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Report on the advantages in terms of forecast quality of the combination of dynamical and
statistical models of interannual and decadal variability for Africa
L.R.L. Rodrigues, J. Garcia-Serrano, |. Andreu-BurF.J. Doblas-Reyes

The main objective of this Deliverable is the assent of the relative advantages of combining
information from different interannual forecast t&yss, including both dynamical and statistical
systems. The combination in a single probabiligiiediction of the climate information from
different systems allows the users to avoid the mom problem of handling predictions with
different characteristics. The problem and solgigroposed will be illustrated with annual
predictions of precipitation over West Africa.

1. Introduction

Climate prediction is motivated by the evidencd tharent global climate models (GCMs) can, to
a certain degree, capture the evolution of slowatians of the climate system when they are
adequately initialised. In particular, the thernmartia and assumed predictability of the sea serfa
temperatures (SSTs) imply that reliable seasoradigtions in the tropics are an achievable aim
(Tompkins and Feudale 2010).

The tropical Atlantic rainfall variability over We#frica is largely dominated by, and seasonally
locked to, the summertime West African monsoon (WAWhich is tightly controlled by the inter-
tropical convergence zone (ITCZ) latitudinal variiép and the distribution of trade winds. The
WAM is sensitive to both local forcing and remotdluences (e.g. Folland et al. 1986; Fontaine
and Janicot 1996; Fontaine et al. 1998). The WAMatdity spans a wide range of timescales,
from intraseasonal (e.g. Sultan et al. 2003) terdecadal (e.g. Janicot et al. 2001). The interaihnu
variability of the WAM is represented by changegprecipitation over coastal regions of the Gulf
of Guinea, for which the Equatorial Atlantic SSTriadility or Atlantic Nifio is the main oceanic
forcing (Janicot et al. 1998, Vizy and Cook 200ku@ura and Xie 2004; Losada et al. 2010). The
decadal variability of the WAM is well captured byw-frequency rainfall fluctuations over the
semi-arid African Sahel, the southern edge of taha&a (Folland et al. 1986; Nicholson 1993;
Fontaine et al. 1995). The Sahelian rainfall valigbis related to contrasting patterns of SST
anomalies on a near-global scale, projecting omtanger-hemispheric signature (Folland et al.
1986; Palmer 1986; Rowell et al. 1995; Fontainal.e1998). As part of this inter-hemispheric SST
pattern, the main oceanic forcings of the Sahdipitation are the Indian Ocean decadal variability
(Giannini et al. 2003, 2005; Bader and Latif 20QBg Atlantic multi-decadal oscillation, or AMO
(Hoerling et al. 2006; Mohino et al. 2011), and acific decadal oscillation or the basin-wide
inter-decadal Pacific oscillation, or IPO (Joly 2008; Nrahet al. 2011).

The WAM is a complex system with three main intérazcomponents, namely atmosphere, land
and ocean, whose different inertias generate conipteractions. A clear example is the latitudinal
jump of the ITCZ-related rainbelt, whereby the S@merainy season occurs in July-September and
varies in intensity both at interannual and decéidescales (e.g. Fontaine et al. 1998; Janical et
1998; Sultan and Janicot 2000). The physical mashendriving WAM dynamics have been the
subject of numerous diagnostics studies duringréoent decades. However, prediction of the
seasonal rainfall over West Africa still remain®af the major concerns for the local population,
because of its impact on agriculture, health antemsupply, and consequently on the economy of
its integrating countries. One of the objectiveshia Deliverable aims to assess the maximum lead
time for which forecasts of the WAM rainfall at th@raseasonal-to-annual range in current climate
prediction systems.

