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MILESTONE 3.2.a 
 
 

Prototype seamless decadal ensemble system completed, with 
assessment of the predictability of precipitation and temperature over 

Africa in interannual and decadal time scales 
 
 
This report mainly deals with the decadal prediction of the West African monsoon, Part I. 
The Part II deals with multi-year prediction skill of near-surface air temperature.  
 

- PART I - 
 
1. Introduction 
 
The understanding and predictability of the West African monsoon (WAM) activity are 
fundamental for the Sudano-Sahelian countries, whose economies, mainly based on rain-
fed agriculture, are vulnerable to climate variability. The analysis of rainfall variability at 
interannual and decadal timescales is therefore the basis for any short-term/near-term 
agricultural planning (Sultan et al. 2005). The decadal prediction aims certainly to 
explore the benefits of initializing coupled models, mainly prescribing the upper-ocean 
heat content, for getting prediction skill beyond the externally forced trend. Decadal 
forecasts are motivated by the evidence that current climate models can, to a certain 
degree, capture not only the impact of that changing atmospheric composition but also 
the evolution of slow natural variations of the climate system (Meehl et al. 2009; Murphy 
et al. 2010; Solomon et al. 2011). Besides, in the next few decades internal climate 
variations, particularly at regional scales, are expected to have similar amplitude 
compared to regional expressions of the anthropogenically forced global warming 
(Hawkins and Sutton 2009). The target of this study is the WAM rainfall variability. The 
identification of predictability sources for the WAM system at those lead times is, thus, 
of major relevance. 
 
The WAM activity spans over a wide range of timescales, from intraseasonal (e.g. Sultan 
et al. 2003) to decadal (e.g. Folland et al. 1986), and is sensitive to both local forcing and 
remote influences. In this respect, Giannini et al. (2003) emphasized the action of the 
ocean basins surrounding the African continent on the WAM-Sahelian rainfall decadal 
trends, while Joly and Voldoire (2010) pointed out the role of the Gulf of Guinea sea 
surface temperature (SST) in the interannual modulation of the monsoonal system. The 
Guinean precipitation and the Sahelian rainfall account for most of the SST-forced WAM 
variability at interannual-to-decadal timescales. When climate models are forced with the 
time series of observed SSTs, they successfully reproduce the observed interannual-
Guinean and decadal-Sahelian rainfall variabilities (Giannini et al. 2003, 2005; Moron et 
al. 2003; Lu and Delworth 2005; Tippet and Giannini 2006). Thus, the SST forcing can 
be considered as the dominant driver of the WAM rainfall variability. Conversely it is not 
the unique factor impacting rainfall in this monsoon region for at least three reasons 
(Fontaine et al. 2011): i) atmospheric internal variability contributes strongly to driving 
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the simulated precipitation variability at decadal to multi-decadal timescales (Caminade 
and Terray 2010); ii) land-surface vegetation processes and dust feedbacks may amplify 
rainfall anomalies (Biasutti et al. 2008); and iii) global warming impacts both multi-
decadal SST variability and monsoonal circulation (Paeth and Hense 2004). 
 
The challenge to correctly simulate the WAM rainfall interannual-to-decadal variability 
with coupled models is particularly complex because of the competence of all those 
physical mechanism above. A clear example of this comes from the assessment of 
climate-change projections for the WAM, for which no consensus has emerged regarding 
the impact of anticipated greenhouse gas forcing on the hydrology of the Sahel in the 
second half of the 21st century (Hulme et al. 2001; Druyan 2010). Caminade and Terray 
(2010) note the wide range of contradicting outcomes for African rainfall trends towards 
the end of the 21st century. And, even more drastically, Biasutti et al. (2008) find that 
evidence for any projection of WAM rainfall is uncertain. However, as decadal prediction 
bridges seasonal forecasts and climate-change projections, representing a joint problem 
of initial and boundary conditions, it may reveal potentially predictable components of 
the Guinean and Sahelian precipitation regimes.  
 
