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Report on the advantages in terms of forecast quality of the combination of dynamical and 
statistical models of interannual and decadal variability for Africa 
L.R.L. Rodrigues, J. García-Serrano, I. Andreu-Burillo, F.J. Doblas-Reyes 
 
The main objective of this Deliverable is the assessment of the relative advantages of combining 
information from different interannual forecast systems, including both dynamical and statistical 
systems. The combination in a single probabilistic prediction of the climate information from 
different systems allows the users to avoid the common problem of handling predictions with 
different characteristics. The problem and solutions proposed will be illustrated with annual 
predictions of precipitation over West Africa. 
 
1. Introduction 
Climate prediction is motivated by the evidence that current global climate models (GCMs) can, to 
a certain degree, capture the evolution of slow variations of the climate system when they are 
adequately initialised. In particular, the thermal inertia and assumed predictability of the sea surface 
temperatures (SSTs) imply that reliable seasonal predictions in the tropics are an achievable aim 
(Tompkins and Feudale 2010). 
 
The tropical Atlantic rainfall variability over West Africa is largely dominated by, and seasonally 
locked to, the summertime West African monsoon (WAM), which is tightly controlled by the inter-
tropical convergence zone (ITCZ) latitudinal variability and the distribution of trade winds. The 
WAM is sensitive to both local forcing and remote influences (e.g. Folland et al. 1986; Fontaine 
and Janicot 1996; Fontaine et al. 1998). The WAM variability spans a wide range of timescales, 
from intraseasonal (e.g. Sultan et al. 2003) to interdecadal (e.g. Janicot et al. 2001). The interannual 
variability of the WAM is represented by changes in precipitation over coastal regions of the Gulf 
of Guinea, for which the Equatorial Atlantic SST variability or Atlantic Niño is the main oceanic 
forcing (Janicot et al. 1998, Vizy and Cook 2001; Okumura and Xie 2004; Losada et al. 2010). The 
decadal variability of the WAM is well captured by low-frequency rainfall fluctuations over the 
semi-arid African Sahel, the southern edge of the Sahara (Folland et al. 1986; Nicholson 1993; 
Fontaine et al. 1995). The Sahelian rainfall variability is related to contrasting patterns of SST 
anomalies on a near-global scale, projecting onto an inter-hemispheric signature (Folland et al. 
1986; Palmer 1986; Rowell et al. 1995; Fontaine et al. 1998). As part of this inter-hemispheric SST 
pattern, the main oceanic forcings of the Sahel precipitation are the Indian Ocean decadal variability 
(Giannini et al. 2003, 2005; Bader and Latif 2003), the Atlantic multi-decadal oscillation, or AMO 
(Hoerling et al. 2006; Mohino et al. 2011), and the Pacific decadal oscillation or the basin-wide 
inter-decadal Pacific oscillation, or IPO (Joly 2008; Mohino et al. 2011). 
 
The WAM is a complex system with three main interacting components, namely atmosphere, land 
and ocean, whose different inertias generate complex interactions. A clear example is the latitudinal 
jump of the ITCZ-related rainbelt, whereby the Sahelian rainy season occurs in July-September and 
varies in intensity both at interannual and decadal timescales (e.g. Fontaine et al. 1998; Janicot et al. 
1998; Sultan and Janicot 2000). The physical mechanisms driving WAM dynamics have been the 
subject of numerous diagnostics studies during the recent decades. However, prediction of the 
seasonal rainfall over West Africa still remains one of the major concerns for the local population, 
because of its impact on agriculture, health and water supply, and consequently on the economy of 
its integrating countries. One of the objectives of this Deliverable aims to assess the maximum lead 
time for which forecasts of the WAM rainfall at the intraseasonal-to-annual range in current climate 
prediction systems. 
 