The Guinean precipitation and the Sahelian rairdattount for most of the SST-forced WAM

variability at seasonal-to-decadal timescales. Wtienate models are forced with observed SSTs,
they successfully reproduce the observed interdrBumean and decadal-Sahelian rainfall
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variabilities (Giannini et al. 2003, 2005; Moronat 2003; Tippet and Giannini 2006). Thus, the
SST forcing can be considered as the dominant daf/¢he WAM rainfall variability. However,
the WAM forecast skill in coupled models becomesedous trouble. This is particularly true for
predicting the interannual-to-decadal variabiliiply et al. 2007; Joly and Voldoire 2009a, 2009b;
Garcia-Serrano et al. 2012). Nonetheless, Battéaogdié (2011), using the ENSEMBLES Stream-
2 seasonal re-forecasts, pointed out the additsiillin GCMs when compared to climatology for
a variable highly dependent on parameterizationsh sas precipitation. These results are
encouraging and contrast with the reputation calpbeecast systems have been given over the
years when it comes to precipitation forecastsidetthe tropical Pacific basin. Unfortunately, this
does not translate into skill in predicting the dioamt WAM rainfall regimes. Perhaps, the
exception is the Guinean precipitation, for whitiere exists a maximum (up to date) forecast
correlation with the observations of ~0.5-0.6 usthigect model output of rainfall. The Sahelian
precipitation, instead, remains a clear hurdlecfupled GCMs. Bouali et al. (2008), by using the
DEMETER seasonal re-forecasts, found a correlatib®.16 with raw rainfall data, while the
model-output-statistics (MOS) calibration with aspberic dynamics and moist static energy
fluxes did not lead to better results. Maybe asl@wte of the improvement in both models and
ocean analysis, the skill at predicting summer raonsrainfall anomalies has increased a bit in
recent years. Thus, Philippon et al. (2010), usigENSEMBLES Stream-1 seasonal re-forecasts,
improved the Sahelian precipitation forecasts francorrelation of 0.17 with the direct model
output to 0.51 with a MOS calibration, which inchatifive atmospheric fields. Likewise, and in an
operational seasonal prediction context, Tompkims$ Beudale (2010) found a forecast correlation
of the Sahelian rainfall of around ~0.4 using tt@MBVF Systema3 re-forecasts. This Deliverable
updates the forecast quality and reproducibilitytted dominant WAM rainfall regimes (Guinean
and Sahelian) by evaluating the most recent operati seasonal prediction systems, namely
ECMWF's System# (hereafter SYST4) and a statistical forecast sydiased on linear regression,
as well as their combinations. This Deliverable sus@& innovative approach to analyze the
intraseasonal evolution of the WAM precipitatiorséd on the assessment of the ability of these
forecast systems in simulating and predicting timenty of the latitudinal migration of the tropical
convection.

2. Interannual forecast systems

This Deliverable uses data from the most recentatipmal climate forecast system of the European
Centre for Medium-Range Weather Forecasts (ECMVB¥)ST4, and a simple statistical model

based on lagged regression. The project uses $etstrospective forecasts (re-forecasts or
hindcasts) over a recent period produced by SYS$hé.SYST4 re-forecasts have 15 members for
all start dates (Feb, May, Aug, Nov), and cover2figiears from 1982 to 2010. The length of these
integrations is thirteen months. The long time @etiin the hindcasts allows reliable calibration of
the forecasts and good assessment of their skill.

The statistical model used, which is probabilisticnature, follows the statistical model used in
Coelho et al. (2004), except that the predictor thiedoredictand are two different climate variables
The predictand is the WAM precipitation while theegictors are two climate indices. The two
climate indices are the Nifio3.4 index, which wasdu® predict the Guinean precipitation, and the
AMO, which was used to predict the Sahelian préaijmn. The statistical model was built in one-
year out cross-validation mode for the target yd®®2-2010 and the predictors are three-month
averages of the two above mentioned climate indi€es example, to forecast the Guinean
precipitation during the summer WAM season 198hviéad time zero, a least-squared simple
linear regression of the Guinean precipitation. (May through November) on the three-month
averaged Nifno3.4 index of February, March and Amals performed using the training period
1983-2010. To forecast the summer WAM season 19&3years 1982 and 1984-2010 were used

1 http:/lwww.ecmwf.int/products/changes/systemé4/
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as the training period.