Daunting results by Cook and Vizy (2006), nevertheless, suggest that many global 
climate models in the IPCC fourth assessment archive simulate flawed representations of 
the WAM climate. Likewise, Tippet and Giannini (2006) state that the weight given to 
the results of model-based studies must depend on the realism of the model used and the 
fidelity of its representation of physical processes. Results that hold across a variety of 
models are desirable given the imperfection of the models. In this report, the multi-year 
prediction skill of the WAM rainfall has been assessed by employing a multi-model 
ensemble and a perturbed-parameter ensemble that allows addressing several model-
dependent conclusions as well as some problems of model uncertainty. 
 
Focusing on the model representation for the 20th century, the studies by Joly et al. 
(2007) and Joly and Voldoire (2009) evaluate how state-of-the-art climate models in the 
third phase of the Coupled Model Intercomparison Project (CMIP3) simulate the 
relationship between tropical-extratropical SSTs and the WAM. They treat separately the 
high-frequency (i.e. interannual) and low-frequency (i.e. multi-decadal) variability. Given 
this partition, their results confirm that WAM precipitation is significantly connected to 
regional and global SST anomalies on both timescales. However, in most of the CMIP3 
simulations, the interannual variability of SST is very weak in the Gulf of Guinea (the 
Atlantic Niño), especially along the Guinean coast. As a consequence, the influence on 
the monsoon rainfall over the African continent is hardly reproduced (Joly and Voldoire 
2009). Joly et al. (2007) emphasizes the models’ difficulty in simulating the response of 
the local inter-tropical convergence zone (ITCZ) to Atlantic SST anomalies. Concerning 
the low-frequency, only 5 among the 12 CMIP3 models capture some features of the 
Sahelian rainfall and its relation to a well-known inter-hemispheric SST pattern at 
decadal/multi-decadal timescales. All this lack of reliability in modelling results suggests 
that additional investigation is required to more confidently assess the relative roles of the 
oceanic basins in driving the WAM rainfall variability. This is particularly important for 
decadal prediction since multi-year forecast skill relies on the successful representation of 
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the SST forcings at interannual-to-decadal timescales, which are supposed to be included 
in the initialization from the ocean state. 
 
 
2. Datasets 
 
The study will analyze sets of 10-year climate retrospective forecasts, also known as 
decadal re-forecasts or hindcasts, which were produced as part of the EU-funded 
ENSEMBLES project (Doblas-Reyes et al. 2010). The experimental setup is at the heart 
of the experimental design of the decadal prediction component of the ongoing Fifth 
Coupled Model Intercomparison experiment (CMIP5), which will contribute to the next 
IPCC Assessment Report (AR5). The use of the ENSEMBLES decadal re-forecasts 
allows addressing several model-dependent conclusions. Two contributions addressing 
the problem of model uncertainty, a multi-model and a perturbed-parameter ensemble, 
will be used. The ENSEMBLES multi-model re-forecasts consist in 10-year long 
ensemble dynamical forecasts initialized once every five years over the period 1960-2005 
(i.e. 1960, 1965 …), and have three members per model and start on November 1st of 
each start date. The multi-model ensemble were produced by four European research 
centres: the European Centre of Medium-Range Weather Forecasts (ECMWF, UK), the 
Met Office-Hadley Centre (UKMO, UK; with the HadGEM2 climate model), IFM-
GEOMAR (Germany) and CERFACS (France). The perturbed-parameter ensemble is 
known as Met Office Decadal Climate Prediction System (DePreSys; Smith et al. 2007, 
2010) and was run using a nine-member ensemble of HadCM3 model variants. In order 
to assess the impact of initialization, two sets of decadal re-forecasts were run with and 
without initializing the contemporaneous state of the climate system; these re-forecasts 
will be referred to as DePreSys and NoAssim, respectively. On the other hand, the study 
will also analyze decadal re-forecasts performed at IC3 that are the corresponding 
contribution to the CMIP5 experiment. These decadal re-forecasts were performed with 
the climate model EC-EARTH (http://ecearth.knmi.nl/); the use of EC-EARTH allows 
the project to have a suitable tool as seamless climate prediction system (Hazeleger et al. 
2010). 
 