The Guinean precipitation and the Sahelian rainfall account for most of the SST-forced WAM 
variability at seasonal-to-decadal timescales. When climate models are forced with observed SSTs, 
they successfully reproduce the observed interannual-Guinean and decadal-Sahelian rainfall 
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variabilities (Giannini et al. 2003, 2005; Moron et al. 2003; Tippet and Giannini 2006). Thus, the 
SST forcing can be considered as the dominant driver of the WAM rainfall variability. However, 
the WAM forecast skill in coupled models becomes a serious trouble. This is particularly true for 
predicting the interannual-to-decadal variability (Joly et al. 2007; Joly and Voldoire 2009a, 2009b; 
García-Serrano et al. 2012). Nonetheless, Batté and Déqué (2011), using the ENSEMBLES Stream-
2 seasonal re-forecasts, pointed out the additional skill in GCMs when compared to climatology for 
a variable highly dependent on parameterizations such as precipitation. These results are 
encouraging and contrast with the reputation coupled forecast systems have been given over the 
years when it comes to precipitation forecasts outside the tropical Pacific basin. Unfortunately, this 
does not translate into skill in predicting the dominant WAM rainfall regimes. Perhaps, the 
exception is the Guinean precipitation, for which there exists a maximum (up to date) forecast 
correlation with the observations of ~0.5-0.6 using direct model output of rainfall. The Sahelian 
precipitation, instead, remains a clear hurdle for coupled GCMs. Bouali et al. (2008), by using the 
DEMETER seasonal re-forecasts, found a correlation of 0.16 with raw rainfall data, while the 
model-output-statistics (MOS) calibration with atmospheric dynamics and moist static energy 
fluxes did not lead to better results. Maybe as evidence of the improvement in both models and 
ocean analysis, the skill at predicting summer monsoon rainfall anomalies has increased a bit in 
recent years. Thus, Philippon et al. (2010), using the ENSEMBLES Stream-1 seasonal re-forecasts, 
improved the Sahelian precipitation forecasts from a correlation of 0.17 with the direct model 
output to 0.51 with a MOS calibration, which included five atmospheric fields. Likewise, and in an 
operational seasonal prediction context, Tompkins and Feudale (2010) found a forecast correlation 
of the Sahelian rainfall of around ~0.4 using the ECMWF System3 re-forecasts. This Deliverable 
updates the forecast quality and reproducibility of the dominant WAM rainfall regimes (Guinean 
and Sahelian) by evaluating the most recent operational seasonal prediction systems, namely 
ECMWF’s System41 (hereafter SYST4) and a statistical forecast system based on linear regression, 
as well as their combinations. This Deliverable uses an innovative approach to analyze the 
intraseasonal evolution of the WAM precipitation based on the assessment of the ability of these 
forecast systems in simulating and predicting the timing of the latitudinal migration of the tropical 
convection. 
 
2. Interannual forecast systems 
This Deliverable uses data from the most recent operational climate forecast system of the European 
Centre for Medium-Range Weather Forecasts (ECMWF), SYST4, and a simple statistical model 
based on lagged regression. The project uses sets of retrospective forecasts (re-forecasts or 
hindcasts) over a recent period produced by SYST4. The SYST4 re-forecasts have 15 members for 
all start dates (Feb, May, Aug, Nov), and cover the 29 years from 1982 to 2010. The length of these 
integrations is thirteen months. The long time period in the hindcasts allows reliable calibration of 
the forecasts and good assessment of their skill. 
 
The statistical model used, which is probabilistic in nature, follows the statistical model used in 
Coelho et al. (2004), except that the predictor and the predictand are two different climate variables. 
The predictand is the WAM precipitation while the predictors are two climate indices. The two 
climate indices are the Niño3.4 index, which was used to predict the Guinean precipitation, and the 
AMO, which was used to predict the Sahelian precipitation. The statistical model was built in one-
year out cross-validation mode for the target years 1982-2010 and the predictors are three-month 
averages of the two above mentioned climate indices. For example, to forecast the Guinean 
precipitation during the summer WAM season 1982 with lead time zero, a least-squared simple 
linear regression of the Guinean precipitation (i.e. May through November) on the three-month 
averaged Niño3.4 index of February, March and April was performed using the training period 
1983-2010. To forecast the summer WAM season 1983, the years 1982 and 1984-2010 were used 

                                                 
1  http://www.ecmwf.int/products/changes/system4/  
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as the training period. 
 
3. The Forecast Assimilation method 
The forecast assimilation (FA) is a Bayesian method for calibrating and combining predictions from 
several sources using prior (historical) empirical information (Stephenson et al. 2005). It has been 
used to combine the SYST4 with the statistical model hindcasts. In one case, the statistical model 
predictions were combined with the ones by SYST4 having a climatological forecast as the prior 
information (FAC). In a second approach, the FA method was used employing the SYST4 hindcasts 
as the likelihood and the statistical model predictions as the prior information (FAS). 
 