3. The Forecast Assimilation method

The forecast assimilation (FA) is a Bayesian metiooatalibrating and combining predictions from
several sources using prior (historical) empiricébrmation (Stephenson et al. 2005). It has been
used to combine the SYST4 with the statistical mdedcasts. In one case, the statistical model
predictions were combined with the ones by SYSTvirtaa climatological forecast as the prior
information (FAC). In a second approach, the FAhodtwas used employing the SYST4 hindcasts
as the likelihood and the statistical model predict as the prior information (FAS).

4. Forecast quality assessment

The forecast quality of the WAM precipitation pretitbns of the combinations and individual
forecast systems described above was assessedafieterministic and a probabilistic point of
view. The correlation coefficient was used to asdbe degree of linear association between the
predicted mean and observed WAM precipitation. Sdverobabilistic verification scores have
been computed for dichotomous events of the twalilgamodes of the WAM precipitation
variability (i.e. the PC1 for the Guinean mode &nel PC2 for the Sahelian mode) exceeding the
median and the upper quartile of the climatologatiatribution. These thresholds were estimated
using ensemble members for the predictions of theawchical forecast systems and all available
years. Separate threshold estimates were obtaonékef predictions and the observations.

Two different types of hindcasts were handled ia study: ensemble predictions (SYST4) and sets
of predictions defined by a forecast mean and stahdeviation (those provided by the statistical
model, the FAC and the FAS). For those forecadesys that did not have ensemble hindcasts, the
Gaussian forecast distribution of each year waspkadnwith size 10,000 to obtain samples from
which to compute the median and quartiles of theesponding climatological distributions. The
10,000 sample size was chosen because it was ftanprovide robust estimates of the
climatological probability density function (PDH)s robustness was estimated by calculating the
Brier skill score between the predicted and obskqbabilities 1,000 times for the statistical
model and for a given start date. These 1,000 etibms were performed with sample size 11, 51,
100, 1,000 and 10,000. The sample size 10,000 tadrmallest spread in the histogram of the
1,000 estimated values of the correlation coefficig=inally, the probability forecasts were
estimated using the estimated thresholds (medidmupper quatrtile).

The main measure of probabilistic forecast quaditthe Brier score (BS), which can be defined as:
1 N
BSZNZ(pi -0)? (1)
i=1

where p; is the probability forecast ang is the observation, which is set to be one if élient

happened and O if it did not happen, for itieyear. TheBS could be generalized in the form of a
skill score where the forecast of a given systegomapared to a reference prediction system, which
is usually a much simpler forecast such as the atbingical frequency of the event. This

generalization is called the Brier skill score (BS&hd could be written aBSS:1—§, where
BSis the Brier score of a given system &%t is the Brier score of the reference forecast. tResi
BSS means the BS of the system is better than $hef Bhe reference forecast.

Other forecast quality attributes have also beetyard, among them the reliability and resolution
components of the BS (Mason and Stephenson 2008)rdliability component of the BS verifies

the degree of correspondence between the frequaineyents predicted by the system and the
frequency of events that actually happened and unesashe degree of trustworthiness of the
predicted probabilities. The resolution, on theeothand, measures the ability of the forecasts to
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distinguish events that have forecast probabilidgierent from the climatological frequency. A
third component of the BS is the uncertainty, whishassociated with the uncertainty of the
observations for a given event and does not deperide predictions.

These three components of the BS are estimatettdiifysng the forecast probabilities into a set of
bins, the number of which is usually smaller thea humber of possible forecast probabilities.
However, depending on the number of bins usedratifstthe forecast probabilities, the sum of the
three components does not equal the BS computad aguation (1). Two additional components
that account for the within-bin variance of theefmaists and the within-bin covariance between
forecasts and observations are also needed to thakeomponents of the BS less sensitive to the
number of bins (Stephenson et al. 2008). Theseettta components were added to the resolution
component of the BS to make a generalized resold¢ion.