These decadal integrations aim at exploring some indication of regional decadal 
predictability beyond the slow and relatively predictable warming of the planet by 
opening the possibility of forecasting low-frequency internal climate variability. The 
objective of this research is to evaluate the predictability of the low-frequency variability 
in the WAM rainfall. 
 
 
3. Results 
 
The period of study is 1961-2009, and the seasonal average considered July through 
September (JAS), which corresponds to the heart of the rainy season and when the 
monsoon is fully developed inland. 
 
 



QWeCI / ENV-2009-243964   M3.2.a 

 - 4 - 

3.1. Rainfall indices 
 
The forecast quality assessment of the WAM in the ENSEMBLES multi-model and 
perturbed-parameter decadal re-forecasts is firstly analyzed by using three different 
indices: i) the Guinean rainfall (hereafter GUI), precipitation anomalies averaged over 
5N-10N / 10W-10E; ii) the Sahelian rainfall (hereafter SAH), precipitation anomalies 
averaged over 10N-18N / 15W-15E; and iii) the rainfall across a broader region including 
GUI and SAH (WAM index), precipitation anomalies averaged over 5N-18N / 15W-15E. 
Note that only land points are used in the computation. 
 
Figure 1 shows the ensemble-mean anomaly correlation coefficient between the single 
forecast systems contributing to the ENSEMBLES multi-model (coloured thin lines), the 
multi-model ensemble-mean (MME; thick black), DePreSys (thick purple), and NoAssim 
(thick pink) against JAS GPCC precipitation for the GUI (top), SAH (middle) and WAM 
(bottom) rainfall indices. Note that a 4-year running-mean is used upon the observations 
and re-forecasts before the computation of the skill, and the correlation scores are shown 
for each 4-year average in the forecast time. No significant multi-year prediction skill is 
found for any of the rainfall indices, although it is clear that SAH time-series perform 
better with the ENSEMBLES multi-model showing systematically positive correlations 
along the whole forecast time (Fig. 1 middle, thick black). From the comparison between 
initialized (DePreSys, thick purple) and uninitialized (NoAssim, thick pink) decadal re-
forecasts it is found that there is no multi-year skill in forecasting the WAM rainfall 
neither from the combination of greenhouse gases, solar and volcanic forcings (i.e. 
boundary conditions) nor from internal oceanic variability (i.e. initial conditions).             
 
From this scenario one could argue that the prediction skill for interannual-to-decadal 
variability in the WAM rainfall is limited by the distinctive representation of ITCZ-
related deep convection in each forecast system. This is further address in the next 
section. Here, Figure 2 shows the bias of each forecast system in the course of the 
forecast time, namely the model drift, for the GUI (top) and SAH (bottom) rainfall 
indices. ECMWF and CEERFACS overestimate the GUI precipitation, DePreSys and 
NoAssim (i.e. HadCM3) and IFM-GEOMAR underestimate it, whereas UKMO (i.e. 
HadGEM2) and EC-EARTH show almost no bias. Only CERFACS yields a marked, 
drying drift for GUI during the first four forecasting years. Concerning the SAH rainfall, 
UKMO, CERFACS and EC-EARTH overestimate the amount of precipitation, while 
ECMWF and IFM-GEOMAR underestimate it. DePreSys and NoAssim (i.e. HadCM3) 
show no bias. In this case, only ECMWF yields a marked, but wetting drift that gets the 
model closer to observations during the second half of the re-forecast. Nonetheless, it is 
noticeable that there is no correspondence between a better WAM representation (lesser 
drift) and a higher skill. Particularly apparent are for instance the cases of HadCM3 
(DePreSys and NoAssim), which shows no bias but poor skill, and CERFCAS, which 
shows strong biases but good skill, for the SAH rainfall index (cf. Fig. 1-middle and Fig. 
2-bottom). 
 