4. Forecast quality assessment 
The forecast quality of the WAM precipitation predictions of the combinations and individual 
forecast systems described above was assessed from a deterministic and a probabilistic point of 
view. The correlation coefficient was used to assess the degree of linear association between the 
predicted mean and observed WAM precipitation. Several probabilistic verification scores have 
been computed for dichotomous events of the two leading modes of the WAM precipitation 
variability (i.e. the PC1 for the Guinean mode and the PC2 for the Sahelian mode) exceeding the 
median and the upper quartile of the climatological distribution. These thresholds were estimated 
using ensemble members for the predictions of the dynamical forecast systems and all available 
years. Separate threshold estimates were obtained for the predictions and the observations. 
 
Two different types of hindcasts were handled in this study: ensemble predictions (SYST4) and sets 
of predictions defined by a forecast mean and standard deviation (those provided by the statistical 
model, the FAC and the FAS). For those forecast systems that did not have ensemble hindcasts, the 
Gaussian forecast distribution of each year was sampled with size 10,000 to obtain samples from 
which to compute the median and quartiles of the corresponding climatological distributions. The 
10,000 sample size was chosen because it was found to provide robust estimates of the 
climatological probability density function (PDF). Its robustness was estimated by calculating the 
Brier skill score between the predicted and observed probabilities 1,000 times for the statistical 
model and for a given start date. These 1,000 estimations were performed with sample size 11, 51, 
100, 1,000 and 10,000. The sample size 10,000 had the smallest spread in the histogram of the 
1,000 estimated values of the correlation coefficient. Finally, the probability forecasts were 
estimated using the estimated thresholds (median and upper quartile). 
 
The main measure of probabilistic forecast quality is the Brier score (BS), which can be defined as: 

∑
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where ip  is the probability forecast and io  is the observation, which is set to be one if the event 
happened and 0 if it did not happen, for the ith year. The BS could be generalized in the form of a 
skill score where the forecast of a given system is compared to a reference prediction system, which 
is usually a much simpler forecast such as the climatological frequency of the event. This 

generalization is called the Brier skill score (BSS), and could be written as 
cBS

BS
BSS −= 1 , where 

BS is the Brier score of a given system and BSc is the Brier score of the reference forecast. Positive 
BSS means the BS of the system is better than the BS of the reference forecast. 
 
Other forecast quality attributes have also been analyzed, among them the reliability and resolution 
components of the BS (Mason and Stephenson 2008). The reliability component of the BS verifies 
the degree of correspondence between the frequency of events predicted by the system and the 
frequency of events that actually happened and measures the degree of trustworthiness of the 
predicted probabilities. The resolution, on the other hand, measures the ability of the forecasts to 
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distinguish events that have forecast probabilities different from the climatological frequency. A 
third component of the BS is the uncertainty, which is associated with the uncertainty of the 
observations for a given event and does not depend on the predictions. 
 
These three components of the BS are estimated by stratifying the forecast probabilities into a set of 
bins, the number of which is usually smaller than the number of possible forecast probabilities. 
However, depending on the number of bins used to stratify the forecast probabilities, the sum of the 
three components does not equal the BS computed using equation (1). Two additional components 
that account for the within-bin variance of the forecasts and the within-bin covariance between 
forecasts and observations are also needed to make the components of the BS less sensitive to the 
number of bins (Stephenson et al. 2008). These two extra components were added to the resolution 
component of the BS to make a generalized resolution term. 
 
It has been shown that the standard decomposition of the BS is biased, being the reliability 
component positively biased, the uncertainty negatively biased, and the resolution either negatively 
or positively biased (Ferro and Fricker 2012). A new estimate of the less-biased reliability, 
generalized resolution, and the uncertainty components of the BS by Ferro and Fricker (2012) will 
be used in this study. The skill scores of the less-biased reliability and generalized resolution were 
computed as follows (Doblas-Reyes et al. 2005): 
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where BSREL is the less-biased reliability component of the BS, BSGRES is the less-biased generalized 
component of the BS, and BSUNC is the bias-free uncertainty component of the BS. 
 
