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General Introduction 

 
This deliverable provides information about the state of the art modelling outputs produced 
by the various QWeCI partners involved in the WP2.1 “Development of dynamic disease 
models”. Some of those results have already been published in peer-reviewed journals 
(Tompkins et al., 2012; Ermert et al., 2012) or are in preparation for submission (as a 
consequence this deliverable should not be made publicly available to avoid copyright issues 
with peer-reviewed publications). This deliverable was delayed (delivered at the end of the 
project instead of M24 as originally planned) in order to allow the various QWeCI partners to 
develop, test, parameterize and validate their modelling approaches with various sources of 
observations. The QWeCI teams have mainly focused on two vector-borne diseases: malaria 
and Rift Valley Fever for different regions in Africa (from the continental scale to the local 
scale, such as the Barkedji area in northern Senegal). 
 
Malaria is caused in humans by infection with the protozoan Plasmodium, and is transmitted 
between humans by female mosquito vectors from the Anopheles spp. The first symptoms are 
relatively similar to those of seasonal flu, with fever, sore throat, pain, chills and aches; and 
sometimes nausea and diarrhoea that can lead to more serious health issues. Infection with 
the most severe form of the parasite, Plasmodium falciparum, if not promptly treated, may 
lead to kidney failure, seizures, mental confusion, coma, and death. Epidemics of the disease 
can be triggered by factors affecting human, vector or parasite populations including 
abnormal meteorological conditions, changes in anti-malarial pro rams  population 
movement  and environmental chan es   a  era et al.  1    .  he mos uitoes  breedin  sites 
(ponds) and the lifecycle of the malaria parasite are both strongly connected to climatic 
variability, especially rainfall and temperature. Climate-driven models of malaria provide a 
quantitative method of considering the impact of climate on malaria transmission solely. 
Investment in eradication programmes over the last decade has resulted in significant 
progress in reducing the worldwide burden of malaria, with half the affected counties set to 
reach the World Health Assembly and Roll Back Malaria goal of a reduction of 75% of malaria 
cases between 2000 and 2015 (WHO, 2012). Mortality due to malaria in the WHO African 
region decreased 33% between 2000 and 2010; however, sub-Saharan African still bears the 
largest burden of the disease, with 91% of the 660,000 worldwide deaths occurring in the 
region (WHO 2012), and where malaria accounts for 15% of post-neonatal deaths (Liu et al., 
2012). 
 
Rift Valley fever (RVF) is a viral zoonosis that affects domestic animals and humans by causing 
an acute fever. This disease is caused by the RVF virus that belongs to the genus Phlebovirus in 
the family Bunyaviridae. The virus is transmitted to vertebrate hosts by the bite of infected 
mosquitoes, typically by the Aedes and Culex species. RVF mainly affects domestic animals 
(cattle, goats, sheep and camels, among others). It generally causes high mortality and 
abortions in pregnant females (this is how a RVF outbreak in animals is generally suspected). 
Human infections are mainly caused by direct or indirect contact with viraemic animal blood 
or infected organs during butchering, slaughtering or veterinary procedures. The human 
symptoms are characterized by the onset of high fever, headache, generalised weakness and 
liver abnormalities. In a small percentage of the infected human population RVF can cause 
haemorrhagic fever, encephalitis and ocular disease and this can sometimes lead to death.  
 



3/57 

The following sections of this report provide information about the various malaria modelling 
exercises (UNILIV [A], UOC [B], ICTP-UOC [C], IC3-ICTP-UNIMA [D], UP [H], IC3 [I]) and RVF 
model development (IPD [E], CSE-UCAD [F], ILRI-IC3 [G]) carried out within the QWeCI 
project framework. Each section is structured in the form of a scientific publication. This 
study covers the major WP2.1 tasks described in the QWeCI Description of Work. 
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[A] The Liverpool Malaria Model 

