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COVID-19’s impact on the world has emphasized the 
importance of science. We are amidst a once-in-a-century 
global crisis, where the COVID-19 pandemic has spawned 
one of the greatest races in the history of scientific 
discovery—one that demands unprecedented agility and 
speed. At the same time, science is experiencing a sea 
change of its own, with data and artificial intelligence 
being used in new ways to break through long-standing 
bottlenecks in scientific discovery. The timing could not 
be better. Numerous societal challenges are demanding a 
dramatically faster pace in science. Simultaneously, there
is a growing trend with industry and governments to use
the scientific method of discovery, and experimentation 
at scale as rigorous processes to build knowledge and 
inform decisions. The idea of the “discovery-driven 
enterprise”—an organization whose culture is defined by 
rigorous experimentation, even applied to its own internal 
processes—is a powerful one, broadly, for enabling more 
informed decisions and more impactful actions across all 
aspects of society. These combined forces are giving shape 
to “accelerated discovery”—in which parts of the scientific 
process are automated—which will drive new generations 
of information technology, produce important advances in 
science, and create new opportunities in business.

History reflects that crises like COVID-19 permanently shape 
the world in profound ways. The pandemic has highlighted the 
potential of science both to produce critical breakthroughs 
and serve as a rigorous methodology to build knowledge  

Summary
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and make decisions. The health, safety, and prosperity 
of society depend on it. In the “new normal,” advanced 
computing, accessible in the hybrid cloud—a seamless 
melding of on-site and off-site computing resources—plays 
a defining role for discovery-driven enterprises. As will 
communities of discovery—networks of people spanning 
multiple institutions who share a common scientific purpose, 
such as creating a vaccine. Powered by pervasive artificial 
intelligence-infused workflows, they will further accelerate 
and scale the application of the scientific method to problems 
in science as well as across broader domains. This new era of 
accelerated discovery will enable critical advances in climate, 
health, and work. With the faster pace of scientific discovery 
comes new responsibility to mitigate risks of unintended 
consequences while ensuring important beneficial outcomes 
to society. 

This report describes the urgency of science along with the 
opportunities for accelerating and scaling discovery using 
the scientific method to produce a more agile and rigorous 
approach to tackle complex problems in science, business, 
and society broadly, as follows:

1.	 The Urgency of Science addresses the role of the 
scientific method in producing solutions to the world’s 
most urgent challenges. Accelerating and scaling 
discovery is more critical than ever, and transformations 
in science and business necessitate the development 
of information technology based on hybrid cloud for 
discovery.

2.	 Scaling the Scientific Method investigates how 
the confluence of Accelerated Discovery, Intelligent 
Infrastructure, and Communities of Discovery is 
accelerating and scaling discovery—applying the  
scientific method to achieve unprecedented speed,  
scale, and automation. 

3.	 A Vision and Roadmap examines implications of these 
advances for the Future of Climate, Future of Health,  
and Future of Work and explores how to proactively 
govern the development of technology during its entire 
lifecycle and responsibly advance innovation  
and maximize beneficial impacts.
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Science Focus Must  
Transcend This Crisis
  
The urgency of science has never been stronger than it is 
today. COVID-19 caught the world off-guard and disrupted 
nearly every facet of life: work, the economy, and health. 
Outbreaks like SARS, MERS, and Ebola should have served 
as warning signs, but those warnings went largely unheeded. 
Now, as the latest coronavirus has become a global disruptor, 
we are struggling to respond. More than ever, the future of our 
health, our safety, and our prosperity depend upon science. 
We need science to move faster. 

The rapid spread of COVID-19 revealed critical gaps in our 
knowledge and preparedness, which limited our ability to 
make vital decisions and take swift action to mitigate the cri-
sis. Yet, it is science that gives us hope as we continue to face 
uncertainties resulting from the pandemic. It is science that 
has led us to treatments and vaccines. It is science that will 
help us develop strategies for preventing and mitigating future 
crises. Beyond COVID-19, numerous challenges—such as 
those defined in the United Nations’ Sustainable Development 
Goals1—are demanding new focus. To address health around 
the world, climate change, social inequities, and more, we 
must place the scientific method at the center of our efforts. 
The scientific method will be a cornerstone to how emerging 
discovery-driven enterprises operate with greater agility and 
resiliency. It will be a foundation for how we govern technol-
ogy and ensure beneficial outcomes for society. We need to 
scale our use of the scientific method for greater impact.

Section One:
The Urgency of Science

Figure 1:
Science is transforming to a new  
era of accelerated discovery.
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We can revamp the innovation process to address urgent 
societal challenges by accelerating discovery and more rapidly 
translating scientific knowledge into practice. We can extend 
scientific thinking to a broader set of domains and move  
beyond the natural sciences. We can build on the scientific 
method as an essential foundation for emerging discovery- 
driven enterprises. Accelerated discovery can have a vital  
role in all kinds of decision making, such as enabling agile 
development of policies and regulations.2 It can catalyze  
the development of resilient supply chains and create more  
responsive and real-world-aware risk models in manufactur-
ing, finance, and healthcare. (See A Vision and Roadmap)

Historically, science has seen a number of major paradigms 
shifts, as depicted in Figure 1.3 In the earliest days, science 
was mostly empirical—it was about observing nature and 
making measurements. Important changes came later with 
the emergence of theoretical science, which was about estab-
lishing theories and using observations to validate or refute 
hypotheses.4 A classic example is Kepler’s law of planetary 
motion, which hypothesized that planets follow an elliptical 
orbit around the sun and tested and validated this hypothesis 
using astronomical observations. Later computers brought 
another big transformation with development of modeling  
and simulation, including tools for simulating biological pro-
cesses like ligand receptor binding and protein folding that 
could be applied for problems like drug discovery. These  
allowed more rapid cycles of hypothesizing and testing,  
leading to a faster pace in scientific discovery. 

