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ASSESSMENT REPORT ON THE SKILL OF GLOBAL
SEASONAL PREDICTIONS IN AFRICA USING A
QUINTILE INTERVAL-BASED VALIDATION

R. MANZANAS', J.M. GUTIERREZ', M.D. FRIAS?, and A.S. COFINO?

Abstract.

The skill of state-of-the-art seasonal accumulated precipitation and maxi-

mum temperature forecasts is assessed worldwide for the period 1961-2000 using the hind-
casts provided by the project ENSEMBLES (Stream?2 multi-model simulations). A quintile-
based robust statistical validation is applied to one and four months lead-time predic-
tions, obtaining the skill scores and their confidence intervals grid point by grid point.
Results show that highest skill concentrates around the tropics for both variables; more-
over, agreement among the models tend to be large in these regions. Overall, Autumn

and Winter are the most skillful seasons for precipitation, whereas Winter and Spring

are the most skillful for maximum temperature.

1. Introduction

Seasonal forecasting is a promising research field with
enormous potential impact in different socio-economic sec-
tors, including health [see Kirtman and Pirani, 2008, for a
review]. Nowadays, several seasonal forecasting systems are
run all around the world once or twice a month, providing
weather anomalies a few months in advance. An example is
the European EURO-SIP multi-model system, which is an
operational system based on the research and development
done in the EU-funded DEMETER [Palmer et al., 2004]
and ENSEMBLES [Weisheimer et al., 2009] projects. In
particular the ENSEMBLES dataset constitutes the longest
to date state-of-the-art seasonal hindcast experiment.

Since seasonal predictability strongly vary from region to
region and from season to season [see, e.g., Halpert and Ro-
pelewski, 1992], a key task in this field is the appropriate as-
sessment of the seasonal forecasting systems. However, only
a few papers have been devoted to this problem, focusing
always on particular models or regions and using different
validation scores. For instance, a validation of the ENSEM-
BLES multi-model dataset for precipitation in three African
regions has been recently published by [Batte and Deque,
2011], considering deterministic (e.g. ACC) and probabilis-
tic scores (e.g. RPSS).

In the present deliverable, we assess the skill of state-of-
the-art seasonal forecasts for precipitation and maximum
temperature worldwide, using the ENSEMBLES multi-
model dataset and applying a recently introduced quintile-
based validation method which allows obtaining the skill
scores and their statistical significance [Frias et al., 2010;
Diez et al., 2011].

The deliverable is organized as follows: The data used is
described in Sec. 2. The multi-model construction is justi-
fied in Sec. 4. The validation methodology is explained in
Sec. 3. Finally, results are presented for precipitation (Sec.
5) and maximum temperature (Sec. 6). Main conclusions
are summarized in Sec. 7.
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2. Data

In this section we describe the observed and predicted
datasets used in this study, with a common period 1961-
2000. In order to analyze different lead times (one- and four-
months), we considered the Boreal seasons: Winter (DJF),
Spring (MAM), Summer (JJA) and Autumn (SON); as we
show below, for other seasons (e.g. West African Monsson,
FMA) there is only a lead time to perform the analysis,
thus limiting the analysis. In the case of precipitation, ac-
cumulated precipitation is used for the observed (predicted)
values corresponding to each season; for maximum temper-
ature, seasonal means of daily maximum temperatures are
considered.

2.1.

For monthly accumulated precipitation we use obser-
vations from VASClimO [see Schneider et al., 2008, and
http://gpcc.dwd.de], a worldwide quality controlled gridded
dataset covering the period 1951-2000, at a 2.5° resolution.

For monthly maximum temperature we use observations
from the CRU TS 2.1 dataset [see Mitchell and Jones, 2005,
and http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_2.10/]
from the Climate Research Unit. This dataset covers the pe-
riod 1901-2002 and was bi-linearly interpolated to the same
2.5° resolution grid of the VASClimO dataset.