It has been shown that the standard decompositiotheo BS is biased, being the reliability
component positively biased, the uncertainty negatibiased, and the resolution either negatively
or positively biased (Ferro and Fricker 2012). Awnestimate of the less-biased reliability,
generalized resolution, and the uncertainty comptsnef the BS by Ferro and Fricker (2012) will
be used in this study. The skill scores of the-l@ased reliability and generalized resolution were
computed as follows (Doblas-Reyes et al. 2005):

BSSy =1- o 2)
BSnc
BS
BSSeres = o 3)
BSunc

whereBSze, is the less-biased reliability component of the BSsres is the less-biased generalized
component of the BS, arREncis the bias-free uncertainty component of the BS.

5. Results

The skill and reproducibility of the latitudinal gration of the ITCZ is examined by means of
Hovmoller diagrams, in which the precipitation angitudinally averaged as shown in Fig. 1 for
West Africa (10°W-10°E). Also shown in Fig. 1 isetlspatial distribution of precipitation
climatology in GPCP, which corresponds to the olmesnal reference dataset, during boreal
summer (July-September; JAS), the main rainy sea$A8 represents the central months in the
corresponding latitude-time Hovmoller diagrams gpedl, which span May throughout November
for West Africa. The target period of study for thkovmoller diagrams is 1982-2010. The
latitudinal window of the Hovmoller diagram in eacdise is EQ-20°N.

Monthly precipitation anomalies in these latituded diagrams are obtained by subtracting the
corresponding monthly climatology. In that way, Ramonth in the time dimension of the
Hovmoller diagram involves interannual variabilityote that neither detrending nor filtering has
been applied to the data. After, a principal congmtranalysis (PCA/EOF; von Storch and Zwiers
2001) is performed upon these longitudinally-avedhgrecipitation anomalies. In this case, PCA
provides a set of latitude-time patterns (empirioghogonal functions, EOFs) and associated
standardized time series (principal components, P{@s 2). The information associated with each
PCA mode is completed by the corresponding fraatioexplained variance. The PCA results have
been described in terms of correlation maps, obthiny correlating the anomaly time series for
surface temperature in different seasons with @Gadated to each mode. Note that according to
this PCA set-up, the leading EOFs correspond taltminant interannual variability modes of the
intra-seasonal evolution of precipitation. TheseFEQvere widely described in the deliverable
D3.2.a, while here a summary is presented andiadditresults shown.

The systematic error of SYST4 in tropical conveatt® tightly associated with the warming drift in
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the tropical Atlantic SSTs (4°S-4°N / 15°W-10°H).F of D3.2.a, top right), which is a well-known
problem in coupled GCMs leading to a southwardt gtiithe local ITCZ and a failure to reproduce
the Atlantic equatorial cold tongue (e.g. Richtad Xie 2008). Figure 2 of D3.2.a shows how as
the lead time for the Hovmadller diagram increasieat is when using predictions for the start dates
from May to the previous November, the SST warndrifj in the boreal summer months is higher
and, hence, rainfall biases are larger as well. dipele-like pattern of the rainfall mean error
reflects the wrong latitudinal position of the mb&ECZ, which involves more rain than observed
at equatorial latitudes and a clear deficit alohg Sahelian belt (~10°N-18°N). Note also how
SYST4 lengthens the WAM pre-onset stage, yieldisgigplus of precipitation in July (one month
later than observed).

The observed interannual variability of the londinally-averaged precipitation in West Africa is
dominated by the Guinean (EOF1, 27%; Fig. 3 of 3.2and Sahelian (EOF2, 20%; Fig. 4 of
D3.2.a) rainfall regimes. The former reflects chesm convection strength within the ITCZ during
the pre-onset months (first rainy season in thef GulGuinea; e.g. Fontaine et al. 2008), and is
associated with the recent Atlantic-Pacific intexpical connection (e.g. Rodriguez-Fonseca et al.
2009). The latter shows a dipolar pattern with maxin amplitude over 10°N-18°N, which reflects
more/less northward penetration of the rainbelt @ndjects onto the inter-hemispheric SST
gradient (AMO, IPO). Note the AMO-related surfaeenperatures in the eastern Mediterranean
basin and the positive correlations over the Sahheat low area during JAS, which have been
shown to strongly contribute regulating the Salmepeecipitation (Haarsma et al. 2005; Biasultti et
al. 2008; Fontaine et al. 2010). The time-seriethefprincipal components associated with these
EOFs are shown in Fig. 2 (thick black). The Guineamfall regime (PC1; left) is largely
dominated by interannual variability. By contragte Sahelian rainfall regime (PC2; right)
encompasses a lower-frequency fluctuation thateptsjonto a positive trend, which actually
corresponds to the partial recovery after the Sdiwlght in the 1980s (e.g. Mohino et al. 2011).