 
 



QWeCI / ENV-2009-243964   M3.2.a 

 - 5 - 

3.2. Rainfall variability modes 
 
The forecast quality assessment of the WAM in the ENSEMBLES multi-model and 
perturbed-parameter decadal re-forecasts and in the EC-EARTH ones is secondly 
analyzed by computing and comparing the dominant modes of WAM variability. 
Principal component analyses (PCA/EOF) have been carried out upon GPCC and CRU 
observational datasets (Figs. 3-4) and ENSEMBLES and EC-EARTH re-forecasts (Figs. 
5-17). The results reveal distinct representations of the WAM in different global climate 
models, although common and encouraging features have emerged.  
The first GPCC mode corresponds to the global-warming signature (25.5%), i.e. a zonal 
dipole-like anomalous pattern between eastern and western parts of the Guinean coastline 
(Mohino et al. 2011); the second GPCC leading mode is associated with the Sahelian 
mode (11.9%) and a global-scale SST pattern, including the Atlantic Multi-decadal 
Oscillation (AMO) SST anomalies; while, the third GPCC leading mode is tightly related 
to the Guinean rainfall (10.4%) and the Atlantic Niño SST anomaly (Fig. 3-top). The 
robustness of these results is assessed against the CRU dominant modes. The first CRU 
mode corresponds to the Sahelian rainfall (25%) and the second CRU mode is associated 
with the Guinean precipitation (10%); the associated SST patterns show the well-known 
inter-hemispheric pattern that includes the AMO in the Atlantic and the Atlantic Niño, 
respectively. There is not any dominant mode in CRU related to the global-warming (Fig. 
4). The correlation between the Sahelian modes in GPCC and CRU is 0.89 in JAS annual 
means and 0.97 when a 4-year running-mean is applied to the time series. The correlation 
for the Guinean rainfall between both observational datasets is 0.77 based on annual 
means and 0.66 with a 4-year running-mean (Fig. 4).  
 
The Atlantic Niño is the main driving SST pattern in all forecast systems (Figs. 5-10) 
except in CERFACS, for which no Guinean rainfall mode appears (Fig. 13, 18). 
CERFACS leading mode appears to be associated with an extratropical forcing mainly 
located over the Mediterranean basin, maybe related to the AMO. The signal of the AMO 
is pretty apparent during the first three forecast averages (1-4 to 3-6). The precipitation 
pattern reveals the Sahelian rainfall mode. Important land-atmosphere interactions seem 
to play at work driving the long-term predictability (Giannini et al. 2003, 2005). ECMWF 
leading mode clearly shows the dominance of the Atlantic Niño along the whole forecast 
time, with a right location of the ITCZ in the Gulf of Guinea that brings rain over the 
coastline (Fig. 5). In the UKMO, the correlation of the Guinean rainfall with the Atlantic 
Niño becomes stronger as the forecast time increases, although is isolately connected 
with it from the first forecast average, 1-4 years; the deep convection yields wetter 
conditions in the African continent than in ECMWF (Fig. 6). IFM-GEOMAR leading 
mode is linked to a SST pattern over the whole tropical band, with increasing amplitude 
of the Atlantic Niño along the forecast time; note that maximum loadings are over the 
Angola/Benguela upwelling system; the precipitation pattern is located too far off 
Guinean coast yielding even negative rainfall anomalies over land (Fig. 7). DePreSys 
(Fig. 8) and NoAssim (Fig. 9) both show a clear and isolated Atlantic Niño SST pattern 
during the whole re-forecast, but with larger correlation scores in the initialized hindcast 
(DePreSys); both leading precipitation modes strongly project onto the observed Guinean 
rainfall pattern. Finally, EC-EARTH leading mode is also related to anomalous 
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precipitation in the Gulf of Guinea except in the forecast average 5-8 in which it is the 
second one; however, the SST anomaly associated with the Atlantic Niño is wrongly 
located southwards, resulting thus in negative rainfall anomalies north of the ITCZ over 
the coastline (Fig. 10). 
 
