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• Malaria is the most important parasitic infection in people, 
accounting for an estimated 500 million clinical attacks worldwide 
and more than 1 million deaths a year, mostly in sub-Saharan Africa 

• Incidence of malaria in regions that were rarely observed has led to 
a supposition that the changing climate could be catalyzing the 
transmission by creating favourable conditions. 

• Malaria in Limpopo Province of South Africa is shifting and now 
observed in originally non-malaria districts.  

• The determination of the existence/non-existence of long or short-
run relationship between malaria and meteorological variables, and 
dissociation between the influence (and the strength thereof) 
associated with either rainfall or temperature, is important for any 
meaningful planning for malaria intervention.  
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Summary of the Outcome of Literature Review 
• Climate change does not create a novel type of environmental exposure.  

•  The adverse health impacts will be greatest in low-income countries.   

• In this sense climate change is largely a development issue which requires 
addressing the underlying factors that cause vulnerability. 

• The direct health impacts of climate change include: respiratory and 
cardiovascular disease; flood related mortality and morbidity.  

•  The indirect health impacts include: changes in disease transmission; water 
related disease; food security and nutrition; and those linked to multiple 
stresses – population, migration, conflict, changes in ecosystems.  

• Adaptation costs in the health sector are likely to be large. However 
benefits to health will come largely from strategies outside the health 
sector (e.g. in water, agriculture, human settlements).  

• Our knowledge remains limited. The evidence base is weak in relation to 
the complexity of the issue and the magnitude of the health risks, and the 
majority of studies so far have focused on data from middle-and high-
income countries. 
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Conceptual Framework 
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Data and Data Sources 
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•The study uses time series of average rainfall and 

temperature, as well as malaria cases spanning the period 

from 1998 to 2007.  

•Climate data was obtained from the South Africa Weather 

Services.  

•Daily station data of precipitation and temperature 

(minimum and maximum) from 1998 to 2007 was used to 

construct climate disease envelopes at municipal and 

district levels, while malaria data were obtained from the 

South African Department of Health and from the Malaria 

control Centre in Tzaneen (Limpopo Province). 



Mathematical Representation 
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Model Specification 

QWeCI Third Annual Meeting,  Nairobi  October 2012 
 

  LOGTEMPLOGRAINYLOG 12)(



Hypothesis Test(s)  
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Given seasonalized climate variables; temperature (T) and total 

precipitation (P) and malaria cases (M), a linear relationship 

between T & M, P & M and T & P can be derived from the 

Pearson correlation coefficients (γT,M; γP,Mand γT,P) as reported in 

Wilks (1995). According to Mardia et al., (1979) and Panofsky 

and Brier, (1968), the linear relationship between say, T & M 

with the influence of P removed can be determined from the 

partial correlation given by  

 

  

 

 

 

 Here, γT,M is computed as a simple correlation between the 

residuals from a regression of M on T and a regression of P on 

Correlation 
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Plot for Average Rainfall, Average Temperature and Malaria 

Cases 
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Results: 
Correlation of monthly/seasonal climate signal 

with malaria cases 
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Cross Correlation 
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pwcorr

 logmal 

lrain ltemp, star(5) 

lmal lrain ltemp 

 lmal 1.0000  

 lrain 0.2810* 1.0000  

 ltemp 0.5212* 0.6656* 1.0000  



Autoregressive Distributed Lag 

Model (ARDL) Specification  
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ARDL estimation proceeds in two steps.  

1. Estimate the above equation by OLS in order to establish 

the existence of a long run relationship.  

2. Once Cointegration is confirmed, the second stage is to 

estimate the long run coefficients and the short run 

coefficients using the respective ARDL and ECMs.. 

 

We then estimate the unrestricted model and progressively 

reduce it by eliminating the statistically insignificant 

coefficients and reformulating the lag structure where 

appropriate in terms of levels and differences to achieve 

orthogonality. 
 

