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Abstract 

The validation of the Liverpool Malaria Model (LMM) was planned for this study. However, sufficient 

entomological and parasitological malaria data is not available from the Kumasi area. The QWeCI 

project was not allowed to use standard bite catches due to additional ethical review issues at the 

contracting stage and the performed spray catches were not sufficient for the computation of 

representative malaria transmission rates. Regarding parasitological malaria data, the QWeCI project 

was not allowed to undertake representative parasite surveys within Kumasi. Instead confirmed malaria 

cases from hospitals were gathered for the Kumasi region. However, the output from the applied malaria 

models cannot be directly compared to the hospital malaria. 

Instead of the validation of the LMM, both VECTRI and LMM simulations were performed and compared 

for Kumasi. The malaria models were driven by observed data from the Kumasi airport and with data 

from the Tropical Rainfall Measuring Mission (TRMM) and other satellite daily precipitation estimate. The 

comparison with observed precipitation reveals similar rainfall amounts between the rainfall observations 

at the Kumasi airport and that of the TRMM and other satellite precipitation estimate. VECTRI was 

driven with an urban, peri-urban and rural population density, respectively. As expected, the VECTRI 

simulations lead to higher transmission values in rural than in urban locations and reveal a lower 

interannual variability than the LMM. 

The output of the model was qualitatively compared to the hospital malaria. The malaria cases showed a 

small interannual variability, whereas the models reveal a strong interannual variability in the malaria 

transmission. However, it is argued that the models seem to reproduce realistic malaria conditions for 

the Kumasi region. In general, both malaria models reveal the same bimodal cycle in malaria 

transmission. During the dry season no or very low transmission values are simulated in the models. 

Exemplary local seamless monthly-to-seasonal malaria forecasts were produced for the Kumasi region. 

The feasibility of such local forecasts is demonstrated for the 31 January 2013. The LMM and VECTRI 

were both forced by the 120-day seamless monthly-to-seasonal weather forecasts from the ECMWF. At 

the beginning of March, low malaria transmission rates were predicted. The set up of the main malaria 

season is forecasted for about April. In comparison to the hindcasts (period: 1995-2012) above average 

malaria transmission is forecasted to occur. Both models disagree with regard to the forecast of the 

malaria prevalence indicating that the malaria models neglect important aspects of the malaria disease 

within humans. 

 

1 Introduction 

Malaria in Africa, especially the sub-Saharan Africa, is known to be one of the major setbacks to human 

development. Several reports (e.g. Snow et al. 1999; Donnelly et al. 2005; Omumbo et al. 2005; Hay et 

al. 2005; Klinkenberg et al. 2006) indicate the veracity of the disease transmission dynamics in the area. 

The severity of the social and economic burden (Mills 1998; Gallup and Sachs 2000; Lindblade et al. 

2000) of the disease in the area is known to be governed by the highly populated long live and 

competent key malaria vectors. Several control interventions such as Indoor Residual Spraying (IRS), 

Insecticides Treated Nets (ITNs) have been employed geared towards a complete eradication of the 

parasite and/or for a drastic reduction of the vector population (Lindsay et al. 1993). Despite these 
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control interventions, malaria still remains a leading, effective and persevering cause of morbidity and 

mortality among many urban and rural populations of which most are children under five (World Health 

Organization (WHO) 2010; Rollback Back Malaria (RBM) 2010, 2012; President’s Malaria Initiative 

Fiscal Year (PMI FY) 2013). The inability of the continent to be totally free from the burden of malaria 

could be attributable to vector adaptation to humans (Della et al. 2001), weak health systems and poor 

governance. Other attributes include the increasing resistance of the vector to insecticides and parasite 

to drugs (Whitty and Allan 2004; Reimer et al. 2005; Casimiro et al. 2006), Centre de Suivi Ecologique 

(UCAD/CSE) vectorial adaptations to varying ecological and climatological situations namely feeding 

preference and outdoor resting (Killeen et al. 2002). 

Malaria in Ghana is described as hyperendemic and perennial in all parts (Ghana Ministry of Health 

(GMOH) 2010; PMI FY 2012), with seasonal variations more pronounced in the north (PMI, FY2013). 

The entire population of 24.2 million (Ghana Population and Housing census, GPHC 2010) is reported to 

be at risk of malaria with higher risk in children under five and pregnant women (WHO 2011). The 2008 

WHO world malaria report estimated total malaria-attributable child deaths at 14,000 per year in Ghana. 

The Demographic Health Survey (DHS) household survey in 2008 found that about half of the deaths in 

children under five occurred at home. The Ghana Health Service (GHS) health facility data reported in 

PMI FY (2013), reveals that malaria is the number one cause of morbidity and mortality in children under 

five years of age, leading to 33% of hospital deaths in children under five years and about 38% of all 

outpatient illnesses and 36% of all admissions. Moreover from this report, between 3.1 and 3.5 million 

cases of clinical malaria are reported in public health facilities each year, of which 900,000 cases are 

children under five years and 3,000-4,000 result in patient deaths. Plasmodium falciparum is found to 

account for a larger percentage (about 85-90%) of all infections with the major vectors being the 

Anopheles gambiae species complex and An. funestus (Klinkenberg et al. 2006;  GMOH 2010; PMI FY 

2012, 2013). These species known to bite late in the night, are indoor resting, and are most common in 

the rural and peri-urban areas. 

The influence of the seasonal climate changes on the disease transmission dynamics is undoubted (Hay 

et al. 1998; Masendu et al. 2004). The main climate drivers include temperature, rainfall, humidity, and 

wind. The development dynamics of both the vector and the parasite are found to be dependent on the 

conditions of these climate drivers (Martens et al. 1995; Bayoh and Lindsay 2003; Thompson et al. 