The Sahelian rainfall represents the second leading mode in all forecast systems, except 
in CERFACS for which it is the dominant one (Figs. 11-17). As for the Guinean rainfall, 
different models yield distinct areas of precipitation anomalies. However, it is worth 
noting how across the variety of coupled models the SST pattern associated with the 
Sahelian mode rightly projects onto the Atlantic signature of the observed inter-
hemispheric SST signal (Fig. 3), showing in most of the cases a clear AMO-like pattern. 
In the ECMWF, the Sahel-related SST signature shows significant correlations off 
Newfoundland almost during the whole forecast time, presenting even the AMO-like  
teleconnection to the Mediterranean basin; although the maximum loadings appear to be 
in the subtropical North Atlantic (Fig. 11). In the UKMO, the prevalence of the 
subtropical North Atlantic SST pattern is more clear (Fig. 12). Notice again how the 
AMO-like signature for the first three forecast averages is pretty apparent in CERFACS 
(Fig. 13). IFM-GEOMAR yields a very consistent pattern reminiscent of the AMO signal 
along the whole forecast time, with larger scores in the middle of the re-forecast from 3-6 
to 5-8 years (Fig. 14). Again DePreSys and NoAssim show similar SST signatures all 
along the forecast time, projecting onto an AMO-like pattern, although in this case the 
initialization in DePreSys gets a clear, unique signal in the northern North Atlantic in 
comparison with NoAssim (cf. Figs. 15-16). Finally, for EC-EARTH the AMO-like 
signature associated with the model Sahelian rainfall is the weakest among the forecast 
systems, and scarce, but noticeable (Fig. 17).        
 
Figure 18 summarizes the above results showing the fraction of variance accounted for, 
respectively, the Guinean rainfall mode that is related to the Atlantic Niño (top) and the 
Sahelian rainfall mode associated with an AMO-like SST pattern (bottom). None of the 
leading precipitation EOFs in the models is significantly associated with the observed 
global warming, which appears to have a dominant role in GPCC (Fig. 19). Likewise, and 
as shown for the rainfall indices, no significant multi-year prediction skill is found for 
any of the rainfall EOF modes, although it is again clear that Sahelain rainfall performs 
better showing systematically positive correlations along the forecast time (Fig. 19). 
 
3.3. Atlantic multi-decadal variability 
 
Another aspect of the climate variability addressed in this study is the reproducibility of 
the Atlantic multi-decadal oscillation (AMO), for which a degree of predictability on 
annual and multi-year timescales has been found (e.g. Doblas-Reyes et al. 2011; van 
Oldenborgh et al. 2011). The large-scale SST pattern of the AMO is thought to be related 
to multi-decadal variations of the Atlantic meridional overturning circulation. The 
forecast quality assessment of the AMO has been performed upon the ENSEMBLES 
multi-model and perturbed-parameter decadal re-forecasts (García-Serrano and Doblas-
Reyes 2011) as well as upon the EC-EARTH decadal re-forecasts. One of the most 
significant teleconnections associated with the AMO is the WAM-Sahel rainfall (e.g. van 
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Oldenborgh et al. 2011; Fig. 20). First results suggest that the AMO has a discernible 
predictive skill up to 3-6 years ahead when hindcasts are initialized from observations 
with respect to when they are conducted just with external forcing (un-initialized 
hindcasts in DePreSys system, i.e. NoAssim; Fig. 21). This conclusion appears to be 
consistent among the ENSEMBLES multi-model, DePreSys and EC-EARTH. In 
particular, the added skill by initialization in predicting the AMO during boreal summer 
may lead to skillful predictions of rainfall in the WAM at those lead times. 
 
 
4. Summary 
 
The climate variations in the West African monsoon (WAM) have shown to be largely 
affected by both internal, natural variability related to sea surface temperature and recent 
trends associated with global warming. The objectives of this study are i) to describe the 
characteristics of monsoonal rainfall at interannual and decadal timescales, and ii) to 
assess and improve the current forecast quality with dynamical models. The 
ENSEMBLES multi-model and perturbed-parameter decadal re-forecasts have been used 
to assess multi-year forecast skill of the Guinean and Sahelian rainfall indices and the 
North Atlantic multi-decadal sea surface temperature variability (AMV). Findings 
suggest that there is no significant skill in predicting the rainfall regimes itself, but the 
initialization improves the correlation for the AMV during the first half of the re-forecast. 
Finally, the leading WAM precipitation modes from ENSEMBLES and EC-EARTH 
decadal re-forecasts have been computed and compared with observational patterns. 
Results show that while in observations the global warming has a dominant role (GPCC), 
in the interannual-to-decadal forecasting systems the Atlantic Ocean is key player: the 
Atlantic Niño appearing to be the main, isolate forcing for the Guinean rainfall, and the 
AMV and its subtropical branch representing the driving force of the Sahelian 
precipitation. No significant skill has been found in the global climate models to re-
forecast these dominant WAM modes; however, the same climate forecasting systems 
have shown significant ability to simulate the leading sea surface temperature 
phenomenon driving the precipitation. As a result of this research activity, a manuscript 
evaluating decadal prediction of the West African monsoon will be sent to a scientific 
journal in the coming weeks.        
 