 

 

 



Results: Unit Root 
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Test Log of Malaria Log of Rainfall Log of Temperature 

Levels First 

difference 

Levels First 

difference 

Levels First 

difference 

ADFμ 

ADFτ 

KPSSμ 

KPSSτ 

 

-4.283*** 

0.620 

-7.926*** 

0.033*** 

-2.252 

0.021*** 

-11.029*** 

Conclusion Stationary at 

levels: I(0) 

Stationary at 

levels: I(0) 

Non-

Stationary  

Stationary at 

First 

Difference: 

I(1) 



Results: Unrestricted Error Correction Model (UECM) 
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Variables    Coefficient Standard Error 
Constant  -3.158603 2.156372 

D(LMALA(-2)) -0.473095 0.123357*** 

D(LRAIN(-1)) 0.745233 0.248330*** 

D(LTEMP(-1)) 4.343676 1.129335*** 

LMALA(-1) 0.249101 0.104620** 

LRAIN(-1) -0.499685 0.300813* 

Rampsey RESET = 2.271595 (0.1350):  

 implying that Ramsey’s RESET; Null hypothesis: Model has no omitted variable is not 

rejected  

White’s test = 1.2668 (0.3869) 

 implying that White’s test Null hypothesis of homoscedasticity is not rejected 

Breusch-Godfrey LM test = 0.868 (0.423) 

 implying that Breusch-Godfrey LM test: null hypothesis of No serial correlation is not 

rejected 



Cointegration Properties 
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Testing the presence (or absence) of cointegrating in 

variables implies a test of the existence of long run 

relationship.  

 

We use the Wald test (Bounds Test). Pesaran, Shin 

and Smith (2001); k=3 provides computed, critical 

bounds of the F-Statistic.  F-statistics should lie 

outside the bounds for a longrun relationship to exist.  



Table IV: Bounds Test Results 
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   Critical bounds (5%) 

Dependent 

variable 

F-stat Bottom Top 

d(lmala) 8.29 3.23  4.35 

Since the F-statistic is outside the critical bounds ((8.29 is outside the top 

(4.35) and bottom (3.23)); we reject the null hypothesis of no cointegration at 

5% significance level and conclude that there exist a long-run relationship 

between malaria and the climate variables (rainfall and temperature). 



10 years municipal and district spatial 
distribution of Malaria in Limpopo  

 



10 years municipal and district spatial 
distribution of Malaria in Limpopo  

 



10 years municipal and district spatial 
distribution of Malaria in Limpopo  

 



Summary and Conclusion 
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•Spatial results indicate a reduction in total malaria cases from 1998 to 2008 but 
not all districts show the same change.  
•Vhembe district consistently shows more Malaria incidences while in Mopani 
district, incidences are erratic (i.e. increases and sometimes decreases). Malaria 
and temperature are found to be stationary variables at levels, while rainfall is non-
stationary.  
•Climate-disease correlation output shows that although rainfall and temperature 
are positively correlated with malaria, temperature (correlation coefficient of 
0.5212) has a stronger influence compared to rainfall (correlation coefficient 
0.2810). A 1% increase in rainfall will result in 0.74% increase in malaria cases in 
Limpopo Province.  
•Consequently, a 1% increase in temperature will result in 4.34% increase in 
malaria cases. The error term, the speed of adjustment of the model towards 
equilibrium, is positive 0.005002 (0.9783) and statistically insignificant. The long-
run malaria-rainfall and malaria-temperature relationships is -0.373873 (0.2648) 
and 4.557185 (0.0000) respectively, while the short-run malaria-rainfall and 
malaria-temperature is found to be -0.263281 (0.1509) and 4.784184 (0.0000) 
respectively. 



Summary and Conclusion 
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•Malaria changes and pressures vary in different districts.  

 

•Temperature drives malaria transmission in Limpopo Province, 

while rainfall has a positive-weak relationship with malaria.  

 

•Rainfall and temperature influence malaria in the long–run. 

Any malaria intervention should focus in the long-run.  

 

•It is interesting to find that malaria in Limpopo is found to be 

driven by temperature, while in Mpumalanga (the neighbouring 

province), malaria is driven by rainfall ( Ngomane and de Jager 

2012) 
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