Overview 

 
The Liverpool Malaria Model (LMM 2004) (Hoshen and Morse, 2004) is a dynamic, process-
based model of malaria which consists of a mosquito population model coupled with a 
malaria transmission model. A compartmental approach is used to numerically solve the 
differential equations associated with the system, with some parameters varying as a function 
of the daily climate time-series used to drive the model. The mosquito population is modelled 
using larval and adult stages, with the number of eggs deposited into breeding sites 
dependin  on the previous ten days   dekadal  rainfall  the larval mortality rate also 
dependent on dekadal rainfall, an adult mosquito mortality rate dependent on temperature, 
and an egg-laying/biting (gonotrophic) cycle also dependent on temperature. In the malaria 
transmission component of the model, temperature-dependencies occur in the rate of 
development of the parasite within the mosquito (sporogonic cycle) and the mosquito biting 
rate. Both the sporogonic and gonotrophic cycles progress at a rate dependent on the number 
of “de ree days” above a specific temperature threshold.  he  onotrophic cycle takes 
approximately 37 degree days with a threshold of 9 °C, whereas the sporogonic cycle takes 
approximately 111 degree days with a threshold of 18 °C. This latter threshold is one of the 
most critical areas of sensitivity in the model, and below it no parasite development can occur. 
Further details of the model are given elsewhere (Hoshen and Morse, 2004). The LMM, driven 
by climate reanalysis, has been shown to be capable of simulating the interannual variability 
of malaria in Botswana, as compared against a 20-year anomaly index of the disease derived 
from malaria observations, and has been used to evaluate the potential for malaria early 
warning using seasonal climate forecasts (Jones and Morse, 2010; 2012). 
 
Assessment of intra-seasonal dynamics of malaria as simulated by LMM has previously 
determined that the model exhibits a lag of one to two months or more, for example 
compared to the seasonality model of MARA (Tanser et al., 2003; comparison described in 
Jones, 2007). This lag is caused by the slow response of the growing (modelled) mosquito 
population at the start of the season to the small “trickle” of infection used to seed the model. 
Adjustment of the original (LMM 2004) model parameters was not able to reduce this lag 
without an unrealistic shift in the seasonality of the disease (Jones, 2007). 
 
As part of this study, three adjustments to the LMM were evaluated in terms of their ability to 
improve model response at the start of the season, as detailed below. 
 
Larval population response 
 
As part of the LMM development work reported by Ermert et al. (2011a, 2011b) the larval 
component of the model was extended to include multiple functional forms of the relationship 
between the larval mosquitoes and climate inputs. The original, fixed relationship between 
larval daily survival rate, Pi and the daily value of 10-day accumulated rainfall in mm, Ri was 
amended to include additional parameters L0 and LF. (Equation 1). 
 

Pi = L0 + LF
Ri +1

Ri + 2
  Equation 1 
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In this study we assessed the sensitivity of the modelled malaria incidence to this component 
of the model by considering the change in the response at the start of the season when the 
parameter settings were varied between LF=1, L0=0 (equivalent to the original LMM2004 
model) and LF=0,L0=1 (larval survivorship is independent of rainfall). 
 
Dry seasonal mosquito population 
 
Mos uitoes and malaria infection are introduced in the standard LMM by a “trickle” of a small 
number of infectious mosquitoes added every 10 days. Here we investigated the impact on the 
dynamics of the model of the inclusion of a further inflow of uninfected mosquitoes, as might 
occur from mosquito populations sustained via permanent ponds or artificial water bodies 
such as irrigation tanks and wells. 
 
Reservoir of infection from the immune population 
 
Existing versions of the model (Hoshen and Morse, 2004; Ermert et al, 2011s, 2011b) do not 
explicitly include immunity within the human population. Acquired immunity to malaria is 
built up by repeated exposure of the population, leaving only young children and pregnant 
women (who lose their immunity during pregnancy) at risk of severe disease. In endemic 
areas, LMM is therefore considered to represent only non-immune proportion of the 
population, but this assumes that the infection of the immune or partially-immune population, 
who may harbour low-level, chronic infections lasting many months, does not impact on the 
dynamics of infection in the susceptible population. In reality, some authors suggest that 
gametocytogenesis (production of the sexual form of the parasite responsible for infection of 
the mosquito) in partially-immune “carriers” in the adult population are the source of 
infection in seasonally endemic areas, and even that gametocytogenesis might be triggered by 
factors such as an increased mosquito biting rate at the start of the season (Drakeley et al., 
2006; Paul et al., 2004). 
 
