilibrium at θ, and finally showing that the mechanism is indeed (A, k)-

Safe.

Step 1. First to show that all x ∈ F (θ) are induced by Nash Equilibria at θ.

Consider m∗ such that m∗
i = (x, θ, ·), ∀i ∈ N where x ∈ F (θ) at the state θ. To be a

Nash Equilibrium we need to rule out the possibility that ∃j ∈ N,m′
j ∈ Mj such that

uj(g(m
∗
−j ,m

′
j), θ) > uj(g(m

∗), θ).

By rule (ii), the only way that g(m∗
−j ,m

′
j) 6= x, i.e. not to give the deterministic

allocation x, it must be that it puts positive weight on x and on one other allocation

y ∈ Lj(x, θ) ∩A(θ). Given that y ∈ Lj(x, θ), there is no profitable deviation.

Step 2. We will now show that no m∗ a Nash equilibrium at θ that is such that

g(m∗) /∈ F (θ), i.e. no Nash equilibrium gives anything but the deterministic allocations of

F (θ). We proceed by showing that in each section of the rule, no Nash equilibrium leads

to any y /∈ F (θ), or any probabilistic allocation.

Case 1. Suppose m∗ is a Nash equilibrium in rule i) at state θ such that g(m∗) = y /∈

F (θ). It must be thatm∗
i = (y, θ′, ni) for all i ∈ N and, necessarily as y /∈ F (θ), that θ′ 6= θ.

Given this, it must be that there is no profitable deviation, and therefore, as deviations

may only lead to rule (ii), it must be that for all i ∈ N , for any z ∈ Li(y, θ
′) ∩ A(θ′) we

have that z ∈ Li(y, θ), as there is no profitable deviation to report mi = (z, θ, ·) inducing

outcome z from rule (ii). With this, Li(y, θ
′) ∩ A(θ′) ⊆ Li(y, θ) ∩ A(θ′). Therefore, by

strong comonotonicity, we have that y ∈ F (θ), a contradiction.

Case 2. Now suppose that there is a Nash equilibrium m∗, which is in rule (ii), at

state θ such that g(m∗) /∈ F (θ). It must be that ∃j ∈ N such that, ∀i ∈ N\{j} we have

m∗
i = (x, θ′, ni), while m∗

j 6= (x, θ′, ·). We split this possibility into sub-cases for clarity.

Case 2.a. First consider the case that g(m∗) = x ∈ F (θ′). It must therefore be that

for all i 6= j there is no profitable deviation. Given this, we must have that ui(x, θ) ≥

maxz∈A(θ′)\{x} ui(z, θ) by the fact a deviation to announce an arbitrarily high ni, therefore,

inducing a probabilistic outcome putting almost probability 1 on their most preferred

outcome z. Further, for j to have no profitable deviation we have that it must be that there
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is no y ∈ Lj(x, θ
′)∩A(θ′) such that uj(y, θ) > uj(x, θ). Therefore for all y ∈ Lj(x, θ

′)∩A(θ′)

we have that uj(x, θ) ≥ uj(y, θ), and therefore it is the case that Lj(x, θ
′) ∩ A(θ′) ⊆

Lj(x, θ) ∩ A(θ′). Further, we have that Li(x, θ) ∩ A(θ′) = A(θ′) for all i 6= j. With this

Li(x, θ
′) ∩A(θ′) ⊆ Li(x, θ) ∩A(θ′) for all i ∈ N . Therefore by Strong Comonotonicity we

have that x ∈ F (θ) and A(θ′) ⊆ A(θ).

Case 2.b. Now instead consider the case where g(m∗) = nj

nj+1
y + 1

nj+1
x. As for

all θ, θ′ ∈ Θ, for all z ∈ F (θ′) z′ ∈ A(θ′), ∃i ∈ N such that ui(z, θ) − ui(z
′, θ) 6= 0,

it must be that case that agent is such that ui(y, θ) − ui(x, θ) 6= 0. If such agent is j,

i.e. the whistle blower, then a profitable deviation exists to announce either a higher

nj , putting more weight on y, or announce m′
j = m∗

i for i 6= j, putting weight 1 on

x. Now suppose that ui(y, θ) − ui(x, θ) 6= 0 for i 6= j, while uj(y, θ) − ui(x, θ) = 0.