Observations

2.2. Models

We consider the seasonal predictions from the multi-
model Stream2 experiment of the ENSEMBLES project

(http://www.ecmwf.int /research/EU _projects/ENSEMBLES),

comprising five state-of-the-art coupled atmosphere-ocean
models from the following centers: The UK Met Office
(UKMO), Météo France (MF), the European Centre for
Medium-Range Weather Forecasts (ECMWTF), the Leibniz
Institute of Marine Sciences (IFM-GEOMAR) and the Euro-
Mediterranean Centre for Climate Change (CMCC-INGV).
Each of these models is formed by an ensemble of nine mem-
bers. Seven months-long hindcasts were issued four times a
year within the period 1960-2005, starting the first of Febru-
ary, May, August and November [see Weisheimer et al.,
2009, for more details about the experiment]. This allow us
analysing one- and four-months lead-time predictions (i.e.,
initializations of August and May provide one- and four-
month lead time forecasts for SON season, respectively). In
order to have a common grid for both observations and pre-
dictions, models are bi-linearly interpolated to the 2.5° grid
of the observations.
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3. Methodology

The validation methodology used in this deliverable is
the described in Frias et al. [2010], which is applied here
worldwide grid point by grid point. For a particular sea-
son, observations and predictions are divided into five cate-
gories, according to their respective quintiles within the pe-
riod 1961-2000. Then, a probabilistic forecast is computed
year by year by considering the frequencies p, = n;/n of the
different quintiles i = 1,2, 3,4, 5, where n; is the number of
members falling within the the i-th quintile, out of a total
of n members. For instance, n = 9 for each single model
and n = 45 for the multi model combined assuming equal
weights for all models and members. Working with order
statistics (quintiles), instead of the original values, makes
the method robust to models’ bias.

The score used to assess the skill of the obtained predic-
tions is the Roc Skill Area (RSA). The RSA takes values in
[-1,1]. An RSA equal to 0 indicates no skill with respect
to the climatology, whilst an RSA of 1 indicates a perfect
forecast [see Jolliffe and Stephenson, 2003, for further in-
formation on this score]. The statistical significance of the
RSA score is obtained by bootstrapping [Mason and Gra-
ham, 2002] with 1000 samples.

For the sake of comparison, some of the figures shown
trough this deliverable are related to the analysis of terciles,
computed in a similar way.

4. Multi-Model Construction

In order to build the probabilities of the multi-model
quintiles (or terciles) from the 45 available members (9 re-
alizations x 5 models), we have three different options: 1)
computing the quintiles for the combined series of members
and models, 2) computing the quintiles separately for each
model, combining the 9 available members, and 3) comput-
ing the quintiles separately for each model member. This
would lead to a total of 1, 5, or 45 sets of quintiles, respec-
tively. In order to determine which of these options was
the optimum one, we computed intra-model (members) and
inter-model quintile overlapping by applying an ANOVA
test to determine whether significantly differences appear
among the quintiles computed from different models (5) or
model members (45). The maps shown in Figs. 1 and 2
show the p-values (probability of rejecting the null hypoth-
esis of no mixing) for precipitation and maximum tempera-
ture, respectively, derived from the tests in each grid point.
These figures show that the terciles/quintiles of the differ-
ent members for a particular model do not overlap, whereas
the terciles/quintiles of the combined multi-model ensemble
overlap in several regions (overlapping mean “quintile mix-
ing”; i.e. it indicates that the first quintile of one model may
be larger than the second tercile of a different model).

As a result of this analysis we show that, for both
variables, the differences among members (for a particular
model) were non-significant and there was no cuantile mix-
ing; or in other words, the nine members can be merged
into a single time series (simply by averaging them), ob-
taining a unique set of cuantiles for all of them. However,
there is a clear inter-model overlapping, indicated by the
black patches in Figs. 1 and 2. Thus, cuantiles should
be computed separately for each model. This inter-model
overlapping is clearly larger for maximum temperature than
for precipitation, indicating that the bias between models is
larger in the former variable.

5. Results for Precipitation

5.1. Models Bias

Fig. 3 (left column) shows, by seasons, the observed
VASClimO climatology and the models bias with respect
to it at one month lead-time.