The last two decades have seen the emergence of the Fourth 
Paradigm of big-data-driven science, dominated by exa-scale 
systems and an exa-flood of data.5 The Fourth Paradigm has 
definitively made science a big-data problem.6 For example, 
today virtual chemical databases contain billions of identified 
and characterized compounds.7 This same big data is now pro-
viding the basis for a new era of accelerated discovery, where 
artificial intelligence (AI) is enabling unprecedented levels of 
speed, automation, and scale.8 This includes greatly improved 
integration and reasoning with scientific knowledge, automatic 
generation of hypotheses using novel techniques that expand 
the search for new discoveries, and automation of experimen-
tation using robotic labs. (We illustrate these components in a 

AI-powered autonomous lab  
in Zürich, Switzerland
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case study below, in Accelerated Discovery.) Now building on 
this data, scientific discovery is entering a new era, where AI, 
and increasingly quantum computing, is applied by communi-
ties of discovery—in the hybrid cloud—to transform the scien-
tific method and overcome long-standing bottlenecks.

The scientific method is composed of a set of steps.9 Often, it 
starts with a question, which is followed by study, formation 
of a hypothesis, testing and assessing the results, and finally 
reporting. This scientific process is gated by numerous bot-
tlenecks.10 It is human-expert-driven and episodic. There are 
challenges right from the beginning in coming up with ques-
tions, which require increasingly deep and broad expertise. 
There are difficulties keeping up with the flood of scientific 
papers and growing knowledge. More than two million articles 
are published in 30,000 scientific journals each year. More 
than 74,000 new COVID-19 scientific related papers alone 
were added to the National Institute of Health library PubMedA 
in 2020. There are significant challenges in developing hy-
potheses. Chemical space is infinite. Estimates say there are 
1063 potential drug-like molecules. Our knowledge is incred-
ibly sparse compared to what is possible. Similarly, there are 
gaps in testing, including bridging digital models and physical 
testing, and ensuring reproducibility. It has been reported that 
70% of scientists have at least once tried and failed to repli-
cate the experiment of another scientist.11 

The changes that are making science AI-powered, increasing-
ly automated, and community-driven are closing the loop of 
scientific discovery in significant ways, as depicted in Figure 2. 

A �Explore the papers on PubMed at:  
pubmed.ncbi.nlm.nih.gov 

Figure 2:
The loop of scientific discovery is 
closing in significant ways.

http://pubmed.ncbi.nlm.nih.gov
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Figure 3:
Opportunity to (A) speed up, (B) 
scale up, and (C) scale out scientific 
discovery with greater agility and for 
larger impact.

This includes advances at each step, for example, to extract, 
integrate, and reason with knowledge at scale to better re-
spond to questions,12 to the use of deep generative models to 
automatically propose new hypotheses, to automating testing 
and experimentation using robotic labs.13 Important advanc-
es in machine representation of knowledge also enable new 
results that lead to new questions and hypotheses.14 For the 
first time, the loop in the scientific method is closing—each 
breakthrough is a step towards realizing the dream of discovery 
as a self-propelled, continuous, and never-ending process. 
 
Deep generative modeling is one important example of an 
emerging AI technology for scientific discovery. The last 
decade has brought about a revolution in AI based on deep 
learning and neural networks, which has created significant 
advances in capabilities for discrimination tasks. More recent-
ly new developments in AI technology based on pre-trained 
language models—which can write sentences—and other deep 
generative models are being used to automatically gener-
ate images, speech, and natural language.15 In domains like 
chemistry, deep generative models can generate new candi-
date chemicals, molecules,16, 17, 18 and materials,19 and expand 
both the discovery space and the creativity of scientists. This 
is critical in applications like materials science, where the de-
sign and discovery of new molecules is faced with a chemical 
space that is uncountably vast.20, 21 

These accelerated discovery methods, together with advances 
in computer infrastructure and increasing focus from commu-
nities of discovery, will speed up scientific discovery to ad-
dress urgent challenges, as depicted in Figure 3(a). There are 
two other dimensions that are important for scaling the scien-
tific method. First, the scientific method can and does apply to 
problems beyond natural science, as depicted in Figure 3(b). 
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A good example is the organization J-PAL,B which employs the 
scientific method through field experiments to test hypothe-
ses and make policy decisions in areas including microfinance, 
public health, and agriculture. For example, to the question 
of “what interventions increase educational outcomes at the 
lowest cost?”, the answer is determined through randomized 
controlled trials that find “targeted help,” in specific contexts 
is the best intervention.2 Similarly, to questions about pricing 
medicines, hypotheses drive randomized controlled trials that 
test them and ultimately guide policies and actions. Esther 
Duflo, J-PAL’s co-founder, won a Nobel Prize in Economics 
in 2019. Accelerating science will benefit such applications 
outside of the natural sciences.

Similarly, in a business context, there are enterprises today 
that are making increasing use of the scientific method—where 
discovery goes beyond traditional analytics, and is an active 
process of hypothesizing, testing and experimentation.22  
Enterprise discovery builds on data and AI and provides an  
accelerated wheel of exploration that allows enterprises  
to build knowledge, answer questions, and enhance opera-
tions, decisions, and offerings. This ability is vitally important 
to emerging discovery-driven enterprises in the context of 
COVID-19, as enterprises have continuous streams of import-
ant questions related to external factors and impacts on their 
business. Enterprises need discovery to answer these  
questions.