2005; Kirby and Lindsay 2009). Recent mathematical modelling of malaria accounting for the impact of 

these climate drivers has been developed (Hay et al. 2002; Hoshen and Morse 2004; Ermert et al. 2010; 

Tompkins and Ermert 2013). Constructed were among other dynamical weather-driven malaria models 

the Liverpool Malaria Model (LMM) and VECTRI (VECtor-borne disease community model of the 

International Centre for Theoretical physics, TRIeste). These models are able to simulate realistic 

transmission rates for epidemic and endemic malaria areas. The LMM and VECTRI are now used to 

predict the near malaria future in Africa. Pan-African prototype seamless monthly-to-seasonal malaria 

forecasts are produced on a weekly basis with a lead-time of 120 days (i.e. four months). These malaria 

predictions, however, lack a validation with malaria observations meaning that their accuracy is largely 

unknown. 

This study was mainly designed to understand more fundamentally the influence of the climate drivers 

on malaria dynamics in the Ashanti region, Kumasi-Ghana using the 2010 version of the Liverpool 

Malaria Model (LMM2010) and VECTRI. This is possible by driving the models with weather data (such as 
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temperature and rainfall) as inputs, which simulate Entomological Inoculation Rates (EIR; i.e. the 

number of infectious bites per person per a given time period) as output. This has the potential of 

assisting with their short-term management as well as projecting their future likely impacts. The study 

therefore serves as a baseline work for monitoring malaria transmission dynamics and the impact of 

malaria control interventions within the region. 

 

The objectives of the present study are to:- 

1) Compare observed rainfall amounts from the synoptic weather station at the Kumasi airport 

with satellite-based precipitation estimates. 

2) Drive the LMM2010 and VECTRI with observed temperature and rainfall data from the Kumasi 

airport and compare these runs with simulations that are driven by satellite-based rainfall 

estimates. 

3) Compare the LMM2010 and VECTRI simulations with observed malaria cases from health 
clinics. 

4) Generate exemplary local seamless monthly-to-seasonal malaria forecasts for the Kumasi 

area.  

The study area, data sources, and methods are described in sections 2, 3, and 4. Results are presented 

and discussed in section 5 and 6 respectively. Concluding remarks are provided in section 7. 

2 Study area 

The Ashanti Region is located centrally in the middle belt of Ghana approximately between longitudes 

0°15'W and 2°25'W, and latitudes 5° 50'N and 7° 40'N. The region has a population of about 4.8 million 

with a density of about of 148 per km
-2

 (GPHC 2010). It is also currently the second most urbanized in 

the country, with the urban population exceeding that of the rural. 

The vegetation is broadly classified into semi deciduous forest and Guinea Savannah woodland. More 

than half of the region is located in the forest zone. It experiences two main rainy seasons with an 

average annual rainfall of about 1500 mm. The major rainy season starts in March, with a major peak in 

July. August being the month of transition between the two seasons reveals a decrease in the rainfall 

amount. The second season starts in September and ends in November. December to February is dry, 

hot, and dusty due to the Harmattan winds. Temperature is generally high, averaging daily over 27°C in 

the forest zone and 29 degree Celsius on the northern fringes of the forest zone. The humidity is 

relatively high, averaging about 85% in the forest area and 65% for the Savannah belt (Kwamena and 

Benneh 2004). 

Nine health clinics within the region as a matter of data availability were chosen for the study namely 

Manhyia, Atonsu, South Suntresso, Emena, Akropong, Ejisu, Agogo, Owabi and Nkawie. The first four 

hospitals are located within the Kumasi metropolitan assembly that is the most urbanized and heavily 

populated (about 1.5 million of the region’s total). The health clinic in Ejisu is located in the Ejisu-Juaben 

district, which is the second most populated, described as a semi-urban area. The others namely the 
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Akropong hospital in the Amase West district, the Agogo health clinic in the Asante Akim North district 

and the Owabi and Nkwawie hospitals in the Atwima Nwabiagya districts are rural. The urban districts 

are characterised by many slums and squatter settlements with very poor sanitation systems. With the 

exception of Kumasi metropolis, which has many health facilities, the other districts have health facilities 

only at the district capitals. They are therefore scarce and located at far distances especially in the rural 

districts. It is common to find that traditional methods of healing are applied within these rural districts.   

3 Data sources 

The data required for this study are meteorological time series of temperature and precipitation, 

entomological data from the disease vectors and parasitological observations (Ermert et al. 2011a,b). In 

this regard, daily weather observations of temperature and precipitation for the Kumasi airport synoptic 

weather station were obtained from the Ghana Meteorological Agency (GMet). These time series 

spanning from 1963 to 2012, formed the input data to drive the malaria models. On the other hand, time 

series were not available for each of the nine health clinics. Hence, the Kumasi airport synoptic station 

data records were used instead. The Tropical Rainfall Measuring Mission (TRMM) and other satellite 

daily precipitation estimate (the 3B42 version 7 data product) area averaged over 0.25°x 0.25° 

longitude–latitude grid boxes (25 km x 25 km) for the Kumasi airport was also applied. This data is a 

daily three hourly precipitation record and covers the period 1998 to 2012, and was downloaded from 

http://www.mirador.gsfc.nasa.gov. It was additionally used in order to compare the effects of different 

rainfall products on the model output. This has the ability of informing the degree of certainty in these 

databases. 

