





Generalitat de Catalunva Departament d'Economia i Coneixement



Unió Europea Fons europeu de desenvolupament regional anera de fer Europa



# Malaria models for Senegal and the role of climate in malaria predictability

IC3, IPP, IPD

#### QWeCl MEETING, ILRI, Nairobi, Kenya, Oct. 2012









# Senegal malaria





Ndiop (seasonal transmission, cohort 2)

Dielmo (all year round transmission, cohort 1)



TRARZA Podor Haïre Lao Dagana Raédi Saint-Louis Louga Matam Linguère Ranérou Mekhé Thiè villages d'étude URL : Dielmo et N'diop Dakar Mbour Kaola Marlème Hodar Tambacounda Njau OCÉAN ATLANTIQUE GAMBIE Médina Bansang-Kambalayba <sub>o</sub>Kolda Bignona Ziguinchor Sadhiou Koundara Bissora Bafata Piche GUINÉE-BISSAU GaouaP GUINEE Diarg Campeane @ 1993-2003 Microsoft Corporation. ous droits réservés.





Malaria transmission: Stochastic differential equation model (VIC3 framework)



 $ts \mu_T$ 

Quantifying Weather & Climate Impacts

Flow diagram of the SDE model. Human classes are S1 (susceptible), E (exposed, carrying a latent infection), I1 (infected and infectious), I2 (asymptomatic infection which is minimally infectious) and S2 (recovered having some resistance to reinfection). Mosquito-parasite classes are  $\lambda$  (force of infection at previous time t-s) and  $\lambda \kappa$  (force of infection at time t). The possibility of transition between class X and Y is denoted by a solid arrow, with the corresponding rate written as  $\mu XY$ . The dotted arrows represent interactions between the human and mosquito stages of the parasite. The model is formalized by equations (1–14).



The transmission rate  $\mu$ S1E is defined as:

$$\mu_{S_1E}(t) = \int_{-\infty}^t \gamma(t-s)\lambda(s)d\Gamma(s)$$

 $\lambda(s)$  is the force of infection at a previous time s when the mosquito bites the infected human,  $\gamma(t-s)$  is a delay distribution (for duration of parasite life cycle inside mosquito + vector survival) and  $\mu$ S1E(t) is the transmission at the current time t





# The force of infection in VIC3

$$\lambda(t) = ba^2 c \frac{M}{N} \int_{t_0}^t \frac{I(s)}{N} x(s) p(t-s) \, ds$$

x(s): the fraction of uninfected mosquitoes at time u M : total number of mosquitoes (assumed constant) N: total number of humans. Uninfected mosquitoes become infected with malaria with a probability c when they bite (at a rate a) an infected human.

I(s)/N: fraction of infected humans at time s.

p(.): a delay distribution that describes the mosquito stage of the parasite life cycle and vector

survival. We choose p(.) to be a  $\Gamma(n, \tau)$  density. n

The infected mosquitoes then contribute to malaria infection in humans when they again bite an uninfected human (at a rate a) and infect with a probability b.





How do we attempt to integrate climate in VIC3 framework

We expect the fraction of uninfected mosquitoes x(s) to be seasonal, to have a dependence on climatic factors and to have a random component.

$$\lambda(t) = \left[\frac{I_1(t) + q_f \times I_2(t) + s_f \times S_2(t)}{N(t)} \exp\left\{\sum_{i=1}^k \beta_i s_i(t) + Z_t \beta\right\} \frac{d\Gamma}{dt}\right] \overline{\beta}$$

Here, qf represents the fraction of asymptomatics capable to infect mosquitoes.