In addition to accelerating science and applying it to broader 
domains, the third dimension of scaling, as shown in Figure 
3(c), is the more rapid translation of scientific knowledge into 
applications. It is important for the wheels of scientific discov-
ery to go faster. But science is needed for more than science’s 
sake. Today, the translation of knowledge or diffusion of inno-
vation towards impact does not take a direct route, as some 
scientists publish fundamental advances and move on, leaving 
others to mine published results for applicable findings. A 
more rapid and governed approach to translation is needed 
to achieve impacts at greater scale. Deeper engagement from 
communities of discovery is needed across the entire process, 
to help not only with discovery and its translation and impact, 
but also to obtain acute awareness of challenges and prob-
lems. For example, in developing medicines, research labs  
and pharmaceutical companies should provide feedback on 
how to improve software environments for their needs.

The consequences of these transformations of discovery 
are dramatic: The acceleration of the scientific method, the 
scaling of scientific expertise, and the potential to expand 
discovery to a broader set of problems—achieving critical 
breakthroughs that impact society and industry.

B �Visit the poverty action lab:  
povertyactionlab.org 

http://povertyactionlab.org
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The Emerging Discovery-Driven Enterprise

The COVID-19 crisis has changed businesses in profound 
ways. Many of these changes will be permanent. COVID-19 
has affected entire supply chains from resources to production 
and manufacturing to distribution. Workers are affected 
at a global scale. Businesses are operating inconsistently. 
Consumer behavior is changing daily. COVID-19 has created 
new uncertainties that require enterprises to be more agile 
and responsive than ever and to constantly make sense 
of external data. Prior to COVID-19, many businesses had 
begun the journey of increasing use of analytics and AI to 
improve business processes. This created a growing focus 
on exploitation of core enterprise data assets—such as 
user or transaction data—and transformation of enterprise 
workflows—by removing, digitizing, or automating tasks 
related to, say, production or billing. More than ever, 
businesses must now tap into a wealth of external 
information—such as related to global health and 
climate—to guide decisions and adapt their operations 
and strategy.23 In an interconnected world, a virus incubated 
in bats from Asia can bring down a company in America.

Obtaining a deep understanding of external forces and the 
changing landscape is critical for business continuity and 
resiliency. Businesses need discovery tools and platforms that 
allow them to assimilate information from sources beyond the 
core business—information on politics, the environment, social 
movements, and other industries. The rapid collection of data 
will inform decisions, and the application of scientific rigor will 

Figure 4:
Discovery-driven enterprises use 
the scientific method to guide  
decisions and adapt strategy  
and operations.
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help create knowledge and manage risk, allowing businesses 
to adapt to the changing environment. Post-COVID-19, the 
emerging enterprise will be a discovery-driven enterprise. 

Discovery will drive the business of science along three 
segments in industry, as enterprises utilize discovery within 
various parts of the value chain:

1.	 Science as a business – which includes industries such as 
life sciences, chemicals, and materials, where the practice 
of science is core to the business;

2.	 Businesses that rely on science – which includes sectors 
such as energy and utilities, transportation, healthcare, 
and technology hardware that rely on results and outputs 
of science (e.g., geology, weather, medicine, and physics); 
and

3.	 Information-driven enterprises – which use the scientific 
method and experimentation at scale—building on data 
and AI—to create new critical knowledge about markets 
or management practices that improves business 
decisions, development of products, and operations.

The science efforts across these segments are built on a $2.4 
trillion annual research and development (R&D) expenditure 
worldwide, driven by R&D across governments, industry, and 
non-governmental organizations.24 As these three segments 
respond to the urgency of science and increase investment, 
new opportunities will be created. The use of the scientific 
method presents opportunities to reduce unnecessary 
spending and increase profitability across all parts of the 
business value chain. An example is the increasingly large 
number of companies who are regularly experimenting in sales 
and marketing. A common example is A/B testing to compare 
different versions of websites, the way Netflix experiments 
with movie recommendations. A more extensive example by 
some retailers is the experimentation of the entire supply 
chain to allow more rapid testing of different products and 
quick responses to consumer interests and trends.25 Inditex, 
which owns Zara, goes beyond predicting fashion trends each 
season. Instead, they continually introduce new items  
on small scale and measure performance before releasing 
them broadly.
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As enterprises become more discovery driven, transformations 
are required in the culture, skills, business process, tools, and 
platforms.26 For experimentation to be effective, it needs to 
be performed at scale and in a frictionless manner throughout 
the organization. A discovery culture is evidence-based, which 
requires adaptivity and openness. Fluency in data science, 
including statistical methods, is important to accelerate such 
changes. Beyond traditional AI tools, enterprises need hybrid 
cloud platforms to support experimentation at scale. These 
transformations power enterprise discovery efforts, drive 
advances in domains such as climate, work, and health,  
and enable activities in accelerated discovery broadly.

IBM Cloud data center in Dallas, TX 
for AI and Hybrid workloads
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Hybrid Cloud is Essential for Discovery 

Transformations in science and business make clear that 
the hybrid cloud for discovery is necessary. Science has long 
pushed the frontier of advanced computing—generating some 
of the most complex data and computationally intensive 
workloads in industry.5, 8 On the other hand, business is 
leading the adoption of cloud—driven by software application 
modernization, digital transformation, and other enterprise 
priorities. With the emergence of accelerated discovery, the 
paths for science and business are now converging, as shown 
in Figure 5. Science is moving beyond dedicated advanced 
compute systems to make greater use of hybrid cloud.27 
Business is building on data and AI to become discovery-
driven in hybrid cloud.