5. Results 
The skill and reproducibility of the latitudinal migration of the ITCZ is examined by means of 
Hovmöller diagrams, in which the precipitation is longitudinally averaged as shown in Fig. 1 for 
West Africa (10ºW-10ºE). Also shown in Fig. 1 is the spatial distribution of precipitation 
climatology in GPCP, which corresponds to the observational reference dataset, during boreal 
summer (July-September; JAS), the main rainy season. JAS represents the central months in the 
corresponding latitude-time Hovmöller diagrams analyzed, which span May throughout November 
for West Africa. The target period of study for the Hovmöller diagrams is 1982-2010. The 
latitudinal window of the Hovmöller diagram in each case is EQ-20ºN.  
 
Monthly precipitation anomalies in these latitude-time diagrams are obtained by subtracting the 
corresponding monthly climatology. In that way, each month in the time dimension of the 
Hovmöller diagram involves interannual variability. Note that neither detrending nor filtering has 
been applied to the data. After, a principal component analysis (PCA/EOF; von Storch and Zwiers 
2001) is performed upon these longitudinally-averaged precipitation anomalies. In this case, PCA 
provides a set of latitude-time patterns (empirical orthogonal functions, EOFs) and associated 
standardized time series (principal components, PCs; Fig. 2). The information associated with each 
PCA mode is completed by the corresponding fraction of explained variance. The PCA results have 
been described in terms of correlation maps, obtained by correlating the anomaly time series for 
surface temperature in different seasons with the PC related to each mode. Note that according to 
this PCA set-up, the leading EOFs correspond to the dominant interannual variability modes of the 
intra-seasonal evolution of precipitation. These EOFs were widely described in the deliverable 
D3.2.a, while here a summary is presented and additional results shown. 
 
The systematic error of SYST4 in tropical convection is tightly associated with the warming drift in 
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the tropical Atlantic SSTs (4ºS-4ºN / 15ºW-10ºE; Fig. 2 of D3.2.a, top right), which is a well-known 
problem in coupled GCMs leading to a southward shift of the local ITCZ and a failure to reproduce 
the Atlantic equatorial cold tongue (e.g. Richter and Xie 2008). Figure 2 of D3.2.a shows how as 
the lead time for the Hovmöller diagram increases, that is when using predictions for the start dates 
from May to the previous November, the SST warming drift in the boreal summer months is higher 
and, hence, rainfall biases are larger as well. The dipole-like pattern of the rainfall mean error 
reflects the wrong latitudinal position of the model ITCZ, which involves more rain than observed 
at equatorial latitudes and a clear deficit along the Sahelian belt (~10ºN-18ºN). Note also how 
SYST4 lengthens the WAM pre-onset stage, yielding a surplus of precipitation in July (one month 
later than observed). 
 
The observed interannual variability of the longitudinally-averaged precipitation in West Africa is 
dominated by the Guinean (EOF1, 27%; Fig. 3 of D3.2.a) and Sahelian (EOF2, 20%; Fig. 4 of 
D3.2.a) rainfall regimes. The former reflects changes in convection strength within the ITCZ during 
the pre-onset months (first rainy season in the Gulf of Guinea; e.g. Fontaine et al. 2008), and is 
associated with the recent Atlantic-Pacific inter-tropical connection (e.g. Rodríguez-Fonseca et al. 
2009). The latter shows a dipolar pattern with maximum amplitude over 10ºN-18ºN, which reflects 
more/less northward penetration of the rainbelt and projects onto the inter-hemispheric SST 
gradient (AMO, IPO). Note the AMO-related surface temperatures in the eastern Mediterranean 
basin and the positive correlations over the Saharan heat low area during JAS, which have been 
shown to strongly contribute regulating the Sahelian precipitation (Haarsma et al. 2005; Biasutti et 
al. 2008; Fontaine et al. 2010). The time-series of the principal components associated with these 
EOFs are shown in Fig. 2 (thick black). The Guinean rainfall regime (PC1; left) is largely 
dominated by interannual variability. By contrast, the Sahelian rainfall regime (PC2; right) 
encompasses a lower-frequency fluctuation that projects onto a positive trend, which actually 
corresponds to the partial recovery after the Sahel drought in the 1980s (e.g. Mohino et al. 2011). 
 