Although agent-based simulation models for immunity have been developed (McKenzie and 
Bossert, 2005), they are incredibly complex and not easily transferable to the LMM, which 
uses the simpler, less computationally-intensive compartmental approach. Here, we do not 
yet aim to simulate either the intra-seasonal or inter-seasonal dynamics of immunity but 
instead consider the maximum potential impact of an immune human “reservoir” of infection 
on the model response for those susceptible at the start of the season. This is achieved by 
adding a fourth category to the human population in the model: that of a permanently 
immune, chronically-infected human population which interacts with the other categories 
only by infection of the vector population. Future development of the LMM will consider the 
inter-seasonal dynamics of the immune category, which could, for example, in an early-
warning context, consist of estimating the immune proportion of the human population at the 
start of the season as a function of previous years  observed  or simulated  malaria  incidence. 

Disease model input dataset and disease observation dataset  

 
Daily rainfall and temperature are used to drive the LMM. Various sets of “observed”  ridded 
daily rainfall products were employed in this study. Mixed satellite and rain gauges 
observations from the Global Precipitation Climatology Project (GPCP) dataset (Huffman et al, 
2001) and from the NASA Goddard Space Flight Center Tropical Rainfall measuring mission 
(TRMM) dataset (Huffman et al, 2001) were employed to drive the LMM. Rainfall products 
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based on NCEP-NCAR (Kalnay et al, 1996) and ERA Interim (ERAI, Dee et al., 2011) reanalysis 
(blend of climate model outputs and various sources of observations using complex 
assimilation methods) were also used. 
 
Daily temperatures were estimated using NCEP-NCAR (Kalnay et al, 1996) and ERAI (Dee et 
al., 2011) reanalysis. A one year spin-up was first performed, based on the daily climatology of 
rainfall and temperature, before running the model with each dataset. The model was run 
using ERAI and NCEP rainfall and temperature, and two hybrid runs using GPCP/TRMM 
satellite rainfall estimates and ERAI temperatures were also been produced (in this case the 
temperature data has been interpolated on the rainfall data grid). Table 1 summarizes the 
different model runs (time periods, spatial resolution, etc.). For assessment of the different 
LMM parameter settings, only the TRMM-ERAI input data were used. 
 

 
Malaria Simulation 
 

 
Period 

 
Spatial Resolution 

 
Comments 

NCEP 1980-2010 2°x2° (~200km2) Coarse datasets. Large rainfall 
biases over West Africa. 
 

ERAI 1989-2010 1°x1° (~100km2) Better reanalysis product than 
NCEP and former ERA40 
reanalysis products for West 
Africa. 
 

GPCP-ERAI 1997-2007 1°x1° (~100km2) Rainfall from GPCP satellite 
estimates and temperature from 
ERAI reanalysis. 
 

TRMM-ERAI 1998-2010 0.25°x0.25° (~25km2) Rainfall from TRMM satellite 
estimates and temperature from 
ERAI reanalysis. Most relevant 
dataset to use at the country 
level for impact applications 
(higher spatial resolution). 

 
Table1: Summary of input data for malaria simulations performed with the LMM (lmm std 
version). 
 
Model outputs for different input data sources were compared with an external control in the 
form of mapped malaria endemicity from the Malaria Atlas Project, MAP (estimates for 2010; 
Gething et al., 2011). Note that the MAP data is based on a statistical Bayesian model which 
incorporates environmental predictors with real census data to provide “best  uess” 
estimates of P. Falciparum parasite prevalence rate and endemicity classes in the most 
vulnerable population, the age category 2-10 years old. The original data (1km x 1km 
resolution) was interpolated to a 0.25°x0.25° grid (about 25km x 25km at the equator). 
 
Two observed malaria datasets (time series) were also used for LMM performance 
assessment at a regional scale: 
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1. Senegal – Monthly recorded cases of malaria for two nearby towns in the Louga region 
of north-central Senegal: Linguère (January 2001-May 2010) and Dahra (January 
2003-May 2010).  

2. South Africa – Monthly recorded cases of malaria for Limpopo province for the period 
January 1999 to November 2005. (Source: Ministry of Health). 

Performance assessment 

 
The LMM performance is assessed using the following double-stranded approach: 

 LMM-simulated transmission and high-variability epidemic “frin e” for the West Africa 
region and for the African continent are compared with mapped malaria endemicity 
estimates from the Malaria Atlas Project (Gething et al., 2011) and outputs from the 
MARA-ARMA project over West Africa.  