Most businesses today have diverse information technology 
(IT) environments that involve multiple public- and private-
clouds and on-premise resources. This mixture of existing 
resources drives the need for hybrid cloud for four reasons, 
which we call history, choice, physics, and law.C History means 
leveraging investments already made in infrastructure. Choice 
means freedom to host and move as needed and not be 
locked into one infrastructure. Physics refers to the need for 
IT to be close to data or services in order to reduce latency, 
for example when managing assembly robots. Law refers to 
compliance with legal frameworks that dictate where data 
and compute reside; hospitals might not be allowed to move 
patient data off-site. 

Concurrently, recent initiatives in science, such as European 
Open Science Cloud,28 NIH STRIDES, and NSF CloudBank, 

are making cloud the destination for science, by connecting 
researchers to online data, software, and processing. Helix 

Figure 5:
Needs of business and science  
converge with hybrid cloud for  
scaling the scientific method.

C �Arvind Krishna gives the IBM Think 
Digital Opening Keynote:  
ibm.com/about/arvind/ 
speeches/05-05-2020  

https://datascience.nih.gov/strides
https://www.cloudbank.org/ 
  https://www.ibm.com/about/arvind/speeches/05-05-2020 
  https://www.ibm.com/about/arvind/speeches/05-05-2020 
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Nebula Science Cloud from the European Commission29  
and the U.S. Department of Energy’s Research Hybrid Cloud 
at Oak Ridge National Laboratory are exploring hybrid cloud 
platforms for science. These efforts are uncovering new 
imperatives for hybrid cloud for science, namely heterogeneity, 
reproducibility, gravity, and open as follows:

•	 �Heterogeneity to support seamless workflows across 
highly diverse resources including scientific instruments, 
sensors, physical devices, and entire labs and research 
organizations. 

•	 Reproducibility to enable replication of scientific 
experiments and results regardless of differences in IT 
infrastructures or location of data and resources.30

•	 Gravity refers to the strong pull from extremely large data 
sets—some at a petabyte scale—as well as proximity 
required due to physical manifestation of experiments 
and instruments. 

•	 Open refers to the prominence of open science     
practices of communities that may dictate open- or   
FAIR- (findability, accessibility, interoperability, and 
reusability) data access.31, 32

Discovery using the scientific method will transform business 
enterprises, evolving rather than replacing data- and AI-
driven transformations enabled today by hybrid cloud. 
Discovery entails new continuous cycles of experimentation 
that feed enterprise analytics to further enhance operations, 
decision making, and offerings. Discovery-driven enterprises 
need hybrid cloud to enable this end-to-end exploration, 
experimentation, orchestration, and exploitation building on 
data and AI. 

Accelerated discovery tasks are uniquely defined by both a 
high intensity of workload and a high complexity of workflow. 
A compelling example is the science conducted by CERN 
and the World-Wide Large Hadron Collider (LHC) Computing 
Grid.D This is a deeply coordinated big-science effort that 
conducts two million experiments per day involving more 
than one hundred sites across dozens of counties in carefully 
orchestrated workflows that involve large amounts of compute 
and data. Another example is the COVID-19 High Performance 
Computing consortiumE that rapidly mobilized 6.8 million 
processing cores to drive scientific research efforts responding 
to COVID-19. These examples show the large amounts 
of computation, data, and data movement that make up 

D �Learn more about the grid at:  
home.cern/science/computing/grid 

E �Visit the consortium at: 
covid19-hpc-consortium.org

http://home.cern/science/computing/grid
http://covid19-hpc-consortium.org
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IBM Quantum lab at the Thomas J. 
Watson Research Center

intensive workloads embedded in complex workflows.
Accelerated discovery, which often entails intensive workloads 
and complex workflows, is a leading candidate to drive 
the next frontier of hybrid cloud. The accelerated scientific 
method will be hybrid cloud’s proving ground, showing its 
potential for both science and business.
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Accelerated Discovery
  
The pace of progress in science has been historically limited 
by bottlenecks, as described previously. These bottlenecks 
are increasingly being overcome with the application of AI, 
quantum computing, and hybrid cloud technologies. New 
technologies are enabling accelerated methods of discovery 
that include deep search, AI- and quantum-enrich simulation, 
generative models, and cloud-based AI-driven autonomous 
labs, as shown in Figure 6.

Recent developments in materials science have demonstrat-
ed the potential of accelerated discovery.13, 33, 34 For example, 
deep search using AI is speeding up ingestion of scientific pa-
pers and extraction of knowledge by 1000x compared to hu-
man experts35—ingesting tens of pages per second, compared 
to multiple minutes per page required by human readers. The 
AI first parses PDFs into different kinds of content, then builds 
knowledge graphs, networks in which different concepts are 
linked together according to their relationships. A molecule 
might connect to its properties, related molecules, and data-
bases of experiments on the substance. AI is also being used 
for predictive simulation to automatically choose and opti-
mize what simulations to run and in what order, as well as the 
methods to use—including quantum simulation, which speeds 
up overall simulation efforts by 2-40x. Similar techniques can 
also select what real-world experiments to run and in what 
order, reducing the overall experimentation effort by 50%,  
as we found in our experience with a chemicals company. 

Generative models and deep learning architectures like 
transformers are also radically changing material design.16, 17, 

18, 36, 37 Generative models for hypothesis design are speeding 
up early phases of chemical discovery by 10x.38 Transformers 
have enabled a first-of-a-kind cloud-accessible AI-driven  

Section Two:
Scaling the Scientific 
Method

Figure 6:
Accelerated discovery for  
materials design.
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robotic lab that has demonstrated speeds of experimentation 
up to 100x faster than traditional methods.13 An integrated set 
of accelerated discovery tools is being applied to the design of 
high-performance sustainable photoresist materials—used in 
the manufacture of computer chips—with a goal  
of speeding up the overall scientific discovery process by  
10x and lowering cost by a similar factor. Unifying these tech-
nologies will create a complete, closed-loop capability for ac-
celerating discovery. With the first end-to-end implementation 
in the context of materials science, the discovery workflows 
can be captured and reimplemented as flexible, continuous, 
AI-driven processes to solve other kinds of problems.