In terms of entomological data, KNUST (Kwame Nkrumah University of Science and Technology) 

undertook for periods of four and three months spray catches in ten rooms, respectively. Due to ethical 

issues and not wanting to delay the project start further with addtional ethical discussions, QWeCI 

project was not allowed to use standard bite catches. The amount of data gathered was far insufficient 

to allow for the calculation of monthly Entomological Inoculation Rates (EIRm; i.e. the number of 

infectious mosquito bites per person per month) for urban, peri-urban and rural areas within the region. 

Moreover, parasitological malaria data was not gathered with the reason that QWeCI project was not 

allowed to undertake representative parasite surveys within Kumasi. However, the project was enabled 

to gather confirmed malaria cases from hospitals of the Kumasi metropolis. The malaria cases are 

confirmed by either Giemsa staining or rapid diagnostic tests methods. For purposes of quality control 

both methods are used in the hospitals. These methods used by the hospital have not changed and are 

still used. Generally, the hospital malaria data covered the period 2000 to 2012. However, not all the 

hospitals owned data covering this entire period. Some hospitals had records starting later or ending 

earlier. Between the record length, some monthly records were found missing. Most of these missing 

data occurred towards the end of the year. The data is also highly inconsistent in the age and gender 

characteristics. Table 1 provides a summary of the nature of the data obtained from the hospitals. 

Table 1: Summary of nature of data obtained from the hospitals. 

Name of Hospital Data length 
(yyyymm) 

Missing data Age and gender 
characteristics 

South Suntresso 200001-201212 200907-08, 200912 Entirely nonspecific 

http://trmm.gsfc.nasa.gov/
http://www.mirador.gsfc.nasa.gov/
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Akropong 200001-200910 - Only gender specific for 
200801-200902 

Atonsu 200001-201212 - Entirely nonspecific 

Emena 200801-201212 200907-12 Specific only for 201001-
201212 

Manhyia 200001-201212 200907-12 Specific only for 201001-
201212 

Ejisu 201101-201212 - Entirely specific 

Nkwawie 200601-201212 - Specific only for 201001-
201212 

Agogo 201101-201212 - Entirely nonspecific 

Owabi 200801-200902 - Entirely nonspecific 

 

With regards to the exemplary monthly-to-seasonal malaria forecasts, data was obtained from the 

ECMWF starting from 31 January 2013. This starting date was chosen due to the fact that January is 

located at the end of the dry season in boreal winter. Usually, January is a fairly dry month with only 

occasional rainy events. Therefore, it is assumed that only a low malaria transmission would take place. 

Within the following months the first rainy season starts and malaria transmission is expected to 

increase significantly due to the availability of more mosquito breeding sites. Therefore, the malaria 

models should be able to forecast the start of the malaria season. 

The ECMWF provided seamless monthly-to-seasonal temperature and precipitation forecasts with a 

temporal and spatial resolution of a day and 1° x 1°, respectively. The data consists of 51 ensemble 

members and includes hindcasts between 1995 and 2012 (5 members for each year). With regard to the 

precipitation data the calibrated values were used. Furthermore, the ECMWF also provided the seasonal 

malaria forecast data from VECTRI. The data was allocated on a ftp server of the ECMWF and was 

successfully downloaded. 

4 Methods 

The models accept only continuous daily temperature and precipitation measurements as input data. 

The first step then was to prepare the input data into this format by compensating for any gaps. This 

purpose was achieved by quality checking the meteorological time series and filled the missing values 

by a procedure described by Ermert 2010. TRMM and other satellite precipitation estimate values for the 

Kumasi airport synoptic weather station were extracted from nine grid boxes of size 0.25°x 0.25° and are 

represented as box-and-whisker plots. The two time series (GMet record and the TRMM and other 

satellite precipitation estimate) were then compared (Figure 1) to see their disparities. 

The LMM and the VECTRI were then driven with the daily time series of temperature and precipitation 

separately from the GMet observations and TRMM and other precipitation estimate to produce EIRm 

values as output. In the case of TRMM, all the nine grid box time series were fed separately into the 
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models. The model simulations from them were then calculated and plotted as box-and-whisker plots. 

VECTRI runs were applied for three different population densities describing urban, peri-urban and rural 

areas as captured in the model parameterization. The essence of this was to simulate realistic 

entomological and parasitological values for different population densities in the area of Kumasi. The 

runs for the nine grid boxes of the TRMM and other satellite precipitation estimate were only undertaken 

for rural population densities. The model simulations (using both GMet and the TRMM and other satellite 

precipitation estimate) were then compared with the observed hospital malaria records. The evaluation 

of the malaria risk was based on the definition of Ermert et al. 2011b. They defined a malaria risk month 

as a month with EIR value above 0.01 infectious bites per person and per months. Besides, the 

simulated EIRm value the monthly hospital malaria cases were computed. The choice of the models was 

based on the fact that they are able to simulate a realistic spread of malaria in space and time and for 

that matter remain useful tools for a weather- or climate-disease modelling system (Ermert et al. 2011b, 

Tompkins and Ermert, 2013). 

With regard to the exemplary malaria forecasts, the monthly-to-seasonal weather forecast was used to 

drive the LMM2010. Before driving the LMM2010 with the weather forecast data, the model was initialised 

since 2000 by means of ERA-Interim data (ERA: ECMWF Re-Analysis) and from 2010 with the 

operational analysis of the ECMWF. The VECTRI model starts from saved initial conditions and needs 

therefore not to be simulated before the forecast period starts. The results of both malaria models 

(LMM2010 and VECTRI) were processed to obtain weekly transmission and parasite rates. Quartile 

statistics were computed with regard to the 51 ensemble members of the monthly-to-seasonal forecast 

and in terms of the 90 (18*5) hindcasts. The data is used to provide local malaria forecasts. In contrast 

to the pan-African prototype malaria forecasts from the ECMWF (see 

http://nwmstest.ecmwf.int/products/forecasts/d/inspect/catalog/research/qweci), the local disease 

prediction focuses on the generation of time series of two key malaria variables. 