 
 Seasonal cycle and interannual variability of LMM simulations are compared with 

observed malaria data from South Africa and Senegal for different parameter settings, 
incorporating two new components to LMM.  (Table 2) 
 

 
Name 
 

 
Details 

 
Adjusted LMM parameter 

value(s) 

lmm std Standard LMM2004 none 

lmm l0 Larval survival probability 
insensitive to rainfall 

LR0=1 
LRF=0 

lmm imm Additional transmission to/from a 
permanently infected, immune 
human population 
(parameter is size relative to non-
immune population) 

 
 

IPOP=1 
 

lmm imm_l0 Immune transmission plus 
reduced larval sensitivity 

LR0=1 
LRF=0 

IPOP=1 

lmm imm_m Immune transmission plus  
influx of uninfected mosquitoes 
per non-immune human added 
every 10 days  

IPOP=1 
 

UIMOS=1000 

 
Table 2: Summary of LMM parameter settings assessed against observed malaria data. 
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Results 

Comparison between LMM and the MAP 2010 mapped malaria risk 

 

 
 
Figure 1.1 Mean annual prevalence as simulated by the LMM driven by different gridded 
climate datasets over Africa (the climatology is calculated over the periods shown in table 
1). The MAP 2010 Parasite Prevalence rate map is shown on the lower left panel. 
 
 
Figure 1.1 & 1.2 depict the mean annual malaria prevalence as simulated by the LMM driven 
by different gridded climate datasets and P. falciparum parasite prevalence rate based on the 
MAP 2010 dataset. The LMM prevalence distribution exhibits a zonal pattern, with large 
values simulated over central tropical Africa (DRC, Gabon, CAR, and Cameroon), over the 
coasts of the Gulf of Guinea, and over the eastern coasts of Kenya, Tanzania and Mozambique 
for the reanalysis-driven runs. Simulated prevalence then decreases as a function of the 
latitude from the equator to the Sahel and from the equator to southern Africa (Fig 1.1). 
The standard version of the LMM seems to simulate the northern edge of low malaria 
prevalence too far south with respect to the MAP and the MARA data. The southern boundary 
is extending too far south over southern Africa with respect to the MAP2010 analysis. The 
prevalence hot spots shown over southern Mali, south-western Nigeria and northern Ivory 
Coast for MAP2010 are not reproduced by the LMM (Fig 1.2). The LMM simulates larger 
prevalence values over southern Ghana with respect to northern Ghana, while the opposite is 
shown by the MARA and MAP2010 datasets over Ghana. Over eastern Africa, the areas free of 
malaria are relatively well captured by the LMM whereas the large prevalence values 
simulated over the eastern coasts of Kenya look unrealistic (a similar problem is seen with 
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Vectri; see section C). The LMM reproduces the prevalence hot spots over Mozambique and 
south-eastern Tanzania when driven by the ERAI climate data. The LMM prevalence 
distribution is really similar to the MAP estimates over Angola, Zambia, Botswana and 
Namibia. 
 

 

 
 
Figure 1.2 Same as Figure 1.1 for the West African region. The lower panel depicts simulated 
Malaria Prevalence by the MARA statistical model over West Africa (Tanser et al., 2003). 
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Figure 1.3 Annual coefficient of variation (COV) for Malaria Incidence as simulated by the 
LMM driven by different gridded climate datasets over Africa (the COV is the ratio between 
the standard deviation divided by the mean calculated over the different time period shown 
in table 1). The MAP 2010 endemicity classes map is shown on the lower left panel. Note 
that this is another output of the MAP statistical model which is not based on the mean 
prevalence categories depicted in Fig 1.1 and Fig 1.2. 

