RUEDI Ultrafast Diffraction Line

Julian McKenzie
Technical Design Lead, STFC Daresbury Laboratory

RUEDI Vendors Symposium 4^h July 2025

Ultrafast Diffraction Line Performance

- 4 MeV
- 400 fC produced at the gun
- 1.6-160 fC charge at the sample after collimation
- Few fs time of arrival jitter at the sample
- < 10 fs bunch length</p>
- Up to 7 nm coherence lengths
- Emittance 2-50 nm rad level

RUEDI Capabilities

- Electron beam parameters:
 - <4 MeV</p>
 - <10 fs temporal resolution</p>
 - <7 nm coherance lengths</p>
 - Single-shot capable
 - Tuneable magnification/camera length (0.4 – 40 m)

Timing jitter

Parameter	Min	Max	Unit
Number of electrons	10^4	10^6	
Spot size (diameter)	30	400	um
Temporal resolution (FWHM)	5	500	fs
ΔQ (FWHM)	0.04	0.2	Å-1

Sample environments:

- Solid state
- Liquid + gas jets
- Cryogenic temperatures

- Laser pumps
 - UV-IR-THz wavelengths
 - HCF for <10 fs pulse lengths
 - High intensity TW (>10¹⁸ W.cm⁻²)

STFC Expertise

- Large-scale accelerator systems that cover most of the known RUEDI components
- More limited experience in pump-probe electron diffraction
 - Sample chambers:
 - Environments, control, exchange, diagnostics
 - Detectors

Example images of CLARA, co-located with RUEDI in Electron Hall at STFC Daresbury Laboratory

Daresbury Laboratory Expertise

Design, build, and operation of particle

accelerator facilities

MeV UED Experience

Femtosecond photoinjector development

Measurement of dynamics of relativistic electrons with laser-driven THz sources, and high power TW lasers

Ultrafast Diffraction Line

- Electron source S-band RF photoinjector Creates high brightness, short pulse beams
- 2. Ultrafast beam formation Simultaneously compresses bunch length and reduces jitter for overall time resolution <10fs single shot
- 3. Diffraction optics Variable magnification + camera length Direct electron detector
- 4. Chambers Solid, liquid and gas samples mK low temperature chamber
- 5. Temporal diagnostics Shot-by-shot arrival time and fs bunch length measurements
- 6. Lasers Feeds photoinjector, THz diagnostics and

Key components to procure:

Components and priorities

List and number of main beamline components largely complete, component design ongoing

"Standard" components

- Beamline girders, support, vibrational stability
- Vacuum pumps, gauges, valves etc
- Magnets dipoles, steerers, quadrupoles, sextupoles, solenoids, high-order correctors, power supplies, movers
- Diagnostics scintillators, cameras, ICT, BAM, motion control, Faraday cups, frontend electronics
- Cooling, synchronisation hardware, controls hardware etc

Critical long-lead time items

- RF normal conducting cavities, high power RF, LLRF
- Laser systems

Requires further consideration

- Sample control and environments
- Direct electron detector

Electron gun overview

- Normal conducting S-band RF gun, 4 MeV, <0.5pC
- Photoinjector laser
 - Front laser injection
 - Out of vacuum final laser mirror
 - Short ~60 fs pulse duration
 - Variable laser spot size: 100 um 400 um diameter
- Cathode
 - Copper backwall of electron gun
- Cooling channels around cavity to cope with heat load
- 1 kHz repetition rate
- 10 MW peak power, ~1.5us pulse width
- RF sub-systems
 - High power RF (klystron, modulator)
 - Waveguide network (in-vacuum, apart from circulator)
 - Low-Level RF system
 - RF monitoring

Operating frequency (GHz)	2.9985	
Mode separation (MHz)	15.6	
Coupling beta	2.000	
Cathode field (MV/m)	70	
RF voltage (MV)	5.97	
Effective shunt impedance (M Ω)	3.36	
Beam kinetic energy (MeV)	4	
Steady state power loss (MW)	4.77	
Steady state input power (MW)	5.34	
Average power loss 200 Hz (W)	782	
Average power loss 1 kHz (W)	3913	
Peak surface E field (outside cathode) (MV/m)	69.1	
Peak surface H field (kA/m)	251	
Peak temp rise (on coupler) (°C)	16.95	
Pulse length (ns)	975 + flat top	
<u> </u>	•	

Synchronisation + Longitudinal Diagnostics

- Temporal properties:
 - Time of arrival
 - Bunch length
- Diagnostic suite:
 - RF Beam Arrival Monitors*
 - RF TDC
 - THz at sample position
 - THz post-detector
 - Spectrometer

Laser Systems

- Lasers feed:
 - Electron source(s)
 - Sample pumps
 - fs diagnostics

Laser pumps:

- UV-IR-THz
 - 200nm 5um
 - OPAs + harmonic generation
- HCF for <10 fs
- High intensity TW (>10¹⁸ W.cm⁻²)
- Potential HHG + others

Sample chambers

- Interchangeable sample chambers for different environments
 - Potential for interchangeable inserts in chamber
- In conversation with science team about requirements:
 - Sample control (position, rotation)
 - Load-lock/sample exchange
 - Type of gas/liquid jets
 - Temperature (mK 1000K ?)
 - Laser injection
 - Diagnostics needs
- Potentially 3 chambers:
 - "Clean chamber" solid state, good sample control, lots of diagnostics
 - "Dirty chamber" gas/liquid jets, differential pumping
 - Cryo chamber possibly down to mK level

Mock-up sketch for dimensions, not internal design

Potential laser illumination modes

Laser Reflection Laser In-vacuum translate & rotate

b) Dual illumination

d) Variable angle illumiantion

with reflection capture

a) AoI near 0°

c) Transmission and/or

reflection measurment at 45°

Detector

- 4 MeV electrons
- Up to 10^6 electrons, high dynamic range
- Single electron detection
- Number of pixels/pixel size
- Total sensor size (cf standard beampipe Ø35mm)
- Vacuum compatible
- Ability to withdraw detector from beam path
- Ability to pass undiffracted core beam through
- 1 kHz repetition rate

- Integration into EPICS control system and STFC data systems
- Co-location with standard scintillator+ CCD system
- Gated to reduce background noise

End/Backup

■ Feel free to contact me on julian.mckenzie@stfc.ac.uk