A multi-disciplinary team of computer scientists, systems 
researchers, data scientists, and subject matter experts are 
building a computational workflow using the tools depicted in 
Figure 6 to drive the discovery of new photoresist materials. 
The deep search tools are being used to extract photoresist 
materials and properties from 6,000 papers and patents. The 
performance properties needed for design were sparse, so 
the AI-enriched simulation platform was used to augment the 
extracted data with predictive simulations of each material.F 
If, say, the melting point of a certain material had not yet been 
measured and published, simulation would fill in the blank. 
This augmented dataset is being used to train a generative 
model that created thousands of materials candidates with 
targeted properties in a matter of hours. While simulations 
model the properties of a given material, generative models 
learn from the data and suggest new materials with a given 
set of properties. The candidates from the generative model 
are then evaluated by human experts to select top choices 
for the next step. In late 2020, the AI-driven automated lab 
synthesized the first candidate photoresist material. This was 
the first time this entire discovery process was exercised, and 
the new material was created 2-3x faster than prior manual 
approaches. Measurements of the newly created material can 
then feed into other stages of the process, creating a feedback 
loop that further accelerates discovery.

The integration required to build this system was challeng-
ing. Each computational tool was a complex application 
with unique requirements. Variability in compute intensity, 
data volume, persistence, and security introduced addi-
tional challenges. Some components emphasize traditional 
classical computing, while others require accelerators for 
AI training and inference. Other components are tied to a 
specific physical location, like the automated synthesis robot. 
A hybrid cloud platform that enables scientists to quickly 

F �Try IBM RXN for Chemistry here: 
rxn.res.ibm.com/

http://rxn.res.ibm.com/
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build this kind of complex discovery workflows and switch 
between classical, AI, and quantum computational resources 
will further supercharge the discovery process. Accelerated 
discovery requires integration of multiple complex workflows 
with different experts, implementers, and stakeholders. Cloud 
software often uses containers—bundles of programs and all 
the auxiliary software they depend on—allowing for consistent 
performance across different computers. Modern, contain-
er-based architectures on OpenShift—software for developing 
and running programs in the cloud—will help realize benefits 
of this integration.

Computational discovery is an intensive and complex work-
load. Even in its simplest form of virtual screening and simula-
tion, scientific discovery accounts for a significant fraction of 
the computation done using supercomputing resources (~one 
million processing cores per year for materials science in the 
U.S. aloneG). An expanded accelerated discovery workload is 
an opportunity for hybrid cloud to bridge across a mix of data 
and compute resources and drive the integration of quantum 
computing. There is further opportunity to transform the pro-
cess of discovery through AI, intelligent simulation, quantum 
computing, and generative models—and in so doing accelerate 
and scale impact from scientific discovery. Making this possi-
ble will require innovation at the workflow level but also in the 
underlying infrastructure supported by hybrid cloud.

G �Explore computing data at:  
xdmod.ccr.buffalo.edu

http://xdmod.ccr.buffalo.edu
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Intelligent Infrastructure

Emerging technologies like AI and quantum computing 
demonstrate enormous potential to accelerate scientific 
discovery.8, 39, 40 This opportunity requires innovations across 
the full hybrid cloud stack, as shown in Figure 7, from 
reimagining middleware—software that sits between the 
operating system and user applications—to enhancing the 
way processing gets distributed across computers.41, 42 It also 
requires redefining the way infrastructure is virtualized—such 
that one computer can be treated by simultaneous users as 
several independent computers, to optimize both agility and 
security—and enabling seamless exploitation of quantum 
computing. These advances will make it simpler to define 
discovery workflows, flexibly manage and deploy them, and 
enable accelerated scientific discovery at scale. As described 
above for accelerated materials design, defining a discovery 
workflow today requires significant manual effort. It involves 
configuring multiple computer processing tasks, writing ad hoc 
scripts to do tasks like moving data, and managing execution 
across disparate resources. New types of middleware 
and unified runtimes—systems that exploit all available 
processors—are needed to tie these steps together and tightly 
coordinate tasks, ensure elasticity and resiliency, and evolve 
a so-called “serverless” computing foundation in which 
underlying server infrastructure is invisible to the user.

Figure 7:
Hybrid cloud innovations for 
accelerated discovery.
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Accelerated discovery workloads also bring unique 
requirements for resources. Some steps, such as AI 
inferencing for hypothesis design, may require hardware 
acceleration; others, such as tightly coupled simulations, may 
need very low network latency. Today, Kubernetes—software 
for managing software containers—does not support the 
sophistication needed in fine-grained computer resource 
allocation. This gap can be closed by improving Kubernetes’ 
scheduling of program execution, improving Kubernetes’ 
and OpenShift’s abilities to discover devices connected to a 
network, and creating an API—a way for programs to interface 
with each other—that enables coordination between software 
that discovers computing resources and software that assigns 
tasks to them.

Deploying discovery workloads in cloud environments is also 
challenging. After mapping a job to a node, the infrastructure 
gets virtualized so that the workload can be deployed, for 
instance inside a virtual machine (VM). VMs are slow to spin 
up and spin down—but are used in the public cloud due to 
security concerns. In contrast, containers are much lighter 
weight and faster to start and stop–but share functionality 
in the kernel (the core of an operating system) which makes 
them vulnerable to hacking. There is opportunity to define 
the next generation of virtualization technologies, a forward 
evolution towards a “microVM,” to enable the agility of 
containers with the security of VMs to support discovery 
workloads.