5 Results 

5.1 GMet rainfall observations vs. TRMM and other satellite precipitation estimate 

In this section, the rainfall observations from the synoptic weather station at the Kumasi airport are 

compared with the TRMM and other satellite precipitation estimate of the region. The precipitation 

amounts of both data sets are comparable to each other (Figures 1). In terms of intra-seasonal and 

interannual variability, the two data sets reveal similar characteristics. The satellite-based precipitation 

product is well correlated with the station observations. There are few exemptions, when the TRMM and 

other precipitation estimate underestimates or overestimates the monthly rainfall amounts (see, e.g., the 

first rainy season in 2009 and 2012).  

 

http://nwmstest.ecmwf.int/products/forecasts/d/inspect/catalog/research/qweci
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Figure 1. Comparison of TRMM and other satellite precipitation estimate and GMet rainfall 

records. Inter-seasonal and annual comparison of TRMM and GMet rainfall data for Kumasi metropolis 

from 1998 to 2012. The green box-and-whisker boxes display the TRMM and other satellite precipitation 

estimate extracted from nine grid boxes (0.25 x 0.25 degrees) around the Kumasi airport. The blue line 

displays the ground based GMet rainfall observations of the synoptic weather station. 

The two precipitation time series both reveal the two distinct wet seasons of the region. The first wet 

season builds up gradually from small rains in March and peaks in about June. It then declines from this 

month and reveals a minimum in August. Building up after August, the second wet season peaked in 

September/October. November through to February reveals very low or no rainfall amounts. In each 

case, the first wet season was observed to be longer than the second season described as the main and 

minor rainy seasons, respectively.  

 

5.2 LMM2010 simulations for Kumasi 

The LMM simulates driven by the GMet observations revealed a strong year-to-year variability of the 

malaria transmission for Kumasi (Figure 2). The annual EIR (EIRa) values range between about 10 and 

620 infectious bites per person per year. The corresponding annual Human Biting Rates (HBRa) and 

CircumSporozoite Protein Rate (CSPRa; fraction of infectious mosquito bites) reveal values between 

about 2,000 and 11,000 bites per person per year and about 2 and 6%, respectively. The simulated EIRa 

values are somewhat lower between 1975 to 1997 but with intermittent high peaks in years such as 

1980, 1986, and 1991. After 1997 the malaria transmission is more stable and reveals always more than 

100 infectious bites per human and year. 
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Despite the high interannual transmission variability, the LMM simulates nearly constant maximum 

annual parasite ratios (PRmax,a). This is related to the fact that the transmission was always high enough 

meaning that during parts of the year all humans in the model were either infected by the parasite or 

recovered from malaria. On the contrary, the mean and minimum annual parasite ratios (PRa and 

PRmin,a respectively) reveal a stronger interannual variability as a result of the strong year-to-year 

transmission variability. Both simulated variables reveal about the same annual variations, which means 

that they are largely correlated. 

 
Figure 2. LMM2010 simulated malaria conditions using the GMet data from 1963 to 2012. The upper 

panel displays the annual Entomological Inoculation Rate (EIRa; number of infectious mosquito bites per 

human per year; red line; left scale), annual Human Biting Rate (HBRa; number of mosquito bites per 

human per year; blue line; right scale; divided by 1000), and annual CircumSporozoite Protein Rate 

(CSPRa; fraction of infectious mosquito bites; in %; green line; right scale). The bottom panel displays 

the annual mean (PRa; in %; black line; left scale), annual minimum (PRmin,a; in %; blue line; left scale) 

and annual maximum (PRmax,a; in %; red line; left scale) parasite ratio. In addition is the the malaria 

seasonality (right scale; in month) described by months with Entomological Inoculation Rate (coloured 
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squares) of at least 0.01 infectious mosquito bites per human per month. The month with the maximum 

transmission is marked via an „X″.  

 

Within the LMM simulation the malaria transmission starts in most years between March and April 

(Figure 2). The main transmission month is predicted to occur in general between May and December, 

which is related to the fact that two main transmission seasons are simulated. The seasonal peaking 

nature intermittently varied mostly between June or July and October or November for the first and 

second seasons respectively. The intraseasonal variability within the entire period was observed high. 

The transmission season are related to the two rainy seasons (see Figures 1). The first season spans 

between May/April to June/July. The months August and September indicate the months of transition 

from the first to second malaria season. The second season finally picks up in September apexing in 

October/November and declining to lower values in December. The end of the malaria season is 

simulated for about December and January. However, some years reveal even a year-around 

transmission. 

 

5.3 VECTRI simulations for rural, peri-urban, and urban areas of the Kumasi region 

 
Figure 3. Same as Figure 2 but for VECTRI simulated malaria conditions for a rural area (100 

inhabitants per km2) within the Kumasi region. 
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Driving VECTRI for a rural population (100 inhabitants per km2) with daily weather observations from the 

Kumasi airport results in a much lower interannual variability in comparison to the LMM2010 simulation. 