Although all models exhibit similar spatial pattern in
all seasons, differences among them are visually apprecia-
ble. In general, they show a deficit of precipitation in the
rainiest tropical regions of South America, Africa and Asia,
but an overestimation in the extra-tropics. Bias are large
on the whole, being frequent, for instance, values of 1000
(-1000) mm/season in regions where it rains 1000 (6000)
mm/season.

In DJF, all models tend to underestimate in the rainiest
parts of South America, whilst in general they overestimate
in the driest parts of North America, Europe and south-
eastern Asia. In Africa, all models except the one from MF
underestimate in the south-eastern part of the continent
(Kenya, Tanzania, Mozambique, Uganda, Congo, Zambia,
Malawi and Zimbabwe), the wettest one. However, all tend
to overestimate in the south and south-western, where rains
are not so abundant.

In general, the spatial pattern of all models is also similar
in MAM, underestimating in northern South America and
overestimating, on the whole, in the northern hemisphere.
In Africa, all except the MF one underestimate along the
eastern coast of the continent. Models from the CMCC-
INGV and the UKMO overestimate along the northern coast
of the gulf of Guinea. The MF model clearly overestimates
over the southern part of the continent.

Again, the spatial pattern of all models is similar in JJA.
There is a common underestimation over the rainiest parts
of South America and south-eastern Asia. The ECMWF,
the CMCC-INGV and the UKMO models underestimate
over certain parts of North America. It seems to be a little
(large in the CMCC-INGV model) generalized underestima-
tion over Europe. In Africa, all models underestimate along
the northern coast of the gulf of Guinea, which is actually
the rainiest region of the continent. Some of them, as the
ones from the CMCC-INGV and the UKMO overestimate
in neighbouring regions as well.

All models exhibit similar spatial patterns also in SON,
with an underestimation in northern South America, around
the gulf of Mexico and the Indochina region in south-eastern
Asia. In general, all show an overestimation in extra-tropical
latitudes of the northern hemisphere. In Africa, all models
show a deficit of precipitation along the coast of the gulf of
Guinea (where rains are quite abundant). The ECMWF,
the IFM-GEOMAR and the CMCC-INGV models overesti-
mate over a narrow belt up to this latter region. The IFM-
GEOMAR, MF and the UKMO ones (especially these two
last) overestimate over the central and central-southern part
of the continent, where the observed regime of precipitation
varies from 6000 to 0 mm/season.

VASCIlimO observations and models variability (standard
deviation) is shown, by seasons, in the right column of Fig.
3. All models present similar spatial patterns in all seasons,
exhibiting the largest variability in the rainiest regions (as
actually observed), but differences among them are signifi-
cant. In general, all exhibit lower than observed variability.
Unfortunately, none is able to reproduce the observed vari-
ability in the tropical parts of South America and Africa, as
well as in Europe as a whole, which reflects a models limita-
tion. Contrarily, the region where models better reproduce
the observed variability (independently of the season) is the
Malay archipelago. As expected, given the smooth inher-
ent to its construction process, the multi-model presents the
lowest variability.

The largest differences between models take place for
South America and Africa.

In Africa, the models capable to reproduce the largest
variability are the ones from MF and the UKMO.
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Fig. 4 is the analogue to Fig. 3 but for the four months
lead-time predictions. Previous comments regarding the
models bias also apply for this longer lead-time, which points
out the predictions robustness. In terms of models variabil-
ity, the only noticeable difference between both lead-times
is that variability decreases at four months lead-time. This
is an interesting result since suggests the existence of a limit
lead-time beyond what predictions might not be considered
useful.

5.2. Global Skill

Figs. 5 to 8 show the models (rows) skill for the driest
(left column) and wettest (right column) quintiles at one
month lead-time, by seasons. Intermediate quintiles turned
out not skilful in any location and/or season, suggesting the
models disability to predict 'normal’ events.

Highest skill concentrates in tropical regions, where spa-
tial pattern is quite robust for some season. However, skill
in the rest of the globe is not so clear.

Globally, SON and DJF are the most skilful seasons,
whilst MAM comes out the less one.