The leading EOF mode of the longitudinally-averageecipitation in SYST4 at each start date is
the Guinean rainfall regime (Figs. 3,5 of D3.2wich accounts for 30%, 38%, and 39% of the
total precipitation variance with predictions fratme May, February, and November start dates,
respectively. These fractions of variance in SY$Vdrestimate that in GPCP. As the lead time for
the Hovmoller diagram increases, successive EOferpatreflect the model systematic error in
tropical precipitation, where the Guinean precipita increases in the model at the expense of the
precipitation over the Sahel (cf. Figs. 3, 5 angl Riin D.3.2.a). The Guinean precipitation modes
capture the recent Atlantic-Pacific inter-tropicalationship. At each start date, the correlation
maps of surface temperature suggest that SYST4gldla peak of the Atlantic Nifio with respect
to the observations, occurring in JAS instead of (Mdlo et al. 2008; Losada et al. 2010). This
finding might be related to the systematic errsaled above (Fig. 2 of D.3.2.a) where the model
delays the WAM pre-onset. The time series of tHe®é&s for the start dates ranging from May
(Fig. 2, top-left) to November (Fig. 2, bottom-)eshow how the spread of the ensemble grows, and
the accuracy in recapturing the observed PC dezseas the lead time increases.

The second EOF of the longitudinally-averaged pigation in SYST4 is the Sahelian rainfall
regime (Figs. 4, 6 of D.3.2.a), which accounts I@Po, 10%, and 10% of the total precipitation
variance for the May, February, and November slaits, respectively. These fractions of variance
underestimate the fractions of variance obtaineth VBPCP. For all start dates the simulated
Sahelian mode shows a dipole-like pattern betwbencbastal regions and 10°N-15°N. As also
shown in the observations, the heart of the siredl&ahelian rainfall occurs in August. The
correlation maps of surface temperature projech tmt inter-hemispheric gradient that includes the
AMO and IPO signatures, while no clear relationsigypears with the Indian Ocean temperatures.
Despite the spread growing with lead time (Figright), the principal components of these EOFs
show an apparent positive trend that mimics theefesl evolution, with negative (positive)
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anomalies before (after) late 1990s.

Figure 3 shows the anomaly forecasts of the Guinaafall regime (first EOF mode; PC1) for the
Statistical model, SYST4, FAC and FAS for the peri®82-2010. Forecasts are for the start date
of May (lead zero). As for the statistical modédig tpredictor is the three-month average of
February, March and April. Given that our targetiqed is the months between May and November,
as described above, the three-month average ofu&ghrMarch and April would be the last
available as a predictor. The one-year-out crodatson method was used to estimate the
regression coefficients of the statistical moddlisTmeans that to forecast the Guinean rainfall
regime (PC1) for the year 1982, firstly the GPCPLR&@ the period 1983-2010 were regressed on
the three-month average of February, March and|Apri the same period to estimate the
regression coefficients. Then, the three-month ayeiof February, March and April of 1982 was
used as a predictor to forecast the PC1 of 1982.