The leading EOF mode of the longitudinally-averaged precipitation in SYST4 at each start date is 
the Guinean rainfall regime (Figs. 3,5 of D3.2.a), which accounts for 30%, 38%, and 39% of the 
total precipitation variance with predictions from the May, February, and November start dates, 
respectively. These fractions of variance in SYST4 overestimate that in GPCP. As the lead time for 
the Hovmöller diagram increases, successive EOF patterns reflect the model systematic error in 
tropical precipitation, where the Guinean precipitation increases in the model at the expense of the 
precipitation over the Sahel (cf. Figs. 3, 5 and Fig. 2 in D.3.2.a). The Guinean precipitation modes 
capture the recent Atlantic-Pacific inter-tropical relationship. At each start date, the correlation 
maps of surface temperature suggest that SYST4 delays the peak of the Atlantic Niño with respect 
to the observations, occurring in JAS instead of MJ (Polo et al. 2008; Losada et al. 2010). This 
finding might be related to the systematic error described above (Fig. 2 of D.3.2.a) where the model 
delays the WAM pre-onset. The time series of these EOFs for the start dates ranging from May 
(Fig. 2, top-left) to November (Fig. 2, bottom-left) show how the spread of the ensemble grows, and 
the accuracy in recapturing the observed PC decreases, as the lead time increases. 
 
The second EOF of the longitudinally-averaged precipitation in SYST4 is the Sahelian rainfall 
regime (Figs. 4, 6 of D.3.2.a), which accounts for 11%, 10%, and 10% of the total precipitation 
variance for the May, February, and November start dates, respectively. These fractions of variance 
underestimate the fractions of variance obtained with GPCP. For all start dates the simulated 
Sahelian mode shows a dipole-like pattern between the coastal regions and 10ºN-15ºN. As also 
shown in the observations, the heart of the simulated Sahelian rainfall occurs in August. The 
correlation maps of surface temperature project onto the inter-hemispheric gradient that includes the 
AMO and IPO signatures, while no clear relationship appears with the Indian Ocean temperatures. 
Despite the spread growing with lead time (Fig. 2, right), the principal components of these EOFs 
show an apparent positive trend that mimics the observed evolution, with negative (positive) 
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anomalies before (after) late 1990s. 
 
Figure 3 shows the anomaly forecasts of the Guinean rainfall regime (first EOF mode; PC1) for the 
Statistical model, SYST4, FAC and FAS for the period 1982-2010. Forecasts are for the start date 
of May (lead zero). As for the statistical model, the predictor is the three-month average of 
February, March and April. Given that our target period is the months between May and November, 
as described above, the three-month average of February, March and April would be the last 
available as a predictor. The one-year-out cross-validation method was used to estimate the 
regression coefficients of the statistical model. This means that to forecast the Guinean rainfall 
regime (PC1) for the year 1982, firstly the GPCP PC1 for the period 1983-2010 were regressed on 
the three-month average of February, March and April for the same period to estimate the 
regression coefficients. Then, the three-month average of February, March and April of 1982 was 
used as a predictor to forecast the PC1 of 1982. 
 
The black line represents the observational reference from GPCP, the red line is the predicted mean 
anomaly of the individual forecast systems and the combinations, and the grey band is the 95% 
prediction interval for each forecast system, given by the predicted mean anomaly plus or minus 
1.96 times the predicted standard deviation. The mean prediction of the statistical model 
underestimates the interannual variability of the Guinean rainfall regime and the linear 
correspondence between the statistical model predictions and the observations is 0.29. On the other 
hand, SYST4 is able to simulate well the interannual variability and, except for the 1988 positive 
rainfall anomaly and the 2005 extreme drought event, its predictions have a high degree of linear 
correspondence with the observations (correlation=0.77). Both combinations resemble SYST4’s 
predictions, which means that for this specific region and start date the statistical model received 
little weight in the combination procedure. None of the forecast systems were able to represent 
properly in their predicted interval the 2005 extreme drought event. However, the statistical model 
predicted interval was able to predict the 1988 positive rainfall anomaly. All forecast systems have, 
for this specific region and start date, a high reliability skill score and low resolution skill score. 
Thus, the BSS for both probabilistic events analyzed here (anomalies above the median and upper 
quartile) is low, and even zero for the statistical model. In this case, no improvement was achieved 
when combining SYST4 with the statistical model, which is something expected given the low skill 
of the statistical model. 
 