In DJF, highest skill is found in northern South America
and some parts of the southern half of Africa and the Malay
archipelago. Models from the ECMWF and the UKMO, as
well as the multi-model, exhibit skill in the Somali peninsula
for the driest quintile. Models from the ECMWF, the IFM-
GEOMAR and the multi-model do it in southern Africa.
There is a signal of skill for the wettest quintile to the east
of the gulf of Guinea.

North-eastern Brazil and the Indochina peninsula are the
most skilful regions in MAM, especially for the driest quin-
tile. Unfortunately, there does not exist any defined spatial
pattern of skill in any other region of the globe. In Africa,
the model from the IFM-GEOMAR shows some signal of
skill up to the north of the gulf of Guinea and in the south-
western part of the continent for the driest quintile.

In JJA, the highest skill is found in Central Amer-
ica, northern Brazil, the gulf of Guinea and the Malay
archipelago. In the gulf of Guinea, models from the IFM-
GEOMAR, the CMCC-INGV, MF and the UKMO, as well
as the multi-model, show some skill for the driest quintile.
For the wettest one, skill patches spread over South Amer-
ica and the Malay archipelago, covering eastern Australia
in some cases. Models from the CMCC-INGV, MF and the
UKMO, as well as the multi-model, still exhibit a very little
signal of skill over the gulf of Guinea.

The highest skill in SON concentrates over northern
South America, a belt in Central Africa, parts of Middle
East, the Malay archipelago and Australia. Signal intensity
is doubtless higher in this season than in any other. The spa-
tial pattern of skill is quite well-defined in all models, both
for the driest and wettest quintiles. For the driest one, there
is a large agreement between models, showing high skill in
northern South America, the Malay Archipelago and east-
ern Australia. Models from the ECMWF, MF, the UKMO,
as well as the multi-model, do the same in Arabia and Near
East. All models exhibit some skill over the central part
of Africa. The ones from the ECMWEF and MF, as well as
the multi-model, show skill in the Somali peninsula. For the
wettest quintile, the spatial pattern of skill is still intense
and consistent between models in northern South America,
the Malay archipelago and Australia. The Arabian signal
remains practically unaltered, whilst the African one shifts
to the eastern part of the continent. All models present
skill over a relatively vast region close the Somali penin-
sula. The less skilful model for Africa is the one from the
CMCC-INGV.

One can see from the preceding comments that skilful re-
gions are basically the same for the driest and the wettest

quintiles in all models and seasons. To explain this, one
might take into account, for instance, that a large RSA for
the driest quintile does not necessarily imply skill in forecast-
ing dry conditions, but it may be the result of forecasting
non-dry conditions (any of the other four quintiles).

Fig. 9 shows the multi-model skill for the driest and
wettest quintiles (columns) by seasons (rows) at four months
lead-time. As can be seen, skill at four months lead-time is
in general lower than at one month-lead time (which is not
surprising). At this longer lead-time, skill patches only sur-
vive in regions that were highly skilful at one month lead-
time. For instance, the signal of skill that appears near the
Somali peninsula in SON at one month lead-time disappears
at four months lead-time. The little skill obtained in MAM
(the lees skilful season at one month lead-time) disappears
completely at four months lead-time. SON and DJF are still
the most skilful seasons at this longer lead-time.

Figs. 10 and 11 show the multi-model skill for the driest
and wettest terciles (columns) by seasons (rows) at one and
four months lead-time, respectively. In terms of skill, all the
features found in the analysis of quintiles remain valid for
the terciles. The essential difference is that skill is higher in
the case of quintiles, which means that models are able to
satisfactorily predict finer intervals.

6. Results for Maximum Temperature

6.1. Models Bias

As Fig. 3, Fig. 12 (left column) shows, by seasons, the
observed CRU climatology and the models bias with respect
to it at one month lead-time.