QuantumH computing will be transformative for scientific 
discovery.39, 40 In order to make quantum computing practical 
in the hybrid cloud for discovery, it must mature in several 
ways. The quality with which we can run quantum circuits 
needs to be enhanced, which will be essential for increasing 
quantum volume, a measure of both number of qubits and 
how long they last. The variety of quantum circuits that can be 
run on a quantum computer needs to be enhanced to enable 
users run new kinds of experiments. A new quantum runtime—
code that underlies programs for quantum computers—is 
needed in order to speed up how quickly quantum circuits can 
execute a quantum system. Finally, quantum development 
needs to be simplified with a lower barrier to entry by making 
quantum programming truly frictionless.

H �Visit IBM Quantum at: ibm.com/
quantum-computing/

http://ibm.com/quantum-computing/
http://ibm.com/quantum-computing/
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Communities of Discovery

Communities of Discovery are becoming the new paradigm  
for the practice and advancement of scientific discovery.43  
As illustrated in Figure 8, they build on open science practices 
and are characterized by dynamic knowledge circulation  
and well-coordinated collaboration.44 Discovery communities 
are purpose driven, and the impetus for their formation 
includes infrastructure sharing, innovation competitiveness, 
and a collective mission focus.45 Enterprises cannot remain 
competitive without leveraging the abundant knowledge, 
creativity, and resources in these communities. The scientific 
discovery practiced in these communities are precursors to 
the next generation of high-value discovery workflows and 
workloads in industry. 

Figure 8:
Scaling the scientific method  
requires communities of discovery.

I �Visit the consortium at: 
covid19-hpc-consortium.org

The COVID-19 crisis has energized the spirit of collaboration 
and brought science to the attention of a global society 
confronted by a common threat. Collaborations have 
emerged across academia, government labs, industry, and 
non-profit organizations, bringing together diverse expertise 
and resources. The COVID-19 High Performance Computing 
Consortium,I a public-private partnership, is made up of 
dozens of consortium members from government, industry, 
and academia. The consortium supports COVID-19 research 
by providing researchers access to the world’s most powerful 
cloud and high-performance computing resources.

http://covid19-hpc-consortium.org
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The modern scientific discovery process demands 
reproducibility of results, collaboration, and effective 
communication of knowledge for further expansion. This, 
together with the digitization and acceleration of discovery, 
creates the need for portability, elastic capacity, AI-based 
tools, and security across multiple clouds. These needs 
can be met by a hybrid cloud for discovery with OpenShift 
orchestrated multi-clouds and platforms and tools for 
discovery. OpenShift creates a standard interface for services 
from multiple clouds. That software layer allows for easy 
access to platforms and tools for tasks like computers security 
and open-source software development. A hybrid cloud for 
discovery helps productivity, collaboration, integration, and 
scientific reproducibility, while providing a way to obtain 
feedback to improve the platform and further grow adoption. 
Leveraging communities of discovery to accelerate solutions 
to large-scale problems is essential for scaling impact and 
creating a virtual cycle that accelerates value creation. These 
communities will capture the next dominant workflows and 
workloads for accelerated discovery and will drive a robust 
supply chain for innovation and value creation and achieve a 
scale of impact that is critical for society.
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Future of Climate

The crisis of COVID-19 parallels that of climate change. Both 
need an urgent, science-based, coordinated response to mit-
igate devastating impacts. This urgency is amplified by con-
sumer and investor demands, policy and regulation changes, 
and business needs for resiliency. Advances in AI and hybrid 
cloud accelerate the ability of companies, policymakers, and 
communities to address climate change.46 

Sustainable hybrid cloud: Datacenter energy consumption is 
expected to grow to 8%–20% of the world’s electricity use 
by 2030.J Companies are increasingly forced to take respon-
sibility for their carbon footprint, and IT is a natural place to 
start. IDC declared the datacenter carbon footprint as the new 
battleground for cloud providers. Increasingly, cloud users call 
out carbon-footprint reduction as a key motivator for cloud 
provider selection. This has resulted in innovations like under-
water datacenters and AI-optimized datacenter operations. 
Building on an open and secure hybrid cloud, there are further 
opportunities to develop sustainable architectures that allow 
customers to measure, quantify, and optimize their workloads’ 
carbon footprint on premise and off premise. 

Climate-smart supply chains: Supply chain disruptions during 
COVID-19 increased focus on supply chain resiliency. Pres-
sure from businesses, investors, and governments is increas-
ingly the urgency to make supply chains climate resilient and 
carbon responsible. Advances in data, AI, and compute enable 
climate models at regional scales and help optimize supply 
chains to increase climate resiliency and reduce the carbon 
footprint of supply-chain and cloud operations.

Section Three:
A Vision and Roadmap 

J �How to stop data centers from 
gobbling up the world’s electricity: 
nature.com/articles/d41586-018-
06610-y

Figure 9:
Accelerated discovery can speed up 
the design of molecules for carbon 
capture.

http://nature.com/articles/d41586-018-06610-y
http://nature.com/articles/d41586-018-06610-y
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Materials for carbon capture: The removal of carbon dioxide 
(CO2), the dominant greenhouse gas affecting climate change, 
from power plant emissions and eventually, the atmosphere, 
requires new cost-effective carbon capture materials and scal-
able processes. Electricity production generates 40% of CO2 
emissions but less than 1% of that emission is captured today. 
Accelerated discovery can identify and optimize new materials 
for carbon capture, such as to design membranes for CO2 cap-
ture from flue gas, as shown in Figure 9, by leveraging AI-en-
abled scientific workflows that scan thousands of publications 
and databases, organize the properties of millions of chemical 
structures, and predict, synthesize, and validate the optimal 
molecular designs for efficient carbon capture and reuse  
at scale. 
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Future of Health

COVID-19 has changed the world in many ways—impacting 
employment, travel, global supply chains, greenhouse gas 
emissions, remote work, and the economy. But make no mis-
take that at its core this is a public health crisis of the scale the 
world has not seen in over a century. The devastating pan-
demic has highlighted critical opportunities related to public 
health, as summarized in Figure 10: treatments, vaccines, and 
cures might be more rapidly identified by mining real world 
evidence data; emerging infectious diseases might be contin-
uously monitored for using genomic surveillance; and health-
care might be delivered in a more personalized and dynamic 
manner. We must advance capabilities on all these fronts to 
better anticipate and respond to future public health crises. 