Firstly, suppose that ui(y, θ) > ui(x, θ). Notice that ∀ǫ > 0 ∃ni ∈ N such that ǫ >
|A(θ′)|

|A(θ′)|+ni+nj (ui(y, θ) − minz∈A(θ′) ui(z, θ)). Therefore, simply rearranging this, we have

that ∀ǫ > 0 ∃ni ∈ N such that ni+nj

|A(θ′)|+ni+nj ui(y, θ) +
|A(θ′)|

|A(θ′)|+ni+nj minz∈A(θ′) ui(z, θ) >

ui(y, θ)− ǫ. Given this, we conclude that ∀ǫ > 0 ∃ni ∈ N such that ni+nj

|A(θ′)|+ni+nj ui(y, θ) +
∑

z∈A(θ′)
1

|A(θ′)|+ni+nj ui(z, θ) > ui(y, θ)− ǫ. Let ǫ = ui(y, θ)−
nj

nj+1
ui(y, θ)−

1
nj+1

ui(x, θ).

By assumption that ui(y, θ) − ui(x, θ) > 0 we have that ǫ > 0. With this, ∃ni ∈ N

such that ni+nj

|A(θ′)|+ni+nj ui(y, θ)+
∑

z∈A(θ′)
1

|A(θ′)|+ni+nj ui(z, θ) >
nj

nj+1
ui(y, θ)+

1
nj+1

ui(x) =

ui(g(m
∗), θ). With this, announcing m′

i = (y, θ, ni) induces such an outcome

ui(g(m
′
i,m

∗
−i), θ) =

nj

nj + 1
ui(y, θ)−

1

nj + 1
ui(x) > ui(g(m

∗), θ)

and therefore m∗ cannot be an equilibrium. By an analogous argument, there cannot be

an equilibrium if ui(x, θ) > ui(y, θ) for some agent, as they can announce an arbitrarily

high ni and x, putting almost probability 1 on x. Regardless, this m∗ such that g(m∗) =
nj

nj+1
y + 1

nj+1
x cannot be an equilibrium.

Case 3 and 4. Note that there cannot be any equilibria in rule (iii) or rule (iv).

To see this, notice that any agent can announce their most one of their most preferred

outcome from A(θ), in rule (iii), or X in rule (iv), and an integer higher than any other

agent (including themselves before the deviation), and strictly increase their utility by

reducing the probability assigned to their less preferred option. As at least one agent is

not completely indifferent between all allocations by No total indifference across F and

A, one such agent always exists.

Step 3. Notice that by the previous analysis, there may on be equilibria in rules (i)

and (ii), therefore we need only check the Safety of such equilibria.

Case 1. Firstly, suppose that m∗ is a Nash equilibrium in rule (i) at state θ. By the

previous analysis, we know that it is the case that m∗
i = (x, θ′, ·), with x ∈ F (θ′). If θ′ 6= θ,

then, by the previous analysis, we know that Li(x, θ
′)∩A(θ′) ⊆ Li(x, θ)∩A(θ′) for all i ∈ N .

Therefore by Strong Comonotonicity we have that x ∈ F (θ) and A(θ′) ⊆ A(θ). Now notice
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that in k deviations from m∗, we may only reach A(θ′), via rule (ii), with 1 deviation,

or rule (iii) which can be reached with more than 1 but less than k + 1 deviations. As

k < n
2 − 1, it is the case that the majority of agents still report m∗

i , regardless of what the

other k report. Given that A(θ′) ⊆ A(θ), it follows that any allocation with k deviations

of m∗ is still a mix with a support of A(θ). If instead m∗ is such that θ′ = θ, Safety is

upheld as k deviations can only lead to stochastic allocations over A(θ). Therefore Safety

is upheld.

Case 2. Now instead suppose m∗ is a Nash equilibrium at state θ that falls into

rule (ii). It must be that m∗
i = (x, θ′, ·) for all i 6= j and m∗

j = (y, θ′′, ·). By the pre-

vious analysis, we know that g(m∗) = x. If θ′ 6= θ, again by the previous analysis, we

know that it must be that Li(x, θ
′) ∩ A(θ′) ⊆ Li(x, θ) ∩ A(θ′) for all i ∈ N . Therefore

by strong comonotonicity we have that x ∈ F (θ) and A(θ′) ⊆ A(θ). Now notice that in

k deviations we may reach rule (i) inducing x, rule (ii) inducing mixes over allocations in