Contrarily to what occurs for precipitation, models do not
exhibit common similar spatial patterns and they are very
smooth. On the whole, all models underestimate maximum
temperature in the major part of the globe, except in the
northern latitudes of the northern hemisphere (overall the
ECMWF and MF models in DJF) and in South America in
some cases. In general, the largest similarity between mod-
els take place, on the one hand, for the ECMWF and MF
ones, and on the other hand, for the IFM-GEOMAR and
the UKMO ones. The CMCC-INGV model clearly show
the largest (negative) bias all around the globe. All under-
estimate in Greenland, which probably has to do with the
lack and bad quality of observations in this region.

In DJF, the ECMWF and MF models (especially the lat-
ter) overestimate in northern Asia (Russia) and northern
North America, the coldest regions. This overestimation is
clear in Siberia, where the rest of models also overestimate.
In general, all models (especially the one from the CMCC-
INGV) underestimate in the rest of the globe. In Africa, all
models underestimate in the northern and southern parts of
the continent.

In MAM, models from the ECMWEF and MF exhibit a
very light overestimation over northern Asia and northern
North America. The IFM-GEOMAR overestimates slightly
over southern Asia. All models except the CMCC-INGV
one (which clearly underestimate in the entire globe) over-
estimate slightly in the south of Arabia. In general, all un-
derestimate in the rest of the globe. Bias in Africa are not
large, except for the MF model, which underestimates in
the southern part of the continent, and obviously for the
CMCC-INGYV one.

In JJA, the UKMO model overestimates in general in the
northern hemisphere, whilst the rest (except the CMCC-
INGV one) only overestimate and slightly in southern Ara-
bia and points of southern Asia. The MF model also over-
estimate in a region of northern South America. All un-
derestimate in the rest of the globe. The only model that
presents large bias in Africa is the CMCC-INGV one, that
clearly underestimates.
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In SON, the MF model overestimates in Siberia, Alaska
and also slightly in north-eastern South America. The IFM-
GEOMAR and the UKMO ones also overestimate slightly
in the latter location. All models underestimate in the rest
of the globe, especially the ECMWEF and the UKMO ones
in the Indian region and along the Andes mountains. Again,
the CMCC-INGV model clearly underestimates in the whole
globe. Bias in Africa are not large; all models (except the
CMCC-INGYV one) underestimate very slightly.

CRU observations and models variability (standard de-
viation) is shown, by seasons, in the right column of Fig.
12. The observed largest variability takes place overall for
the coldest regions. In general, all models tend to exhibit
(although to a different extent) large variability in regions
with the largest observed variability (basically the northern
hemisphere), but insufficiently. Unfortunately, as for precip-
itation, models variability is overall clearly lower than the
observed. In general, contrarily to what occurs for precipi-
tation, not all models present similar spatial patterns.

The IFM-GEOMAR and MF models present higher than
observed variability in South America in all seasons, espe-
cially in DJF. The ECMWF and the UKMO do the same in
South America in SON. The UKMO one exhibit higher than
observed variability in the Himalayas mountains in DJF and
MAM. In Africa, the largest variability is observed in the
southern part of the continent in DJF and MAM, and only
the ECMWF and the UKMO models are able to reproduce
this (although not sufficiently).

As expected, the multi-model variability is the lowest.

Fig. 13 is the analogue to Fig. 12 but for the four months
lead-time predictions. As can be seen, bias do not change
appreciably (neither in spatial distribution nor in magni-
tude) with respect to the one month lead-time case. Vari-
ability keeps similar spatial patterns at this longer lead-time
but is lower in magnitude.

6.2. Global Skill. De-trended data

In the validation of maximum temperature there is a new
factor that makes it more delicate than that of precipita-
tion: trends. One must take trends into account, especially
when validating models, since they could lead to artificial
skill. For this reason, we validated maximum temperature
considering both the de-trended and the trended data. This
section is devoted to the first case.

Trends were calculated grid point by grid point (for ob-
servations and for every model) using a Mann-Kendall test.
Those statistically significant at a confidence level of 90%
were removed from the corresponding time series. Fig.14
shows the CRU and models (at one month lead-time) trends,
by seasons (columns). Points on the maps mark trends sta-
tistically significant at a 90% confidence level, that is, those
that were removed. We do not want to go into detail in the
analysis of trends itself since the objective in this deliverable
is rather to assess their effects on skill, by qualitatively com-
paring the skill obtained with the de-trended data with that
obtained with the trended ones. The important conclusion
to be extracted from Fig. 14 is that trends are statistically
significant over vast regions of the globe in all seasons.