Accelerated discovery of treatments, vaccines, and cures: 
The COVID-19 crisis has created a new urgency to have the 
right drug at the right time and better understand what that 
requires. Drug discovery is a lengthy process; it can take up to 
$2.6 billion and more than 10 years for a new drug to reach 
the market. A third of this overall cost and time is spent in the 
drug discovery phase, during which researchers synthesize 
thousands of molecules to develop a single pre-clinical lead 
candidate.47 To generate treatments for emerging viruses 
like COVID-19 more quickly, there is opportunity to identify 
potential therapies from safe and proven drugs.48, 49 As shown 
in Figure 10(a), large datasets of real-world evidence can be 
mined using causal inferencing technologies to identify candi-
dates for drug repurposing at scale.50, 51 This would jumpstart 
subsequent research to enable more rapid clinical trials and 
regulatory review.

Figure 10:
Accelerated discovery is critical  
for improving our preparedness and 
response to health crises by (A) 
allowing drug repurposing at scale, 
(B) ensuring safer workplaces,  
and (C) enabling more personalized, 
dynamic, and efficient healthcare 
delivery.
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Continuous disease surveillance: COVID-19 emphasized the impor-
tance of early warnings and preparedness. A continuous monitoring 
system can detect, model, and track emerging infectious diseases, 
such as by performing anomaly detection on genomic surveillance 
data, as shown in Figure 10(b).52 Such a system would include three 
key elements: entry point detection (signals from wildlife, breeding 
farms, and dairies), outbreak surveillance (signals from hospitals, 
social media, smart thermometers, and more), and microbe sleuth-
ing (signals from patient microbiomes, urban surfaces, and waste-
water53). Early studies around SARS-CoV-2 have already shown that 
these signals can provide effective means of pathogen detection.54 
Each disease surveillance element requires advanced methods for 
data acquisition, integration, and analysis. This monitoring would 
take advantage of the scalability, portability, and flexibility of  
hybrid cloud.

Adaptive delivery of healthcare: The COVID-19 pandemic revealed 
weaknesses in global healthcare systems. Capacity constraints and 
equipment shortfalls led governments around the world to impose 
social restrictions to limit virus spread and flatten the curve of 
infection. The health impacts of COVID-19 impacted many more 
people than those infected with the virus. People with pre-existing 
conditions risk increased morbidity or mortality due to delays in 
all but the most essential care. This triggered greater adoption of 
telemedicine and presents a significant opportunity to tailor delivery 
across all levels of care. To deliver the most effective care in a timely 
manner, there is a need to better understand the health of individu-
als, population trends, and the readiness of care facilities. Platforms 
using AI and big data are emerging that combine patients’ clinical 
tests to draw health insights, or monitor transactions between pa-
tients, providers, and payers to identify system inefficiencies.
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Future of Work 

The COVID-19 pandemic is radically reshaping our ways of 
working.55 The practices, policies, and technologies developed 
will define work for decades to come. The pandemic hit when 
most work was performed at legacy workplaces, where worker 
safety was a primary concern only in hazardous industries. 
The labor market was strong but economy-wide productiv-
ity growth in the U.S. was the lowest since the 1970s. New 
technologies entering the economy were not finding broadly 
productive uses and historically marginalized groups contin-
ued to face inequalities in the labor market. A massive shift 
toward remote work has disrupted our workforce. 56 Jobs that 
cannot be done remotely are increasingly reduced or eliminat-
ed, creating additional, recession-driven job loss. These dis-
ruptions are causing a redesign of work for higher productivity. 
This redesign includes workplace choices, skills development, 
and job design. 

Understanding productivity: Understanding what drives pro-
ductivity in complex, technical work has been a longstanding 
problem in economics and management science. The ability 
to measure changes in work practice using privacy-preserv-
ing technologies can help. This process starts by extracting a 
“tools signature” for a team from existing collaboration tools, 
such as Slack, Webex, and GitHub, as shown in Figure 11, and 
studying how it correlates to management reported produc-
tivity.57 Over time, the discovery process can help develop an 
understanding of the components of productivity—the types  
of personnel, teams, tools, and collaborations—for highly  
complex technical work and adapt workplaces, practices,  
and policies.58 An understanding might take the form of a  
computational model that predicts productivity based on  
a team’s makeup, location, and tool use.

Figure 11:
Steps to measuring output- 
productivity in hybrid work.
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Transforming the workplace: In order to transition work-from-
home to hybrid work, workplaces need to be safe from infec-
tious disease. Even pre-COVID-19, infectious disease in the 
U.S. employee population cost employers between $10 billion 
and $30 billion per year in paid absences. Employers also have 
a general regulatory obligation to provide workplaces “safe 
from hazards that are likely to cause death or serious physical 
harm.” Using technologies that span hyper-local epidemiology, 
genomics, and edge computing, there is need to create risk 
assessments for worksites. Combined with surface and airflow 
sensing, employee testing, personal protective equipment 
monitoring, and optimizing for social distancing will lower risks 
in moving towards hybrid work.