Lj(x, θ
′)∩A(θ′), or rule (iii) for inducing stochastic allocations over A(θ′). Notice that no

other allocations can be reached in k deviations as k < n
2 − 1, and therefore the majority

of agents would still be reporting m∗
i . With this, and by A(θ′) ⊆ A(θ), we have that the

mechanism is still considered Safe. Similarly, if θ′ = θ, we have that in k deviations we

may reach rule (i) inducing x, rule (ii) inducing mixes over allocations in Lj(x, θ) ∩A(θ),

or rule (iii) for inducing stochastic allocations over A(θ). With this, Safety is upheld.�

Proof of Result 4: Take the mechanism and logic to be similar to that of theorem

3:

Let each agent i ∈ N announce an outcome that is acceptable at some state, a state,

and a natural number. Thus Mi =
⋃

θ′′∈ΘA(θ′′) × Θ × N, with a typical element mi =

(xi, θi, ni). Let g(m) be as follows:

(i) If mi = (x, θ, ni) ∀i ∈ N and x ∈ F (θ) then g(m) = x

(ii) If mi = (x, θ, ni) ∀i ∈ N\{j} with x ∈ F (θ) and mj = (y, θ′, ·) then

g(m) =







y if ui(x, θ, (x, θ, ·)) ≥ ui(y, θ, (y, θ
′, ·)) and y ∈ A(θ)

x if either ui(x, θ, (x, θ, ·)) < ui(y, θ, (y, θ
′, ·)) or y /∈ A(θ)

(iii) If mi = (x, θ, ·), x ∈ F (θ), ∀i ∈ N\D, 2 ≤ |D| < n
2 such that ∀j ∈ D mj 6= (x, θ, ·)

g(m) =







xi
∗

if D∗(θ,D) 6= ∅

x if D∗(θ,D) = ∅

where

D∗(θ,D) = {j ∈ D|xj ∈ A(θ)}
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and i∗ = min{i ∈ D∗(θ,D)|ni ≥ nj j ∈ D∗(θ,D)}

(iv) Otherwise, let g(m) = xi
∗
where i∗ = min{i ∈ N |ni ≥ nj ∀j ∈ N}

From here we can complete the proof in three steps: showing that all x ∈ F (θ) are

induced by a Nash Equilibrium at θ, showing that there is no y /∈ F (θ) such that y is

induced by an Equilibrium at θ, and finally showing that the mechanism is indeed (A, k)-

Safe. We will proceed by showing that all Nash Equilibria are contained in rule (i), and

report the correct state, and therefore, in comparison to theorem 3, we may weaken Safe

No-Veto to only Unanimity within all acceptable allocations.

Step 1. First to show that all x ∈ F (θ) are induced by Nash Equilibria at θ.

Consider m∗ such that m∗
i = (x, θ, ·), ∀i ∈ N where x ∈ F (θ) at the state θ. To see

this is a NE, suppose not there is some agent for which there is a profitable deviation m′
j ,

g(m∗
−j ,m

′
j) = y must be such that ui(x, θ, (x, θ, n)) ≥ ui(y, θ, (y, θ

′, n)) and y ∈ A(θ) (or

it is not profitable) by rule (ii), a contradiction to uj(y, θ, (y, θ
′, n)) > uj(x, θ, (x, θ, n)).

Therefore it must be that m∗ is a Nash Equilibrium leading to x ∈ F (θ).

Step 2. We will now show that no m∗ a Nash equilibrium at θ that is a such that

g(m∗) = y /∈ F (θ). We proceed by showing that in each section of the rule, no Nash

equilibrium leads to y /∈ F (θ).

Suppose m∗ is a Nash equilibrium in rule i) at state θ such that g(m∗) = y /∈ F (θ).

It must be that m∗
i = (y, θ′, ni) for all i ∈ N and, necessarily as y /∈ F (θ), that θ′ 6= θ.

However, consider a deviation for player i to a report of mi = (y, θ′, ·). This induces

the outcome y still. By the definition of weak preference for correctness, we have that

ui(y, θ
′, (y, θ′, ·)) > ui(y, θ

′, (y, θ, ·)), and therefore a profitable deviation exists. A contra-

diction that m∗ being an equilibrium.