 
Figure 1.4 Same as Figure 1.3 for the West African region. 
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Figures 1.3 and 1.4 discriminate epidemic and endemic malaria areas as simulated by the 
LMM (using the coefficient of variation which characterizes large year to year variability in 
simulated malaria incidence) and as modelled by the MAP2010 analysis. The LMM epidemic 
belt is placed at the northern edge of the Sahel, crossing northern Senegal, southern-central 
Mali, and southern Niger towards central Sudan. The Sahelian epidemic belt is simulated too 
far south with respect to the MAP2010 data. Most of Senegal, Gambia and Guinea Bissau are 
shown to be epidemic area by MAP2010 while this is not reproduced by the LMM. A large 
epidemic area is simulated by the LMM over eastern Africa including most of Ethiopia, 
northern Kenya, Somalia and northern Tanzania. This is relatively consistent with outputs 
from MAP2010 (excepting over southern Sudan which is highly epidemic according to 
MAP2010). The endemic/epidemic areas are also well discriminated by the LMM (satellite 
driven runs e.g. TRMM/GPCP) over Botswana, Namibia and Angola when comparing it with 
MAP2010. Only the Limpopo region is shown to be epidemic over South Africa by MAP2010, 
while this covers a larger area over South Africa by the LMM. 
 
The MAP2010 data is an analysis (statistical model) which merges malaria survey data with 
different environmental & socio-economic predictors to provide estimates of malaria 
endemicity on a high resolution gridded map. The number of surveys in this analysis is critical 
to provide robust estimates. The survey network is dense enough over West Africa, the 
western coasts of central to southern Africa and eastern Africa to have confidence in those 
estimates (Fig 2A from Gething et al. 2011). The values simulated over central Africa mainly 
rely on the predictors (as the survey data do not exist or just a few points are available), in 
other words the MAP data is more a model output (such as LMM) over central Africa.  
 
The differences between the LMM and the MAP2010 analysis are sometimes large (especially 
over West Africa and South Africa). This is not surprising as the standard version of the LMM 
only considers the impact of climate on malaria transmission; while the MAP2010 analysis 
indirectly includes some measures of intervention (through the incorporation of survey data) 
and other critical socio-economic factors (poverty, demography, urbanisation...). As an 
example, large control measures almost eradicate malaria from South Africa excepting over 
the north-east (mainly Limpopo). Interventions (control measures) are not taken into account 
by the LMM. 
 
However, the epidemic fringe distribution is relatively well simulated by the LMM; and those 
epidemic areas are critical as they include susceptible population with low immunity to P. 
Falciparum (where malaria has the largest negative impact on human well-being). 
Furthermore malaria seasonal forecasts performed with the LMM have been shown to be 
skilful over epidemic areas in West Africa (Jones et al., 2012) and over Botswana (Jones et al., 
2010).  
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Comparison against observed malaria 

Limpopo Province, South Africa 

The seasonal cycle of the climate data used to drive the LMM for a single location in Limpopo 
province – the capital, Polokwane, are shown in Figure 2.1a. The corresponding seasonal 
cycles in simulated incidence are compared for different parameter settings with that 
calculated from Ministry of Health records in Figure 2.1b. The dry season extends from May to 
September, with rainfall increasing in October and peaking in November/December and then 
again in February. On average temperatures are below the sporogonic threshold of 18 °C 
between May and August inclusive, with a mean temperature of 19.1 °C in September.  
 
The observed seasonal malaria begins to increase in September, before the rainfall for 
Polokwane. The corresponding seasonal cycle in simulated incidence is delayed with respect 
to the cycle of observed malaria cases. For the original LMM parameter setting and that with 
only an adjusted human reservoir of infection (lmm std and lmm imm in Figure 2.1b), the 
peak malaria occurs in February/March, three to four months after the first observed peak in 
cases (and the first peak in TRMM rainfall). This delay is reduced for the other three 
parameter settings which all peak in January. These settings also exhibit a small secondary 
peak in March. A secondary peak in observed cases occurs in April. The end of the season in 
May/June seems well-represented in the model simulations, where temperature below 18 °C 
prevent development of the parasite within the mosquito population. Observed variability is 
fairly uniform over the season (Figure 2.1c), whereas model variability tends to be a 
maximum at the start and end of the season. 
 