The Sahelian rainfall regime (second EOF mode; PC2) predictions for the start date of November 
are displayed in Figure 4. As in the previous case of the Guinean rainfall regime, the statistical 
model underestimates the interannual variability; however, as pointed out above, the Sahelian 
rainfall regime encompasses more of a lower-frequency variability with a positive trend. Because 
the statistical model is able to reproduce part of this linear trend it has a correlation of 0.36, similar 
to the correlation of SYST4 (0.37). The single forecast systems predicted interval is able to 
represent the observed PC2, except for the statistical model in the year 1994. In this case, the 
inclusion of the statistical model as the prior information (FAS) helps improve the accuracy (i.e. 
correlation) of the prediction when compared to both single forecast systems. However, all forecast 
systems have a high reliability and a low resolution which resembles a climatological forecast and 
that is one of the reasons why the probabilistic skill scores are close to zero. 
 
Ensemble-mean anomaly correlation coefficients between the longitudinally-averaged precipitation 
modes in GPCP and SYST4 showed skilful results (Fig. 7 of D3.2.a, and Figs. 5, 6). The Guinean 
rainfall (leading EOF) skill is statistically significant with a lead time of up to three months, with 
~0.8 for the May start date (zero lead time) and ~0.5 for the February start date. The sharp decrease 
in the prediction skill of the Guinean rainfall appears to be consistent with the progressive lack of 
skill in forecasting the evolution of the cold tongue in the equatorial Atlantic as the lead time for 
May-June increases, as revealed in Section 3.1 of D3.2.a. This is also in agreement with the skill 
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decay in forecasting precipitation anomalies over maritime regions of the Gulf of Guinea (Section 
3.1 of D.3.2.a). The Sahelian mode (second EOF) has statistically significant skill only for the start 
date of May (zero lead time) with a correlation above 0.6, while for the February start date is ~0.45 
(0.38 in Fig. 6 as the target period is slightly different). Nevertheless, it is worth noting that SYST4 
yield positive correlations for both Hovmöller-based rainfall modes at the three start dates 
considered. Especially noticeable is the score above 0.3 (0.37 in Figs. 4, 6, when using the most 
updated dataset) in the Sahelian precipitation for the November start date. Actually, the mild 
decrease in the prediction skill of the Sahelian rainfall (Fig. 7 of D.3.2.a) could be consistent with 
the good performance in forecasting surface temperatures over the eastern Mediterranean basin and 
the Sahara heat low region during the target period July-to-September, as shown in Section 3.1 of 
D.3.2.a. Likewise, these results seem to be in agreement with the positive correlations found for the 
Sudan-Sahel belt precipitation from the three start dates considered here (Section 3.1 of D.3.2.a). 
 
The deterministic skill of the statistical model shows a different pattern when compared to those of 
the SYST4. First of all, the statistical model predictions have lower skill than the ones by SYST4 
for all six cases analyzed here (i.e. two rainfall regimes and three start dates). Secondly, the 
decreasing skill with increasing lead time of the Guinean rainfall is less strong in the statistical 
model when compared to SYST4. However, for the leads zero and three months, SYST4 has much 
better predictions when compared to the statistical model. Thirdly, the statistical model has higher 
skill for longer leads when predicting the Sahelian precipitation. This could be explained by the fact 
that the predictors for the lead six months (AMO of the three-month average of August, September 
and October) have stronger trend than the lead zero months (AMO of the three-month average of 
February, March and April) (not shown). 
 
The combination of SYST4 with the statistical model does not improve the Guinean rainfall regime 
deterministic forecasts. This could be explained by the fact that the statistical model has low skill of 
its mean predictions. However, when the statistical model has comparable skill compared to the 
SYST4, as in the case for the Sahelian rainfall regime with lead time six (Fig. 4), the addition of the 
statistical model predictions as a prior information contributes to an increased deterministic skill of 
the combined predictions. 
 
The probabilistic scores are comparable to those of a climatological forecast (Figs. 5, 6) except for 
the lead-zero predictions in both analyzed rainfall regimes. That is, the single forecast systems and 
combinations have high reliability and low resolution. For lead time zero, in both analyzed rainfall 
regimes, the combination method that included the statistical model in the likelihood function 
having the climatology forecast as the prior (i.e. FAC) has the best probabilistic predictions. 
However, because the statistical model in both regimes has zero resolution skill score it could be 
argued that the improvement in the probabilistic forecast in terms of BSS for both events (above the 
median and the upper quartile) came from the calibration of the SYST4 rather than from the 
inclusion of the statistical model. The benefits of calibration to increase predictions skill in the 
tropics have been shown in previous studies (e.g. Doblas-Reyes et al. 2005). 
 