5. Future work 
 
We plan to compute linear trends in precipitation at grid-point level, in order to argue the 
dominant effect of the global warming found in observations (GPCC). We also plan to 
use station-based in situ measurements to further check that hypothesis, although the 
ENSEMBLES decadal hindcasts do not show that global warming-related dominant role 
at any forecast time. 
 
We also plan to assess multi-year prediction skill of the Atlantic Niño-3 SST index 
(ATL3; SST anomalies averaged over 20W-0E / 3S-3N, Zebiak 1993) in order to explore 
the reproducibility of the main SST forcing of the model WAM-EOFs in the 
ENSEMBLES and EC-EARTH decadal re-forecasts.    
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- PART II - 
 

This second part deals with decadal prediction skill of 2-metre air temperature (hereafter 
T2m) over Africa in the ENSEMBLES multi-model and perturbed-parameter ensemble 
hindcasts. Annual values averaging November through October, according to the 
experimental set-up (Part I, Sec. 2), are considered. van oldenborgh et al. (2011) point out 
that the ENSEMBLES multi-model ensemble (MME) shows limited skill in the global-
mean temperature beyond the first year. The spatial distribution of the forecast skill has 
also been considered. For sea points SST is verified against ERSST v3b, land point T2m 
is verified against GHCN/CAMS datasets and polar regions (south of 60ºS, north of 
60ºN) against the GISTEMP 12000km T2m dataset. Figure 22 shows the correlation skill 
in the total temperature forecasts (top) and the skill after subtracting the local trends in 
the observations and models (bottom). Note that using the model T2m field over sea 
instead of SST does not make a noticeable difference. 
 
The skill of the T2m/SST forecasts including trends is shown in Fig. 22-top. The 
correlation coefficients have values of 0.5 to 0.8 over most of the globe, particularly over 
South and West Africa. These values are statistically significant at p<0.1 (the threshold is 
r=0.47 for nine independent data points using a one-sided t-test). Exceptions are SST in 
the North Pacific and Southern Oceans and T2m in parts of the Andes where other 
datasets have no data. These are all regions with low trends in the observational datasets 
used (not shown). The next question is how much of the skill is due to factors beyond the 
trend. The local trends are subtracted by regressing against CO2 concentration from both 
the hindcasts and the observations, and the skill scores are then recomputed (Note that the 
trends are not necessarily the same in the models and the observations). The correlation 
coefficients are much lower without trends, see Fig. 22-bottom. There are almost as many 
regions with negative correlation coefficients as there are regions with positive ones. 
Instead, the focus is on the two target regions of the QWeCI project: South and West 
Africa. In the forecasting years 2-5, tropical West Africa is dominated by negative 
correlations while there is positive skill in northern West Africa, although it vanishes in 
6-9-years forecast range. In the latter, positive correlation coefficients appear in the 
western area of tropical West Africa. Concerning South Africa, there appears to be 
consistent T2m prediction skill along the whole forecast time in tropical South Africa, to 
the north of Malawi. The MME shows increasing, positive correlations over southern 
South Africa from 2-5 to 6-9 forecasting years. Even so, Fig. 22 evidences that there is no 
clear skill in re-forecasting surface temperature in the ENSEMBLES multi-model beyond 
the global-warming trend. 
 