Transforming the workforce: The COVID-19 pandemic result-
ed in the largest labor market disruption ever recorded in the 
U.S. Firms eliminated millions of jobs, and while some of them 
will come back as economies reopen, others will not. Work-
ers from marginalized groups have been disproportionally 
impacted by this disruption. Firms under financial stress are 
looking to restructure workforces for hybrid work, new skills, 
and greater productivity. Workers are in the process of retrain-
ing, working to develop skills that will be well-matched to the 
labor market. Using datasets like aggregate job postings, it is 
possible to create granular predictions of future demand for 
skills up to two years in the future.59 This helps businesses  
understand whether the skills being developed are likely to 
meet future demands. At a national scale, as governments 
react to COVID-19-driven unemployment, this capability  
can guide job-creation programs. 
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Utopias and Dystopias

Scientific discoveries have created extraordinary positive 
impacts for society: curing diseases, increasing longevity, and 
improving quality of life. Unfortunately, advances in science 
can also have dystopian consequences through malevolent 
uses or other unintended effects.60 Nuclear energy allows the 
most efficient production of electricity, with several hundred 
nuclear power plants alone producing approximately 10% of 
worldwide energy. Nuclear waste disposal, however, remains 
a tremendous challenge. Nuclear accidents have caused 
unprecedented devastation and the development of nuclear 
weapons causes geopolitical instability.
 
As discovery processes accelerate, we must be cognizant of 
potential outcomes—good and bad. As shown in Figure 12, 
this means establishing safeguards and solutions to ensure 
responsible advances to bring about beneficial impacts.  
Disruptive events like the COVID-19 pandemic bring large 
uncertainties. Predicting possible scenarios is essential for 
guiding effective response and ensuring preparedness  
for the near and distant future. 

Figure 12:
Thoughtful guardrails are needed to 
maximize beneficial outcomes from 
accelerated discovery.
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With recent scientific discoveries and technological devel-
opments, numerous challenges are emerging in areas such 
as CRISPR gene editing and neurotechnology. CRISPR gene 
editing has produced outstanding results in the treatment of 
congenital diseases responsible, in one example, for blindness 
in children. In 2018, the world was shocked by the revelation 
that the same CRISPR technology was used to edit embryos of 
two currently living babies. Germline editing can produce un-
predictable consequences, which can propagate to descend-
ing generations. The editing of a single gene can influence 
multiple traits and the lack of understanding of all potential 
implications can lead to dangerous mutations.61

Neurotechnology is advancing rapidly. Breakthroughs have 
allowed people to recover movement after a debilitating brain 
injury and helped patients regain the ability to communicate 
after a degenerative brain disease. Neurotechnology is also at 
the verge of allowing the reading and writing of memories in 
living organisms. Human identity is constructed on experienc-
es and memories, and thus, the misuse of this technology  
has the potential to alter the essence of what we are as  
individuals. 

As we develop computing technology, we want systems  
that guarantee privacy and security, that are transparent  
and trustworthy, that ensure fairness and equity, and that  
are environmentally responsible.
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Policies and Prevention

Technology advances that allow us to accelerate and scale 
scientific discovery have the potential to drive positive change 
for society. But change often elicits fear and resistance, which 
triggers blunt, sub-optimal, or poorly timed regulation. This 
context is further complicated by a widening technology-reg-
ulation gap, or “pacing problem,” illustrated in Figure 13. 
Compounding this is the fact that two-thirds of U.S. Federal 
regulations are never changed after their inception, risking 
poorly applied guardrails informed by an outdated view of 
technology. Additionally, different countries impose different 
regulations, increasing compliance risks. This regulatory land-
scape poses a significant risk to accelerated discovery and its 
technology components and can hinder business growth. 

Figure 13:
“Pacing Problem” – innovation 
outpaces the ability of laws  
and regulations to keep up with 
technological change.

To address these concerns, we need a new values-based 
governance framework to provide guardrails to ensure innova-
tions align with values, and to anticipate and inform regulatory 
trends.62 Putting values into practice requires a “by-design” 
mindset, infusing privacy, security, and ethical considerations 
into our engineering and technology development—from the 
very outset. Such a governance framework must evolve with 
technology development while engaging multiple stakeholders 
throughout the technology lifecycle. Values must be validated 
and continuously assessed and enhanced through partner-
ships across industry, academia, research organizations, and 
other stakeholders. Through the implementation of innovation 
guidelines, along with assessment and oversight processes, 
this framework will anticipate potential impact  
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and align innovations to values, aided by tools to mitigate risk 
and support alignment to values and regulations. One such 
tool is AI Fairness 360,Ksoftware that measures and reduces 
bias in datasets and AI models.

We can also apply scientific thinking to to the development 
of regulations. One way is to experiment, using regulatory 
“sandboxes,” introducing policies locally and measuring the 
results before adopting them more widely.63, 64 Data from 
these experiments and simulations can facilitate collabora-
tive rulemaking between industry and government, leading to 
effective dialogue with advocates and influencers and result-
ing in precision regulation based on trusted information. This 
can shape the responsible use of technology and pre-empt 
unwanted over-regulation.

K �AI Fairness 360: developer.ibm.
com/technologies/artificial-intelli-
gence/projects/ai-fairness-360/

http://developer.ibm.com/technologies/artificial-intelligence/projects/ai-fairness-360/
http://developer.ibm.com/technologies/artificial-intelligence/projects/ai-fairness-360/
http://developer.ibm.com/technologies/artificial-intelligence/projects/ai-fairness-360/
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