The black line represents the observational reterérom GPCP, the red line is the predicted mean
anomaly of the individual forecast systems anddbmbinations, and the grey band is the 95%
prediction interval for each forecast system, gibgnthe predicted mean anomaly plus or minus
1.96 times the predicted standard deviation. Thearmeprediction of the statistical model
underestimates the interannual variability of thaim®an rainfall regime and the linear
correspondence between the statistical model pgredscand the observations is 0.29. On the other
hand, SYST4 is able to simulate well the interahwaaiability and, except for the 1988 positive
rainfall anomaly and the 2005 extreme drought eviéhipredictions have a high degree of linear
correspondence with the observations (correlatiohB0 Both combinations resemble SYST4’s
predictions, which means that for this specificisagand start date the statistical model received
little weight in the combination procedure. Nonetbé forecast systems were able to represent
properly in their predicted interval the 2005 erteedrought event. However, the statistical model
predicted interval was able to predict the 1988tpasrainfall anomaly. All forecast systems have,
for this specific region and start date, a highai®mlity skill score and low resolution skill score
Thus, the BSS for both probabilistic events analyaere (anomalies above the median and upper
guartile) is low, and even zero for the statistivaldel. In this case, no improvement was achieved
when combining SYST4 with the statistical modeljakihis something expected given the low skill
of the statistical model.

The Sahelian rainfall regime (second EOF mode; RE&jictions for the start date of November

are displayed in Figure 4. As in the previous cafls¢he Guinean rainfall regime, the statistical

model underestimates the interannual variabilitgwéver, as pointed out above, the Sahelian
rainfall regime encompasses more of a lower-frequerariability with a positive trend. Because

the statistical model is able to reproduce pathcf linear trend it has a correlation of 0.36, iEm

to the correlation of SYST4 (0.37). The single @&t systems predicted interval is able to
represent the observed PC2, except for the stafisthodel in the year 1994. In this case, the
inclusion of the statistical model as the priorormhation (FAS) helps improve the accuracy (i.e.
correlation) of the prediction when compared tahbgihgle forecast systems. However, all forecast
systems have a high reliability and a low resolutichich resembles a climatological forecast and
that is one of the reasons why the probabilistilt s&ores are close to zero.

Ensemble-mean anomaly correlation coefficients betwthe longitudinally-averaged precipitation
modes in GPCP and SYST4 showed skilful results. (Figf D3.2.a, and Figs. 5, 6). The Guinean
rainfall (leading EOF) skill is statistically sigiant with a lead time of up to three months, with
~0.8 for the May start date (zero lead time) and+0r the February start date. The sharp decrease
in the prediction skill of the Guinean rainfall aggps to be consistent with the progressive lack of
skill in forecasting the evolution of the cold tamggin the equatorial Atlantic as the lead time for
May-June increases, as revealed in Section 3.13d2.8 This is also in agreement with the skill
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decay in forecasting precipitation anomalies ovaritime regions of the Gulf of Guinea (Section
3.1 of D.3.2.a). The Sahelian mode (second EOFstaistically significant skill only for the start
date of May (zero lead time) with a correlation a®d0.6, while for the February start date is ~0.45
(0.38 in Fig. 6 as the target period is slightlifatient). Nevertheless, it is worth noting that SYS
yield positive correlations for both Hovmodller-bdseainfall modes at the three start dates
considered. Especially noticeable is the score atib8 (0.37 in Figs. 4, 6, when using the most
updated dataset) in the Sahelian precipitationtfier November start date. Actually, the mild
decrease in the prediction skill of the Sahelianfadl (Fig. 7 of D.3.2.a) could be consistent with
the good performance in forecasting surface tenpes over the eastern Mediterranean basin and
the Sahara heat low region during the target pelidg-to-September, as shown in Section 3.1 of
D.3.2.a. Likewise, these results seem to be inesmgeat with the positive correlations found for the
Sudan-Sahel belt precipitation from the three starés considered here (Section 3.1 of D.3.2.a).

The deterministic skill of the statistical modebsls a different pattern when compared to those of
the SYSTA4. First of all, the statistical model poeéidns have lower skill than the ones by SYST4
for all six cases analyzed here (i.e. two rainfaljimes and three start dates). Secondly, the
decreasing skill with increasing lead time of their@an rainfall is less strong in the statistical
model when compared to SYST4. However, for thedeaato and three months, SYST4 has much
better predictions when compared to the statistiwadlel. Thirdly, the statistical model has higher
skill for longer leads when predicting the Sahelmecipitation. This could be explained by the fact
that the predictors for the lead six months (AMCh# three-month average of August, September
and October) have stronger trend than the lead merths (AMO of the three-month average of
February, March and April) (not shown).

