

SYNDROMIC SURVEILLANCE USING SAVSNET DATA

REAL-TIME SPATIO-TEMPORAL SURVEILLANCE

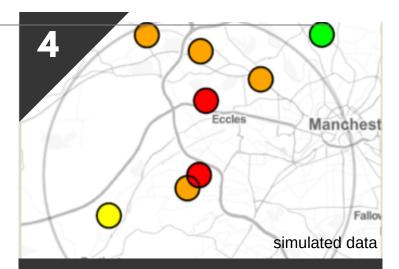
WITH APPLICATION TO SMALL COMPANION ANIMALS

Full paper published in Scientific Reports (nature research) available here

Alison Hale a.c.hale@lancaster.ac.uk Fernando Sánchez-Vizcaíno f.s-vizcaino@bristol.ac.uk Barry Rowlingson, Alan Radford, Emanuele Giorgi, Sarah O'Brien & Peter Diggle

STUDY

This study aimed to provide real-time surveillance mapping for early detection of disease outbreaks in dogs and cats


DATA

One million electronic health records collected from 458 veterinary surgeries taking part in SAVSNET

$$arPhi^{-1}(p_{j,i,t}) = d_{j,i,t}^T heta + S_{i,t}$$

METHOD

An MCMC algorithm generated samples from the Bayesian predictive distribution of the underlying spatio-temporal surface, allowing predictive probability of risk to be computed for each surgery on each day

OUTBREAKS

On a daily basis this system can predict outbreaks of gastrointestinal disease among dogs and cats attending SAVSNET surgeries using a traffic light system. We hope to make this system available to practitioners soon

CONCLUSION

This system generalises to other SAVSNET syndromes such as pruritus and respiratory disease, and also forms the basis of **SAVSNet-Agile**

THANK YOU

Thank you to The Wellcome Trust and Department of Health (grant HICF-T5-354) NIHR HPRU-EZI and MRC for funding this research, and to practices participating in SAVSNET