The EIRa values from VECTRI vary only between about 100 and 450 infectious mosquito bites per 

human per year. The CSPRa values hardly vary between 7 and 9% and reveal therefore a higher value 

than that of the LMM2010. The HBRa is strongly correlated with the EIRa value due to the nearly constant 

CSPRa value. The HBRa values range between about 2000 and 4000 mosquito bites per person per 

year. VECTRI reveals not only a fairly low year-to-year variability but also much weaker malaria 

seasonality than the LMM2010. The maximum transmission month shows only values between about 20 

and 100 infectious mosquito bites per months. Like for the LMM run, also in the VECTRI simulation the 

month of maximum transmission strongly varies from year-to-year. However, the maximum transmission 

is simulated to occur only in six different months and not in eight different months like in the LMM2010. 

VECTRI reveals nearly a year-around transmission. Only some years like 1983 show a malaria 

transmission gap of two years. Mostly only one or no month without malaria transmission is simulated. 

Therefore, VECTRI simulates longer transmission seasons than the LMM2010. Like for the LMM2010 the 

annual maximum of the PR is nearly unchanged from year-to-year. Stronger interannual changes are 

found for the mean and minimum value of the PR. However, VECTRI reveals also here a smaller 

variability in comparison to the LMM2010. 

 
Figure 4. Same as Figure 3 but here for (a) a peri-urban (250 inhabitants per km2) and (b) urban 

area (1000 inhabitants per km2) within the Kumasi region. 

Running VECTRI for a peri-urban (250 inhabitants per km2) and urban area (1000 inhabitants per km2) 

results in lower malaria transmission and infectiousness of the human population (Figure 4a & b). The 

EIRa values for the peri-urban and urban population range only between 10 and 100 and 5 and 50 

infectious bites per human per year, respectively. It is interesting to note that the CSPRa value 

decreases significantly in the VECTRI simulations when the population density is increased. CSPRa 

ranges only between 4 and 8% for the urban population. The increased population density also affects 

the occurrence of the malaria season. The higher population density leads in VECTRI to a shorter 

malaria season due to the increases gap in the malaria transmission at the start of the year. Of course, 
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also the single values of the monthly EIR values are smaller under the peri-urban and urban 

environment. The lower transmission also impacts the infectiousness of the human population. In the 

VECTRI simulation, fewer humans are infected by the malaria parasite and the maximum PR value 

stronger varies under higher population densities. 

 

5.4 LMM2010 and VECTRI simulations vs. hospital malaria cases 

 
Figure 5. LMM2010 and VECTRI simulated monthly EIR values between 1998 and 2012 using the 

GMet observations and the TRMM and other precipitation estimate, and observed hospital 

malaria cases. Illustrated is the interannual and intraseasonal variability of the simulated monthly EIR 

values (EIRm left scale) by LMM2010 and VECTRI using the GMet observations (solid black and dashed 

black line, respectively) and the TRMM and other precipitation estimate (green and red box-and-whisker 

plots, respectively). Also inserted are the observed confirmed hospital malaria records (coloured lines; 

right scale) within the Ashanti region of Ghana between 2000 and 2012.  

The confirmed malaria cases from hospitals reveal only a small intraseasonal variability. Hospital 

malaria cases were both observed in the dry and in the wet seasons. The number of malaria hospital 

cases is, however, somewhat higher in the middle of the year after the first main rainy season indicating 
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some influence of rainfall on the occurrence of hospital malaria cases. No significant peaks were 

observed even though some minor instances were observed especially in the Manhyia and Nkawie 

hospitals. No strong intraseasonal variability is especially found for the hospitals of the Kumasi 

metropolis. The Manhyia and Nkawie hospitals revealed higher numbers of malaria cases than the other 

hospitals. In general, the number of malaria cases differs from hospitals within and outside the Kumasi 

metropolis. Stronger intraseasonal variations are found for the hospital malaria cases outside Kumasi 

than in the metropolis. A strong difference in the number of cases is identified between the Agogo and 

Nkawie hospitals, which are both located in rural areas. Either Nkawie represents a malaria hot spot due 

to special conditions or the catchment area of the hospital is larger. 

In contrast to these results, the LMM2010 and VECTRI reveal a strong intraseasonal variability with 

regard to monthly EIR values. It should be noted, that small EIR values are sufficient to infect the human 

population. Above about 10-20 infectious bites per year no strong increase in the infectiousness of 

children was found (see Smith et al. 2005, their Figure One). As previously shown, both models reveal 

only a small gap in the malaria transmission at the end of the dry season. For some years, the LMM2010 

and VECTRI simulate year-around malaria transmission. For these reasons, the model results might not 

be far off from the real malaria conditions. It must be noted, that it is not possible to directly compare the 

simulated malaria transmission with the observed hospital cases. The models do not distinguish 

asymptomatic and symptomatic malaria cases and those that are admitted to hospital. 

 

5.5 Exemplary local monthly-to-seasonal malaria forecast for Kumasi 

 

In order to show the feasibility of local malaria forecasts demonstrative malaria seamless monthly-to-

seasonal malaria forecasts for the Kumasi region were generated. Illustrated were the seamless malaria 

forecasts from January 2013. In contrast to the forecasts from the ECMWF, the local forecasts mainly 

focus on the generation of time series of key malaria variables. In January 2013, the lead-time of 120 

days includes the start of the main malaria transmission season, for which the forecast is provided by 

VECTRI and the LMM2010. 