The combination of SYST4 with the statistical modeés not improve the Guinean rainfall regime
deterministic forecasts. This could be explainedhgyfact that the statistical model has low giill

its mean predictions. However, when the statistmablel has comparable skill compared to the
SYST4, as in the case for the Sahelian rainfalihnegyith lead time six (Fig. 4), the addition oéth
statistical model predictions as a prior informat@mntributes to an increased deterministic sKill o
the combined predictions.

The probabilistic scores are comparable to those dimatological forecast (Figs. 5, 6) except for
the lead-zero predictions in both analyzed rainfagimes. That is, the single forecast systems and
combinations have high reliability and low resabuati For lead time zero, in both analyzed rainfall
regimes, the combination method that included tia¢issical model in the likelihood function
having the climatology forecast as the prior (FAC) has the best probabilistic predictions.
However, because the statistical model in bothmegihas zero resolution skill score it could be
argued that the improvement in the probabilistreéast in terms of BSS for both events (above the
median and the upper quartile) came from the clim of the SYST4 rather than from the
inclusion of the statistical model. The benefitscafibration to increase predictions skill in the
tropics have been shown in previous studies (eopld3-Reyes et al. 2005).

6. Conclusions

This deliverable dealt with the assessment of ¢hegive advantages of combining information from
different interannual forecast systems, includingthbdynamical and statistical systems. The
forecast quality assessment was performed forahgitudinally-averaged precipitation over West
Africa (10°W-10°E). The two leading modes of préeifion variability for this region are: the
Guinean and the Sahelian rainfall regimes. A singpdistical model based on lagged regression
was combined with SYST4 to assess the relative tenai this combination. The Forecast
Assimilation method was used for the combination.

It is shown that SYST4 has good deterministic skhlen predicting the Guinean and the Sahelian
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rainfall regimes for the start dates of May andriaby. On the other hand, the statistical model has
low correlation when predicting these two rainfedlyimes, and the only occasion when it has
correlation above 0.3 is when predicting the Saheliegime with start date in November.
Therefore, combining these two forecast system#ididake to improved forecast.

Both forecast systems have probabilistic predics&il comparable to that of a climatological
forecast; that is, having high reliability skill@e and low resolution skill score. On the otherda
when combining the SYST4 with the statistical mdakeling the climatology as the prior a slightly
improvement in terms of BSS is observed for thet state of May (lead zero) in both rainfall
regimes. However, this could be a result of thécation of the SYST4 rather than the inclusion of
the information from the statistical model, givemat the latter had a high reliability and low
resolution.

Further investigation is needed to assess whelleeintlusion of other dynamical forecast systems
or the combination of SYST4 with a better statatimodel could make a better forecast.
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Figure 1. Spatial distribution of GPCP precipitatiolimatology (mm/day) over the period 1982-2008adR box
indicate the spatial domain for the Hovméller dagrupon the West African monsoon: longitudinal-ager along
10°W-10°E and latitudinal window over EQ-20°N.
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Figure 2. Standardized principal components (PE€sy@ated with the EOFs of Hovmaéller precipitatdiagram (Fig.
1) described in the Deliverable 3.2.a but over 12820: GPCP (solid black), GPCC (dashed black)emide-mean
SYST4 (solid dark blue), and box-and-whisker repnéstion of the ensemble range in SYST4 (light bldéhe
Guinean rainfall regime corresponds to the firstFE@ode (PC1; left column); the Sahelian rainfaljinge to the
second EOF mode (PC2; right column). Three stagsdhave been used from SYST4: May (top), Febr(raigidle)

and November (bottom).
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Figure 3. Monthly forecast anomalies of the Guineginfall regime (first EOF mode; PC1) for the &ttal model,
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