Figs. 15 to 18 show, by seasons, the models (rows) skill for
the coldest (left column) and hottest (right column) quin-
tiles at one month lead-time, when removing statistically
significant trends both in observations and models. As for
precipitation, no skill was found for any of the intermediate
quintiles in any location and/or season.

As for precipitation, highest skill concentrates in tropical
regions, where spatial pattern is very well-defined sometimes
and models agreement tend to be large. Unfortunately, this
does not apply for the rest of the globe in general. Skill for
maximum temperature is in general higher than for precip-
itation.

Globally, DJF and MAM are the most skilful seasons,
whilst JJA results the less one.

In DJF, highest skill was found in the northern part of
South America and the southern half of Africa, for both
the coldest and hottest quintiles. There exists quite a large
agreement between models over the African region. The
ones showing less skill in this area are those from MF (for
both coldest and hottest quintiles) and the UKMO (for the
coldest quintile).

The spatial pattern of skill in MAM is similar to that of
DJF but slightly less intense. Again, highest skill is located
in northern South America and the southern part of Africa
for both the coldest and hottest terciles. There also exists
a consistent signal of skill over the coast of Guinea for the
hottest quintile. For Africa, models agreement is good and
the less skilful results correspond to models from MF and
the UKMO.

In JJA, all models lead to lower skill than in the rest
of seasons. Spatial pattern in South America continues cen-
tred over the northern part of the continent, whilst in Africa
it appears shifted to the north (with respect to DJF and
MAM). Although signal intensity over the northern part of
Africa is not as high as in the preceding seasons, models
agreement is still quite consistent, especially for the cold-
est quintile. The less skilful model in Africa in JJA is the
one from the CMCC-INGV. It is also remarkable the fact
that all models reach a considerable skill over India for the
hottest quintile.

All models exhibit high skill in the northern half of South
America in SON for both the coldest and hottest quintiles.
Signal in Africa is probably not as spread as in JJA but it is
slightly more intense and more concentrated over the central
part of the continent. As in JJA, the spatial pattern in SON
is not so well-defined as the obtained in DJF and MAM.

Fig. 19 shows the multi-model skill for the coldest and
hottest quintiles (columns) by seasons (rows) at four months
lead-time. Important results can be extracted from it. First,
it is striking the fact that skill obtained at one month lead-
time in MAM (the most skilful season with DJF) disappears
completely at four months lead-time (the same occurs with
precipitation in this season). Unfortunately, we did not find
any explanation for this. Second, skill at four months lead-
time is in general slightly lower than at one month lead-time
(as expected) and its spatial pattern spreads, losing its def-
inition. DJF is still the most skilful season at this longer
lead-time. Furthermore, regions that are not skilful at one
month lead-time appear as skilful ones at four months lead-
time, such as north-western Russia in MAM (hottest quin-
tile).

Figs. 20 and 21 show the multi-model skill for the coldest
and hottest terciles (columns) by seasons (rows) at one and
four months lead-time, respectively. As for precipitation, all
features found in the analysis of quintiles remain valid for
terciles, being the difference that skill is higher in the case of
quintiles, which means that models are able to satisfactorily
discriminate finer intervals.

6.3. Global Skill. Trended data

Figs. 22 to 25 show, by seasons, the models (rows) skill
for the coldest (left column) and hottest (right column) quin-
tiles at one month lead-time, when retaining trends in both
observations and models. The scope here is to qualitatively
analyse, overall, the main differences with respect to the de-
trended validation, without going further into details. When
comparing Figs. 15 to 18 (de-trended data) with Figs. 22
to 25 (trended data), one sees that spatial pattern of skill
is very similar in both cases, but in general skilful regions
spread and the intensity of the signal increases slightly in
the trended case. It occurs specially in Africa, the only
region where all models reproduce significant trends in all
seasons. This suggests thus that trends effectively inflate
skill artificially and should be removed before validating.
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7. Conclusions

The main aim of this work was to validate accumulated
precipitation and maximum temperature seasonal predic-
tions worldwide for the period 1961-2000. To this, we have
used the hindcasts from the five state-of-the-art coupled
atmosphere-ocean models within the second stream of the
ENSEMBLES project, at one and four months lead-time.