5.5.1 Forecasts and hindcasts from the LMM2010 

The malaria forecast for Kumasi/Ghana starts at the beginning of February (week 5) and is finished at 

the end of May 2013 (week 21). The forecast includes entomological and parasitological malaria 

variables such as the simulated weekly EIR (EIRw) values. According to the LMM2010 monthly-to-

seasonal prediction malaria transmission is on-going throughout the forecasting period. The model runs 

indicate that the transmission of the malaria disease is predicted to be significant but partly low during 

the four forecasted months. The lowest malaria risk is simulated to occur between the end of February 

and beginning of March (week 7 and 9). The weekly EIR median value of the 51 ensemble members of 

the malaria forecasts is always higher than 0.25 infectious bites per 100 people (see the blue line in 

Figure 6) meaning that malaria transmission is on-going also during the driest period of the year (see the 

definition above). However, the risk of a malaria infection is fairly low during this time. Some ensemble 

members even forecast a much lower but also a higher transmission level, respectively. During week 7 

and 9 the EIRw values range between 0.0002 and 0.02 infectious bites per human per week. After the 

beginning of March, the simulated EIRw value increases significantly due to the start of the main rainy 

season in the Kumasi area. At the end of April (week 16), every human receives already about one 



14 

infectious mosquito bite per week. The malaria risk further increases toward the end of the forecast 

period at the end of May (week 21), when the EIRw value reaches about 10-20 infectious bites per 

human per week. 

 

Figure 6. Demonstrative monthly-to-seamless malaria forecast (starting from 31 January 2013) of 

the Liverpool Malaria Model (LMM) for the Kumasi region in Ghana. Illustrated is the weekly 

Entomological Inoculation Rate (EIRw; i.e. the number of infectious mosquito bites per person per week) 

on a log scale between the beginning of February (week 5) and the end of May 2013 (week 21) from 51 

forecast ensemble members (green box-and-whisker plots) for 2013 and from 90 hindcast ensemble 

members between 1995 and 2012 (red box-and-whisker plots). The blue horizontal line indicates the 

status when the LMM simulates 0.0025 infectious bites per human per week (i.e. about 0.01 infectious 

bites per human per month, which is the defined level of on-going malaria transmission). 

Malaria transmission is predicted to be in general above the average as compared with the seasonal 

hindcasts (period: 1995-2012). The EIRw median value of the 51 ensemble forecasts for 2013 is mostly 

higher than that for the hindcasts. It also seems that the malaria transmission increase starts in March 

2013 about one week earlier than usual. Some hindcasts reveal a very low malaria transmission 

between week 10 and week 16 meaning that some years reveal a break in malaria transmission during 

this time interval. However, this is predicted to be not the case for 2013. 
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Figure 7. Same as Figure 6 but here for the weekly averaged asexual Parasite Ratio (PRw; in %). 

In general, the malaria infectiousness is predicted to decrease during the first part of the forecasting 

period (Figure 7). That is due to the fact that most humans in the model got infected during the minor 

rainy season between September and December. At the start of the forecast period, the weekly asexual 

Parasite Ratio (PRw) is about 86% both in the forecasts for 2013 and the hindcasts. In the follow-up of 

the second rainy season the humans recover in the model during the dry season, when the malaria 

transmission is very low (see Figure 6). The recovery rate is about 1.7% per week and leads to a steady 

decrease of the infectiousness of the population until about the beginning of May (week 18). At that time, 

the asexual parasite ratio reveals a minimum value below 60%. However, due to the spread of the 

ensemble members there is a strong uncertainty with regard to the timing and the magnitude of this 

minimum value. 

The confined values of the ensemble members during the first half of the forecast period show that there 

is a low uncertainty within the simulation of the LMM2010 (Figure 7). However, this does not indicate an 

accuracy of the model in terms of the simulation of the asexual parasite ratio. Ermert et al. (2011b) 

found a low skill of the LMM2010 with regard of the simulation of parasitological values. That is mainly 

because of neglecting aspects like immunity or a missing age distribution of the disease in the model 

framework. As previously mentioned, there is also no differentiation between asymptomatic and 
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symptomatic malaria infections. This means that the forecast of the infectiousness needs to be treated 

with caution and should not be over-interpreted. 

After April a strong increase in the malaria infectiousness is simulated (Figure 7). Forecasted is a 

significant increase of the PRw values within May 2013. However, there is a large uncertainty in terms of 

the strength of this increase due to the large spread of the ensemble members. The same spread is also 

found for the hindcasts that reveal a somewhat lower infection rate than the actual forecast. The last is 

due to the stronger predicted malaria transmission of 2013 (see Figure 6). 

5.5.2 Forecasts and hindcasts from VECTRI 

Similar to the LMM2010, VECTRI generates a malaria transmission forecast for the same period for 

Kumasi/Ghana. Throughout the four months of the forecasts, VECTRI predicts a relative high malaria 

transmission risk between about 0.5 and 15 infectious bites per person per week (Figure 8). The lowest 

predicted risk of a malaria infection occurs at the beginning of the forecast period in February (week 5 of 

Figure 8). The model however indicates an increase of malaria transmission during the following weeks. 

In contrast to the LMM2010 forecasts, the ensemble spread is quite low (quartile range). The EIRw values 

of the 51 ensemble members of the malaria forecasts are all higher than 0.25 infectious bites per 100 

people (see the blue line of Figure 8), which is considered as the malaria transmission limit. This means 

that VECTRI is not simulating a transmission break within the dry season of the Kumasi area. 

The hindcasts (period: 1995-2012) follow a similar fashion to the forecasted malaria transmission as 

elaborated above. Comparing the hindcasts with the forecasts, the actual predicted malaria transmission 

is in general above that of the hindcasts. Therefore, the forecasts indicate a higher transmission risk 

than the hindcasts. The hindcasts reveal a much high variability with regard to the malaria transmission 

rates than the forecasted values. 