This feature is further analysed by validating the initialised ENSEMBLES multi-model 
and perturbed-parameter (DePreSys) decadal hindcasts over different target regions, see 
Fig. 23. As inferred from Fig. 22, Figure 24 evidences that none of the forecast systems 
contributing to the multi-model yields significant skill of T2m neither for any of the 
forecast ranges considered (1, 2-5, 6-9) nor for any African areas, except CERFACS that 
shows consistent hit rate for the forecasting years 6-9. Hit rate, also known as proportion 
correct, is a coarse grained score that measures whether events are correctly 
distinguished, in this case above/below median. Also as discussed in Part I, Fig. 24 shows 
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that none of the single forecast systems in the ENSEMBLES multi-model has significant 
skill in re-forecasting the African rainfall. Figure 26 displays the proportion correct 
above/below median annual means for T2m and precipitation in DePreSys. It confirms 
that none of the initialised ENSEMBLES decadal hindcasts is able to produce skillful re-
forecasts over Africa. van Oldenborgh et al. (2011) point out that surface temperature 
skill is mainly due to the trend. Figure 26 and 27 show the correlation between hindcasted 
and observed 5-year T2m and precipitation trends for the single systems in the multi-
model and DePreSys, respectively. As expected, no coherence is found for re-forecasting 
rainfall trends (Figs. 26, 27 - bottom). The results also suggest that initialised 
ENSEMBLES decadal re-forecasts are not even capable of predicting local/regional 
trends over South and West Africa for near-surface land temperature (Figs. 26, 27 - top).                    
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Figure 1. Ensemble-mean anomaly correlation coefficient between each single forecast system contributing to the 
ENSEMBLES multi-model (coloured thin lines), the multi-model ensemble-mean (MME; thick black), DePreSys (thick 
purple) and NoAssim (thick pink) against GPCC precipitation using July-to-September (JAS) seasonal means for: (top) 
the Guinean-GUI, (middle) Sahelian-SAH, and (bottom) West African monsoon-WAM rainfall indices; see text for 
details. All correlations have been computed with 5-year intervals between start dates. Confidence interval (α<0.05, one-
tailed t-test) for positive, different from zero correlations are drawn in grey shading.   
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Figure 2. Evolution of the observational and model climatologies for the (top) Guinean-GUI and (bottom) Sahelian-SAH 
rainfall indices along the forecast time based on JAS seasonal means. GPCC observational reference period is computed 
both as full-record climatology (CLIM; solid black) and as pair-pair climatology when model data is available using 5-
year interval between start dates (ppCLIM; dashed black).  
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Figure 3. Empirical orthogonal functions (EOFs; mm/day) of the (top) GPCC and (bottom) CRU JAS rainfall 
precipitation anomalies over the WAM domain. The period of study is 1961-2009. The fraction of explained variance in 
each mode is indicated (in percent) together with the ordering of EOFs. The correlation maps of the corresponding 
standardized principal component with ERSST anomalies are shown in the right panel.  
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Figure 4. Standardized principal components associated with the EOFs of the GPCC (black) and CRU (grey) JAS rainfall 
precipitation anomalies over the WAM domain (in Fig. 3). Shown are time series based on annual means (thin lines) and 
a 4-year running-mean of the standardized principal components (thick lines). 
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Figure 5. Guinean rainfall modes in ECMWF: empirical orthogonal functions (EOFs; mm/day) of the JAS WAM rainfall 
precipitation anomalies for the ECMWF climate prediction system along the forecast time every 4-year forecast average. 
The period of study is 1961-2009. Note that all EOFs have been computed with 5-year intervals between start dates. The 
fraction of explained variance in each mode is indicated in percent. The correlation maps of the corresponding 
standardized principal component with model SST anomalies are shown in the right panel.  
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Figure 6. Same as Fig. 5 but for UKMO (HadGEM2 global climate model). 
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Figure 7. Same as Fig. 5 but for IFM-GEOMAR. 
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Figure 8. Same as Fig. 5 but for DePreSys. 
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Figure 9. Same as Fig. 5 but for NoAssim. 
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Figure 10. Same as Fig. 5 but for EC-EARTH. 
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Figure 11. Sahelian rainfall modes in ECMWF: empirical orthogonal functions (EOFs; mm/day) of the JAS WAM 
rainfall precipitation anomalies for the ECMWF climate prediction system along the forecast time every 4-year forecast 
average. The period of study is 1961-2009. Note that all EOFs have been computed with 5-year intervals between start 
dates. The fraction of explained variance in each mode is indicated in percent. The correlation maps of the corresponding 
standardized principal component with model SST anomalies are shown in the right panel.  
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Figure 12. Same as Fig. 11 but for UKMO (HadGEM2 global climate model). 
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Figure 13. Same as Fig. 11 but for CERFACS. 
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Figure 14. Same as Fig. 11 but for IFM-GEOMAR. 
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Figure 15. Same as Fig. 11 but for DePreSys. 
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Figure 16. Same as Fig. 11 but for NoAssim. 
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Figure 17. Same as Fig. 11 but for EC-EARTH. 
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Figure 18. Fraction of explained variance in the ENSEMBLES multi-model and perturbed-parameter as well as EC-
EARTH climate prediction systems, along the forecast time every 4-year forecast average, for the (top) Guinean and 
(bottom) Sahelian rainfall modes. The period of study is 1961-2009. Note that all EOFs have been computed with 5-year 
intervals between start dates.  
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Figure 19. Anomaly correlation coefficient between the leading JAS WAM rainfall standardized principal components of 
each single forecast system contributing to the ENSEMBLES multi-model, DePreSys (purple), NoAssim (pink), and EC-
EARTH (grey) against JAS GPCC dominant modes: the (top) Guinean and (middle) Sahelian rainfall modes, and 
(bottom) the pattern associated with the gobal warming. All EOFs have been computed with 5-year intervals between 
start dates. Confidence interval (α<0.05, one-tailed t-test) for positive, different from zero correlations are drawn in grey 
shading.   
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Figure 20. Correlation map of GPCC precipitation onto the AMO index over 1901-2007, demanding at least one 
observation per 2.5º grid box; white areas do not have enough observations to compute a correlation coefficient.  
[ Modified from van Oldenborgh et al. 2011 ]  
 