Modelled interannual variability in malaria incidence does not correspond to that found in the 
observations (Figure 2.2e). The observed seasonal totals of malaria cases  (where the season 
is defined to run from August to July) show the lowest number of cases for the 2004/2005 
season (Figure 2.2e) despite the highest number of degree days above 18 °C occurring during 
that year (Figure 2.2d), resulting in the year of highest malaria incidence for all model settings 
(Figure 2.2e). The LMM response is also high for 1999, when seasonal total rainfall is highest, 
and 2001 when SON rainfall is highest, but this is not reflected in the observations. The 
observed peak year in observed cases corresponds to only moderate rainfall and temperature 
conditions, and only a moderate response in LMM-simulated incidence. 
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a) 

 
b) 

 
c) 

 
Figure 2.1 a) Mean seasonal cycles for rainfall and temperature for Polokwane, South Africa, for 
the period 1998-2008 (TRMM rainfall and ERA Interim temperature). b) Mean LMM seasonal cycle 
for the same period for multiple parameter settings, compared to seasonal cycle in observed cases 
for Limpopo province for 1999-2005. c) Coefficient of variation in LMM simulated incidence 
compared to that for observations for the same periods as a). 
 
 

0	

5	

10	

15	

20	

25	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

M
e
an

	m
o
n
th
ly
	t
e
m
p
e
p
ra
tu
re
	(
°C
)	

M
e
an

	m
o
n
th
ly
	r
a
in
fa
ll	
(m

m
)	

Month	

0	

200	

400	

600	

800	

1000	

1200	

0	

20	

40	

60	

80	

100	

120	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

O
b
se
rv
e
d
	c
as
e
s	
p
e
r	
m
o
n
th
	

LM
M
	s
im

u
la
te
d
	in
ci
d
en

ce
	(
%
	p
e
r	
m
o
n
th
)	

Month	

obs	-	limpopo	 lmm	std	

lmm	l0	 lmm	imm	

lmm	imm_l0	 lmm	imm_m	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

1.80	

2.00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

C
O
V
	in

	s
im

u
la
te
d
/o
b
s	
in
ci
d
e
n
ce
	

Month	

lmm	std	 lmm	l0	 lmm	imm	

lmm	imm_l0	 obs	-	limpopo	 lmm	imm_m	



14/57 

 
d) 

 

e) 

 

Figure 2.1 contd. Interannual variability in d) climate variables used to drive LMM (August to July 
rainfall: solid blue bars; SON rainfall: hatched blue bars; degree days above 18 °C: solid orange 
bars) and e) simulated LMM incidence compared to observations for Limpopo province.  

 

Louga Region, Senegal 

Plots of the seasonal cycle for different LMM parameter settings are given in Figure 2.2a, with 
the corresponding variability per month shown in Figure 2.2b. Compared to the observed 
cycles, which peak in September, the peak of LMM-simulated incidence with standard settings 
(lmm std) is delayed by one month. The magnitude of model response in September is 
improved by including an immune category of transmission in the human population (lmm 
imm), although the peak remains in October. The addition of a more permissive larval setting 
(lmm imm_l0) succeeds in moving the peak to September, but the simulated decline in 
incidence towards the end of the season for such a setting is too slow, extending into 
November and December while the observed cases drop off rapidly after October. The closest 
fit to the observed cycle is obtained by adjusting both the immune category and introducing a 
influx of uninfected mosquitoes (lmm imm_m; red bars), and this setting is the only one for 
which there is dry season transmission, as evident in the observed data.  
 
One impact of the lmm imm_m parameter setting is a reduction of variability in the peak 
months of September and October (Figure 2.2b) below that found in the observations. No 
model settings reproduce the June peak in variability during the dry season evident in the 
observations for Dahra; however this value is skewed by the single very high incidence of 
3000 cases recorded for Dahra in June 2005 (not shown). 
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Analysis of interannual variability in seasonal totals of malaria cases (where the season is 
defined as the 12 months starting in May - the first month after the minimum in the observed 
seasonal cycle for Linguère) reveals a negative trend in cases over the later data period, with 
lower numbers of cases in 2008 and 2009 (and 2007 for Linguère) compared to previous 
years (Figure 2.2c). None of the LMM parameter settings reproduce this effect. Categorising 
the six remaining years (2001-2006) into two groups of the three highest and three lowest 
years, all of the LMM parameter settings correctly bin at least two out of the three years in 
each group, as measured against the observed cases for Linguère. The imm_m setting 
correctly assigns all three highest years of 2005, 2003 and 2001, although the difference in 
mean incidence values between 2001 and 2004 is only marginal at 0.085 cases per 100 people 
per month.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16/57 

a) 

 
b) 

 
c) 