Comparing the EIRw simulations of the two models (Figures 6 & 8), they both reveal a similar pattern of 

low to high transmission rates in the dry to wet period, respectively. In comparison to the hindcasts both 

models reveal above average EIRw values. Malaria transmission is ongoing in the dry season both in the 

LMM2010 and VECTRI. However, there are some disparities in the simulations of the models. VECTRI 

simulates much higher transmission values in the dry season than the LMM2010. While both models 

simulate an increasing malaria risk during the forecast period, the LMM2010 produces a transmission 

minimum at the end of February. Unlike VECTRI the LMM2010 reveals a much stronger variability of the 

EIRw values in both the forecasts and hindcasts runs. 
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Figure 8. Same as Figure 6 but here for VECTRI forecasts and hindcasts. 

In contrast to the LMM2010 simulations, the VECTRI forecasted malaria infectiousness is high throughout 

the period (Figure 9) ranging only between a minimum and maximum values of about 85 and 93%, 

respectively. The variability of the infectiousness is generally weak throughout the forecast period. A 

strong PRw variability is only found for the hindcasts indicating that the forecasted abnormal high 

transmission rates lead to the high infectiousness of the population. However, also for most hindcast 

runs the malaria prevalence remains at a very high level above about 80%. Therefore, VECTRI reveals 

mostly even during the dry period no significant recovery of the population from the malaria parasite. 

Dissimilar to VECTRI (see Figures 7 & 9), the LMM2010 indicates a steady decrease in malaria 

infectiousness of the population both in the forecasts for 2013 and hindcasts from the first half of the 

period.  
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Figure 9. Same as Figure 8 but here for the weekly averaged asexual Parasite Ratio (PRw; in %) 

6 Discussion 

The most favourable measure of malaria transmission is the entomological inoculation rate (Burkot and 

Graves 1995; Drakeley et al. 2003) since there is a strong correlation between EIR and the prevalence 

of malaria in a population (Dery et al. 2010). The simulation of the EIRm values by the two malaria 

models is therefore a favourable tool for evaluation of the prevalence and the degree of endemicity of 

malaria the region. 

One important objective of this study was to validate the Liverpool Malaria Model (LMM). However, lack 

of sufficient entomological and parasitological malaria data for the region became a hindrance due to 

ethical controls imposed during the contracting stage of the project. This was due to the fact that the 

quantity of spray catches collected by KNUST during the period of survey was insufficient to allow for 

the calculation of monthly entomological inoculation rates. Moreover, the number of rooms per study site 

was also insufficient, hence EIR values for urban, peri-urban, and rural areas within the Kumasi region 

could not be calculated. In addition, the gathered confirmed malaria cases from the hospitals of the 

region could not be compared to the model output. The reason being that the model simulate the 
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parasite ratio, which comprises both asymptomatic and symptomatic malaria cases and does not 

distinguish symptomatic malaria cases and those that are admitted to hospital. 

The simulated EIRm of the two malaria models are high in the wet seasons and very low in the dry 

season. The peaks in the rainy seasons demonstrate that transmission is high in these seasons and that 

individuals in the region are exposed to a high amount of infectious bites from the vectors in these 

seasons. This can explicitly be explained by the fact that the transmission of the disease is dependent 

on the vectors, whose vectorial activity and population become often high in the rainy season due to the 

availability of ideal breeding sites and humidity. Anopheline mosquitoes breed in water. Water 

collections that support vector breeding appear mainly after the rains, and therefore malaria 

transmission is highest following the rainy season. 

Malaria prevalence is usually low during the dry season as demonstrated by the models due to the low 

density and spatial confinement of the vectors as against the peak transmission season (the rainy 

season). This can be attributed to the fact that the models are sensitive to rainfall which produces 

breeding sites. Since the inputs rainfall values are low in this season, low EIR values are simulated. On 

the contrary, malaria is found to be high in this season as indicated by the observed hospital malaria 

cases. This suggests that the model downplays the potential factors that could cause the disease within 

this time. Hence does not involve the parameters that could produce malaria in the season. The high 

seasonal variations of the models output suggest that the models are highly sensitive to input 

parameters such precipitation, which show a high seasonal variation within the year. The LMM is found 

to reveal a much stronger year-to-year variability than VECTRI, which was also discovered by Tompkins 

and Ermert (2013). 

However, the high incidence of the hospital malaria cases in the dry season can be attributed to the fact 

that the vector profile changes during the dry season and hence influence the pattern of transmission 

(Moiroux et al. 2012). Moreover, reports (Awolola et al. 2002; Kelly-Hope and McKenzie 2009; Adja et al. 

2011) indicate that during the dry season in Africa, there is switch from An. gambiae to other anopheline 

species such as An. moucheti and An. melas that are active in this season. Their persistence in the dry 

season can be attributed to their dependence on occasional rain showers and the existence of 

permanent, domestic breeding sites (Kelly-Hope and McKenzie 2009). The presence of An. funestus in 

the dry season accounts for a significant component of malaria transmission and prevalence in this 

season (Fontenille et al. 1997, Djenontin et al. 2010, Damien et al. 2010). The high incidence is also an 

indication that the vector control in the dry season is not sustained, which rejuvenate their activity. For 

instance, mosquito nets are either not or less used during the season (Korenromp et al. 2003, Frey et al. 

2006) because of the low biting nuisance of the mosquito in the season (Ahorlu et al. 1997,Toe et al. 

2009) and probably the discomfort of sleeping under the net in the hot nights of the hot season. Note 

that the two malaria models does not include the different behaviours of different malaria vectors. This 

might be one reason for the low simulated transmission values in the dry season. 