 
 
 

 
 

Figure 21. Ensemble-mean anomaly correlation coefficient (ACC) for the AMO index between each single forecast 
system contributing to the ENSEMBLES multi-model (coloured lines), the multi-model ensemble-mean (MME; thick 
black), DePreSys (thick purple), NoAssim (thick pink), and EC-EARTH (thick grey) against ERSST. All correlations 
have been computed with 5-year intervals between start dates. Annual means (January through December) have been 
considered with a 4-year running-mean in the forecast time. Confidence interval (α<0.05, one-tailed t-test) for positive, 
different from zero correlations are drawn in grey shading. 
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Figure 22. Correlation skill of T2m/SST hindcasts for forecasting years 2-5 (left) and 6-9 (right) including the trend (top) 
and the skill that is left after subtracting the local trends (regression on the CO2 concentration) of both model and 
observations (bottom). Correlations are significant at p<10% for r>0.47. SST: ERSST v3b from NCDC; T2m: 
GHCN/CAMS from NCEP; polar regions: GISTEMP (1200km decorrelation). 
 
 
 
 

 
 
Figure 23. Regions under study of ENSEMBLES decadal hindcast validation over Africa. 
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Figure 24. Proportion correct above/below median annual averages for the ENSEMBLES decadal multi-model 
experiment, for the regions in Fig. 23 and forecasting years 1 (top), 2-5 (middle) and 6-9 (bottom). Red corresponds to 2-
metre temperature (T2m); blue, precipitation. Note that the ocean is masked in all calculations. Dashed line indicates 95% 
significance level. Note Y axis starts at 50%, any results below this level are not shown. 
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Figure 25. Same as Fig. 24, but for the ENSEMBLES perturbed-parameter decadal hindcast. 
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Figure 26. Correlations between simulated and observed five year T2m and precipitation trends, for ENSEMBLES 
decadal multi-model experiment, for the regions shown in Fig. 23. Note that the ocean is masked in all calculations. 
Dashed lines indicate 95% significance level. 
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Figure 27. Same as Fig. 26, but for the ENSEMBLES perturbed-parameter decadal hindcast. 