As a first step, we have constructed a multi-model by
applying equal weights to all models and members, which
is justified by the fact of having well-defined members and
models overlapping.

Results from the validation show that highest skill con-
centrates around the tropics for both precipitation and max-
imum temperature; moreover, models agreement tend to be
large in these regions. Unfortunately, the latter does not ap-
ply for the rest of the globe in general. For precipitation, au-
tumn and winter are the most skilful seasons, whilst spring
is the less one. For maximum temperature, the most skilful
seasons are winter and spring, whilst summer results the less
one. Skill is higher when applying a quintile-based valida-
tion than when applying a tercile-based one, which means
that models are able to satisfactorily discriminate finer in-
tervals. As expected, skill decreases with longer-times. We
have also checked the importance of removing trends when
validating maximum temperatures since they lead to artifi-
cial skill.

To complement the study, models bias and their variabil-
ity have been assessed. In general, models underestimate
precipitation in the rainiest regions of South America, Africa
and Asia, whilst overestimate in the extra-tropics. For max-
imum temperature, there is a generalized underestimation,
with the exception of the northern latitudes of the north-
ern hemisphere. Variability reproduced by models is lower
than observed for both variables; moreover, it decreases with
longer lead-times.

We acknowledge the QWeCl project, funded by the Euro-
pean Comission’s 7" Framework Programme through con-
tract 243964, for the financial support of this work; as
well as the ENSEMBLES project, funded by the European
Commission’s 6" Framework Programme through contract
GOCE-CT-2003-505539, for the data provided.
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Figure 1. P-values for precipitation from the ANOVA tests performed to the terciles of their nine
members of each particular model (and for the combined multi-model) for the different seasons, at one
month lead-time for the terciles and quintiles. For the multi-model (MM), the p-value from the ANOVA
tests is computed for the cuantiles of the 45 available model-members, at one month lead-time. Black
color indicates regions where the terciles/quintiles overlap; i.e. the first quintile of one model is larger
than the second quintile of a different one.



R. MANZANAS, M.D. FRIAS, A.S. COFINO AND J.M. GUTIERREZ: SKILL OF SEASONAL PREDICTIONX - 7

ONE MONTH LEAD-TIME
TERCILES QUINTILES

v
A
{IAQ%
J
P
3
1
4
y
%
;|

.
%J
5

| Sy| <y
<

=3 \
fol

-

A

B

A

S
=\
£
~
o
o
[a¥E
£
~
|
<
3
.
N
&,
&("
v

DJF
CMCG-INGV

%
74
J/g
2
oF &N
é

IFM-GEOMAR

F
:
o

R PG . E—
§ T g
2 : PR G Yag [ S G Yag,
g : v :
=F : 7 e e [ UL N
. - o, . Z[,/ \/ O
P N . -~ = § 040
| | S T
5 = : eV AL 7 W P i 3 0.08
VR D A
- - 1006
H s L T, ST e ‘0.04
¢ : i ﬁ \’%‘% ;fg\j : .if‘:f?\q gfi 5
: ] B TSy e (8 o L YOG 0.02
g g o \[/ j,d (i}‘)' % . L’J u\k/u fﬂé‘)
— - : 0.00