In addition, the stable nature and low seasonal variations in the observed hospital malaria cases 

throughout the year demonstrates that the region is endemic with regard to the malaria disease. This 

further suggests that the mosquito vectors are in constant contact with the inhabitants throughout the 

year. 
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Malaria incidence varied between the different areas of the region covered in the study. The variation is 

further eminent in the simulations for the rural, peri-urban and urban areas by VECTRI. These variations 

are an indication of marked spatial heterogeneity in the distribution and density of malaria vectors in the 

study area. The pronounced cases in the rural areas and low in urban areas corroborates with research 

reports that incidence of malaria is generally lower in urban areas than in rural areas. The reason is that 

there are numerous vector-breeding sites in rural villages, most water collections in urban settlements 

are polluted and unfavourable for mosquito breeding and that people in urban areas may have more 

access to health care and malaria prevention strategies than people in rural villages. Also the ratio 

between humans and mosquitoes is more favourable in urban areas due to the higher population 

density, which is accounted for by VECTRI. 

Manhyia located almost in the heart of the Metropolis showed very high record of malaria cases, which 

is expected to be otherwise. This area is still undergoing rapid urbanisation and for that matter could be 

characterised by crowded conditions, poor quality housing, and temporary construction. Research 

indicates that such places are characterised by several pits due house construction, creating numerous 

breeding grounds for mosquitoes. Hence such circumstances can lead to explosive growth of mosquito 

vectors, increasing the exposure of the population to vectors due to poor housing. This is moreover 

known that such characteristics could amplify the disease to epidemic proportions through lack of 

effective treatment. 

The monthly-to-seasonal malaria forecast for Kumasi demonstrates the possibility of local disease 

forecasts. Ermert et al. (2011b) worked out that the simulation of entomological variables like the EIR is 

much more reliable than the reproduction of parasitological data. For this reason, it is noted that the 

EIRw forecasts should provide more skill than the prediction of the PRw values. The comparison between 

the LMM2010 and VECTRI forecasts strongly disagree in the prediction of the infectiousness of the 

population. Nevertheless, the forecast with regard to PRw can be used by decision makers to compute 

the likely time period when the majority of people will get infected with the malaria parasite. 

That notwithstanding, both models show some level of similarities in their forecasting patterns. The 

LMM2010 and VECTRI reveal low but above average transmission rates. However, malaria transmission 

is in general higher in VECTRI during the dry season resulting in the high infection rates of the human 

population. As the forecast progresses into the rainy season, as expected both models forecast a higher 

malaria transmission. 

Malaria transmission is known to be ongoing but low in dry and high in the wet period, respectively. This 

suggests that the modelled forecasts might depict a good representative picture of the malaria 

transmission in the region. However, the models need to be improved with regard to the presence and 

characteristics of different vector species. In terms of the forecast of the infectiousness of the population, 

immunity and age aspects need to be considered. It is unclear if transmission is really above average in 

the Kumasi region during the dry season of 2013. No entomological observations are available from the 

past and for 2013 to verify this modelling result. Neither the models nor the monthly-to-seasonal 

forecasts or hindcasts can be fully validated. 
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7 Conclusions 

The validation of the Liverpool Malaria Model (LMM) was planned but was not possible due to 

insufficient entomological and parasitological malaria data for the region, due to additional ethical 

conditions imposed at the contracting stage and length. However, this work has lead to an important 

cross validation of the two malaria models in the QWeCI project LMM and Vectri and has given many 

additional insight to their performance and some key differences.  Nevertheless the results are quite 

promising and that the models are probably useful running in such an area with a complex transmission 

regime. Confirmed malaria cases from hospitals of the Kumasi metropolis were gathered by KNUST. 

Instead of the validation of the LMM, both VECTRI and LMM simulations were performed and compared 

for Kumasi. The malaria models were driven by observed data from the Kumasi airport and with data 

from the Tropical Rainfall Measuring Mission (TRMM, 3B42 version 7). The comparison between the 

precipitation values revealed a good correlation between the observed precipitation (GMet) and TRMM 

and other precipitation estimate. VECTRI was driven with an urban, peri-urban and rural population 

density, respectively. The VECTRI simulations led as expected to much higher transmission values in 

rural than in urban locations. 

The output of the two malaria models was qualitatively compared to the malaria cases from hospitals. 

The malaria cases showed a small interannual variability, whereas the models reveal a strong 

interannual variability in the malaria transmission. In general, both malaria models reveal the same 

annual cycle in malaria transmission. During the dry season the models simulate very low transmission 

values or in case of the LMM2010 a break in the malaria season. The simulated malaria transmission is 

bimodal. The first transmission peak follows the stronger first rainy season of the year and is simulated 

for June/July. The second peak is predicted for October/November after the shorter second rainy 

season of the Guinea Coast. In comparison to the LMM, VECTRI reveals a much lower interannual and 

spatial variability with regard to the EIR values. 

This study demonstrates the feasibility of local monthly-to-seasonal malaria forecasts. The LMM2010 and 

VECTRI were used to assess the near future malaria conditions within the Kumasi region. The LMM2010 

and VECTRI runs reveal ongoing malaria transmission during the dry season and at the beginning of the 

main rainfall season. A strong increase in the transmission and infection rates is predicted to occur in 

May 2013. The comparison with the hindcasts reveals that the malaria risk is above average. Decision 

makers like health planners can use the entomological information of the forecast to set up tailored 

disease control measures. However, the forecasts and hindcasts lack a validation procedure due to 

missing entomological and parasitological malaria observations. 
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