6. Conclusions 
This deliverable dealt with the assessment of the relative advantages of combining information from 
different interannual forecast systems, including both dynamical and statistical systems. The 
forecast quality assessment was performed for the longitudinally-averaged precipitation over West 
Africa (10ºW-10ºE). The two leading modes of precipitation variability for this region are: the 
Guinean and the Sahelian rainfall regimes. A simple statistical model based on lagged regression 
was combined with SYST4 to assess the relative merits of this combination. The Forecast 
Assimilation method was used for the combination. 
 
It is shown that SYST4 has good deterministic skill when predicting the Guinean and the Sahelian 
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rainfall regimes for the start dates of May and February. On the other hand, the statistical model has 
low correlation when predicting these two rainfall regimes, and the only occasion when it has 
correlation above 0.3 is when predicting the Sahelian regime with start date in November. 
Therefore, combining these two forecast systems did not take to improved forecast. 
 
Both forecast systems have probabilistic prediction skill comparable to that of a climatological 
forecast; that is, having high reliability skill score and low resolution skill score. On the other hand, 
when combining the SYST4 with the statistical model having the climatology as the prior a slightly 
improvement in terms of BSS is observed for the start date of May (lead zero) in both rainfall 
regimes. However, this could be a result of the calibration of the SYST4 rather than the inclusion of 
the information from the statistical model, given that the latter had a high reliability and low 
resolution. 
 
Further investigation is needed to assess whether the inclusion of other dynamical forecast systems 
or the combination of SYST4 with a better statistical model could make a better forecast. 
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Figure 1. Spatial distribution of GPCP precipitation climatology (mm/day) over the period 1982-2008. Black box 
indicate the spatial domain for the Hovmöller diagram upon the West African monsoon: longitudinal-average along 
10ºW-10ºE and latitudinal window over EQ-20ºN. 
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Figure 2. Standardized principal components (PCs) associated with the EOFs of Hovmöller precipitation diagram (Fig. 
1) described in the Deliverable 3.2.a but over 1982-2010: GPCP (solid black), GPCC (dashed black), ensemble-mean 
SYST4 (solid dark blue), and box-and-whisker representation of the ensemble range in SYST4 (light blue). The 
Guinean rainfall regime corresponds to the first EOF mode (PC1; left column); the Sahelian rainfall regime to the 
second EOF mode (PC2; right column). Three start dates have been used from SYST4: May (top), February (middle) 
and November (bottom). 
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Figure 3. Monthly forecast anomalies of the Guinean rainfall regime (first EOF mode; PC1) for the Statistical model, 
SYST4, FAC and FAS. Forecasts are for the start date of May. Observed values (black solid line), predicted values (red 
solid line), 95% predicted interval (grey area) and the climatology value of May (black dashed line). Several scores are 
displayed in each panel: the correlation coefficient (corr), and the Brier skill score (bss) and its reliability (relss) and 
resolution (resss) components for dichotomous events of the PC1 anomalies exceeding the median and the upper 
quartile 



15/17 

 
Figure 4. Monthly forecast anomalies of the Sahelian rainfall regime (second EOF mode; PC2) for the Statistical model, 
SYST4, FAC and FAS. Forecasts are for the start date of November. Observed values (black solid line), predicted 
values (red solid line), 95% predicted interval (grey area) and the climatology value of November (black dashed line). 
Several scores are displayed in each panel: the correlation coefficient (corr), and the Brier skill score (bss) and its 
reliability (relss) and resolution (resss) components for dichotomous events of the PC2 anomalies exceeding the median 
and the upper quartile 
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Figure 5. Probabilistic and deterministic forecast quality assessment of the Guinean rainfall regime (first EOF mode; 
PC1) for the Statistical model (black circle), SYST4 (red circle), FAC (green circle) and FAS (blue circle). Several 
scores are displayed: the correlation coefficient (correlation), and the Brier skill score (BSS) and its reliability (RelSS) 
and resolution (ResSS) components for dichotomous events of the PC1 anomalies exceeding the median and the upper 
quartile.  
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Figure 6. Same as Figure 5, but for the Sahelian rainfall regime (second EOF mode; PC2). 
 