Suppose that we have an Equilibrium in case (ii) with m∗
i = (x, θ, ni) for all i 6= j

and m∗
j = (y, ·, ·). Suppose the true state is θ′. For this to be the case, it must be

that no agent has an incentive to deviate. Therefore it must be that g(m∗) 6= x, as

otherwise j has an incentive to deviate by announcing mj = (x, θ, nj), and by a preference

for correctness would now be announcing the correct state and / or allocation that the

mechanism implements. Therefore it must be that g(m∗) = y. However, given this, any

agent i 6= j has the incentive to deviate to mi = (y, θ′, ni), and therefore leading to

allocation y via rule (iii) or rule (iv). Via the weak preference for correctness, this strictly

increases utility. Therefore there can be no equilibria in rule (ii).

Suppose that the Equilibriumm∗ at state θ′ is in rule (iii), withm∗
i = (x, θ, ·), x ∈ F (θ),

∀i ∈ N\D, 2 ≤ |D| < n
2 such that ∀j ∈ D m∗

j 6= (x, θ, ·). It must be that at least |D| agents

are such that they are either reporting the wrong state or not reporting the allocation that

is being implemented g(m∗) = y, be that those in D or those in N\D. Given this, consider

one such agent. They may report the allocation y and/or the state θ′ and an integer higher

than any other agent. To see this does not change the allocation first consider the case
n
2 > |D| > 2. In such a case, we remain in rule (iii) or rule (iv) via this deviation, where

47



the deviating agent is announcing the highest integer and therefore y is allocated. Now

consider the case where |D| = 2. First consider g(m∗) = y = x. Suppose that θ 6= θ′, then

any agent in N\D may deviate to announce mi = (x, θ′, ni) with ni being higher than any

integer announced under m∗. As this announcement announces the true state, it strictly

increases the utility of i. Therefore it cannot be that m∗ is a Nash equilibrium in this

case. Suppose instead that θ = θ′. Then it must be that those in D are either:

1. Both announcing an allocation not in A(θ), in which case a deviation by either to

mj = (x, θ, ·) would not change the allocation but would make the report correct,

therefore increasing their utility.

2. One is announcing an allocation in A(θ), while one is not. In which case, there is at

least one who is not announcing x, in which case they can increase their utility by

doing so.

3. Both are announcing allocations in A(θ). If this is the case, if both announce x it

must be that both are announcing θj 6= θ, and therefore can improve their utility by

announcing mj = (x, θ, ·), and increase their utility, leading to rule (ii), but keeping

the same allocation. Now suppose that only one is announcing x. It must be that the

other is not, and therefore can increase their utility by announcing x, while keeping

the other parts of the report the same, strictly increasing their utility. If neither is

announcing x, it cannot be that g(m∗) = x.

Now instead consider g(m∗) = y 6= x. In such a case, those outside of D may deviate

to announce mi = (y, θ′, ·), increasing their utility.

Finally, consider the possibility of an equilibrium m∗ in rule (iv) at state θ leading

to the outcome y. For this to be the case, it must be that there is no incentive to

deviate. Consider the possibility that m∗
i 6= (y, θ, ·) for some i. For this to be the case,

it must be that announcing (y, θ, ·) and an integer higher than any other announced

under m∗ would change the allocation, as otherwise, the preference for correctness would

mean a profitable deviation occurs. This can only occur if such a deviation would lead

to rule (iii), i.e. ⌊n2 ⌋ − 1 agents are reporting (x, θ′, ·). Given this, we can deduce that

(x, θ′, ·) = (y, θ, ·) and that y ∈ F (θ), as otherwise, rule (iv) would dictate the allocation

remains the same, while at least one of those ⌊n2 ⌋ − 1 agents could strictly increase their

utility by announcing mj = (y, θ, ·). With this, the original player i such that m∗
i 6=

(y, θ, ·) has a profitable deviation as they can announce (y, θ, ·) and some arbitrarily high

ni, inducing rule (iii), where y is chosen due to i announcing the highest integer and

y ∈ F (θ) ⊆ A(θ). Therefore it cannot be that m∗
i 6= (y, θ, ·) for any i in any equilibria

in rule (iv). For such equilibria to fall into rule (iv) rather than rule (i), it must be that

y /∈ F (θ). However, for there to be no profitable deviation within this rule it must therefore

be that y ∈ argmaxx∈
⋃

θ′′∈Θ A(θ′′) ui(x, θ,mi) for all i ∈ N , and therefore by Unanimity

within all Acceptable Allocations we have that y ∈ F (θ). �
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