The seasonality of disease transmission is modeled by the coefficients {βi}

Zt depends on rainfall and drug treatment in the form:



$$Z_t = \beta_r R(t) + \beta_{qui} D[t_{qui}] + \beta_{clo} D[t_{clo}] + \beta_{fan} D[t_{fan}] + \beta_{act} D[t_{act}]$$



## Integrating drug treatment in VIC3

#### **Drug periods Ndiop and Dielmo**





29/05/90 01/01/94 01/01/97 01/01/00 01/01/03 01/01/06 31/12/08



**n** • •

### Natural mortality rate estimation





Neather & Clim

#### Relationship between cases and rainfall

Π







### Cases vs rainfall







# Discrepancies among rainfall products

Π









### Cases vs rainfall







### Preliminary fittings of SDE using MIF (Including Population change, rainfall and drug treatment)

Ndiop

Π







## Preliminary fittings of SDE using MIF (Including Population change, rainfall and drug treatment)

Ndiop

П







#### Preliminary fittings of SDE using MIF (Including Population change, rainfall and drug treatment)

Dielmo



#### Parameters estimated

| symbol             | description                                                                       | unit       | estimated? (y/n) |
|--------------------|-----------------------------------------------------------------------------------|------------|------------------|
| $\mu_{XY}$         | per-capita rate of transition from compartment X to Y; X, Y $\in$ {S1,E,I1,I2,S2} | $yr^{-1}$  | У                |
| $\beta_i$          | <i>i</i> th spline coefficient                                                    | -          | У                |
| $\overline{\beta}$ | dimensionality constant                                                           | yr         | n                |
| au                 | mean development delay for mosquitoes                                             | yr         | n                |
| $\sigma$           | standard deviation of the process noise                                           | $yr^{1/2}$ | У                |
| ρ                  | reporting fraction of people in the transition from E to I                        | -          | У                |
| $\Delta$           | time step for stochastic Euler integration                                        | day        | n                |
| $1/\delta$         | average human life expectancy                                                     | yr         | n                |
| $\sigma_{\rm obs}$ | standard deviation of the observation noise                                       | -          | У                |
| $X_0$              | initial fraction of people in compartment $X$ ; $X \in \{S1,E,I1,I2,S2\}$         | -          | У                |
| $q_f$              | infectivity of asymptomatic people                                                | -          | У                |
| $s_f$              | infectivity of subpatent infected people                                          | -          | У                |
| $\Phi$             | probability of becoming a symptomatic case                                        | -          | У                |
| ts                 | fraction of successful tratments                                                  | -          | У                |
| $si_1$             | fraction of force of infection for superinfection (from $I_2$ to $I_1$ )          | -          | У                |
| $si_2$             | fraction of force of infection for superinfection (from $S_2$ to $I_1$ )          | -          | У                |
| $si_3$             | fraction of force of infection for superinfection (from $S_2$ to $I_2$ )          | -          | У                |

Table 1: List of symbols for the malaria model. Fixed parameters are  $\overline{\beta} = 1$ yr,  $n_{\lambda} = 2$ ,  $\Delta = 1$  day,  $1/\delta = 33$  yr and ft = 1.







Next steps: To include in the model (Demography, age-incidence, EIR, more environment)



Age\_vs\_cases





# Next steps: To improve integration of extrinsic drivers and test the interplay with intrinsic factors

(New predictors? Where to integrate them? Are they given their actual weight?)









# Next steps: To improve integration of extrinsic drivers and test the interplay with intrinsic factors

(New predictors? Where to integrate them? Are they given their actual weight?)





#### **n** • •

#### Incorporating climate predictions (ECMWF System4, GPCP 2.5°, GHCN 0.5<sup>e</sup>, 1981-2010)

MAY

#### NOVEMBER





### Incorporating climate predictions (ECMWF System4, GPCP 2.5°, GHCN 0.5°, 1981-2010)

local

Senegal





П





### Incorporating climate predictions (ECMWF System4, GPCP 2.5°, GHCN 0.5°, 1981-2010)

precipitation anomalies in Ndiop–Dielmo, May start





## Incorporating climate predictions NDIOP/DIELMO (ECMWF System4, GPCP 2.5°, GHCN 0.5°, 1981-2010) MAY NOVEMBER



Time (years)



2m air temperature anomalies in Ndiop-Dielmo, Nov start











Unió Europea Fons europeu de desenvolupament regional Una manera de fer Europa



# Thank you! Gràcies! Asante Sana!







A