JJA
TMGCINGY

CIGG-NGY
S
$ N\
3
WF
o
W
o~
)

rd
< %\%
f b
- B
(\(’lm‘i
o
‘4 N
! \’/i. 4

ECMWF
IFM-GECMAR

A
<
of
g
-
Ve )
o)
g
-~
e
of

. S ol I e At DTS
LN & | & T &y
o zj % o 2 7/7 L‘av o V U 0%

UKMO

Figure 2. As Fig. 1, but for maximum temperature.
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Figure 3. Left column: Observed VASClimO climatology and models bias, at one month lead-time
(period 1961-2000), by seasons (rows). Right column: Observed VASClLimO variability and models
variability, at one month lead-time (period 1961-2000), by seasons (rows).
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Figure 4. Left column: Observed VASClimO climatology and models bias, at four months lead-time
(period 1961-2000), by seasons (rows). Right column: Observed VASClimO variability and models
variability, at four months lead-time (period 1961-2000), by seasons (rows).
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Figure 5. Left column: Models (rows) skill for the driest quintile in DJF (period 1961-2000) at one
month lead-time. Right column: Idem but for the wettest quintile. Only points statistically significant
at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 6. Left column: Models (rows) skill for the driest quintile in MAM (period 1961-2000) at one
month lead-time. Right column: Idem but for the wettest quintile. Only points statistically significant
at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 7. Left column: Models (rows) skill for the driest quintile in JJA (period 1961-2000) at one
month lead-time. Right column: Idem but for the wettest quintile. Only points statistically significant
at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 8. Left column: Models (rows) skill for the driest quintile in SON (period 1961-2000) at one
month lead-time. Right column: Idem but for the wettest quintile. Only points statistically significant
at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 9. Left column: Multi-model skill for the driest quintile (period 1961-2000) at four months
lead-time, by seasons (rows). Right column: Idem but for the wettest quintile. Only points statistically
significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 10. Left column: Multi-model skill for the driest tercile (period 1961-2000) at one month
lead-time, by seasons (rows). Right column: Idem but for the wettest tercile. Only points statistically
significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 11. Left column: Multi-model skill for the driest tercile (period 1961-2000) at four months
lead-time, by seasons (rows). Right column: Idem but for the wettest tercile. Only points statistically
significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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ONE MONTH LEAD-TIME

Figure 12. Left column: Observed CRU climatology and models bias, at one month lead-time (period
1961-2000), by seasons (rows). Right column: Observed CRU variability and models variability, at one
month lead-time (period 1961-2000), by seasons (rows).
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Figure 13. Left column: Observed CRU climatology and models bias, at four months lead-time (period
1961-2000), by seasons (rows). Right column: Observed CRU variability and models variability, at four
months lead-time (period 1961-2000), by seasons (rows).
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Figure 14. CRU and models (at one month lead-time) trends for the period 1961-2000, by seasons
(columns). Points mark trends statistically significant at a 90% confidence level (Mann-Kendall test).
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Figure 15. Left column: Models
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one month lead-time
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Figure 16. Left column: Models (rows) skill for the coldest quintile in MAM (period 1961-2000) at
one month lead-time (de-trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 17. Left column: Models (rows) skill for the coldest quintile in JJA (period 1961-2000) at
one month lead-time (de-trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 19. Left column: Multi-model skill for the coldest quintile (period 1961-2000) at four months
lead-time (de-trended data), by seasons (rows). Right column: Idem but for the hottest quintile. Only
points statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 20. Left column: Multi-model skill for the coldest tercile (period 1961-2000) at one month
lead-time (de-trended data), by seasons (rows). Right column: Idem but for the hottest tercile. Only
points statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 21. Left column: Multi-model skill for the coldest tercile (period 1961-2000) at four months
lead-time (de-trended data), by seasons (rows). Right column: Idem but for the hottest tercile. Only
points statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 22. Left column: Models (rows) skill for the coldest quintile in DJF (period 1961-2000) at
one month lead-time (trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 23. Left column: Models (rows) skill for the coldest quintile in MAM (period 1961-2000) at
one month lead-time (trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 24. Left column: Models (rows) skill for the coldest quintile in JJA (period 1961-2000) at
one month lead-time (trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.
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Figure 25. Left column: Models (rows) skill for the coldest quintile in SON (period 1961-2000) at
one month lead-time (trended data). Right column: Idem but for the hottest quintile. Only points
statistically significant at a confidence level of 90% (bootstrapping with 1000 samples) are shown.