 
 
 
Figure 2.2 Effect of different model parameter settings on a) Mean LMM seasonal cycle and b) 
Coefficient of variation in LMM incidence for the period 1998-2010 compared to observed cases 
for Dahra (2003-2010) and Linguère , Senegal (2001-2010), and c) Interannual variability for LMM-
simulated and observed incidence for a May to April malaria seasons. ERA-Interim temperatures 
together with TRMM rainfall were used to drive LMM for the nearest grid point (15.12°N, 
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15.12°W). The LMM parameter settings are: lmm std: standard settings, lmm l0: larval stage 
adjusted, lmm imm: immune category adjusted, lmm imm_l0: both larval stage and immune 
category adjusted, lmm imm_m both immune category and uninfected mosquito influx adjusted 
 

Summary and conclusions 

In Senegal, the observed seasonal cycle in malaria transmission could only be simulated in 
LMM by incorporating both a human reservoir of infection at the start of the season and an 
influx of mosquitoes, for example from permanent water bodies. LMM did not simulate the 
observed variability during the dry season, nor the decline in malaria recorded during the 
later data period, suggesting these effects lie outside the natural climate processes 
representing by the model, and which in the latter case may be due to non-environmental 
factors (no data adjustment has been made for human interventions, for example). The 
human reservoir/mosquito influx setting also provided the marginally closest match in terms 
of the categorisation of the remaining years between high and low malaria categories, 
although all LMM settings produced similar results in terms of interannual variability. 
 
In South Africa, The simulated seasonal cycle was delayed with respect to observations. The 
delay could be reduced to two months by introducing a reservoir of infection in the human 
population in combination with either in influx of uninfected mosquitoes or a reduced 
sensitivity of larval mosquito survival probability to rainfall. The apparently rapid response of 
the observed cases to temperatures only marginally above 18°C and before the onset of the 
TRMM rainfall may indicate that the climate data used here does not adequately represent the 
climate experienced by the population susceptible to malaria, or that there is sufficient 
permanent mosquito habitat (beyond what has been simulated here by the lmm_m parameter 
setting) for transmission to occur as soon as temperatures rise above the sporogonic 
threshold. It may also indicate that the standard model threshold of 18°C is too high. The LMM 
simulations were not able to reproduce the observed interannual variability in seasonal totals 
of malaria cases. 
 

The new LMM components trialled in this study resulted in an improved ability of the model 
to represent the observed seasonal cycle in transmission. Adjustment of the larval scheme 
improved the response at the start of the season, but resulted in a delay to the end of the 
season for the primarily rainfall-driven region in Senegal. In South Africa further analysis is 
required to determine whether the discrepancies between observed and simulated malaria is 
due to the climate data used to drive the model, or the model processes themselves. 
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[B] Validation of an integrated weather - malaria model (REMO-LMM2010-
S2005)  

Overview  

Climate exerts a strong influence on the spread and transmission intensity of malaria in 
Africa. In this study, the performance of an integrated weather–disease model is assessed.  

Simulated were mosquito biting rates using the 2010 version of the Liverpool Malaria Model 
(LMM2010). The input data for the LMM were bias-corrected temperature and precipitation 
data from the Regional Model (REMO) on a 0.5° latitude–longitude grid. A Plasmodium 
falciparum infection model (S2005 model) expands the LMM simulations to incorporate 
information on the malaria parasite infection rate among children. Malaria simulations were 
carried out with this integrated weather–disease model (using the following model chain: 
REMO-LMM2010-S2005) for 1960 to 2000. 

The simulated 41-year parasite ratios of children of the integrated weather-disease malaria 
model were quantitatively compared with the predicted spatial distribution of P. falciparum 
malaria endemicity of 2007 from the Malaria Atlas Project (MAP).  The geographic malaria 
extent of the model chain is comparable to that of the MAP analysis. Most differences 
regarding the values of parasite ratios vanish when the uncertainty of the MAP model is 
considered. Differences are found for the north- eastern part of Somalia, where the integrated 
weather–disease model underestimates the malaria occurrence. The model overestimates the 
infection rate of children in parts of Senegal, Chad, Sudan, Ethiopia, and Kenya, which is likely 
attributed to nonmeteorological factors such as malaria control. 

 

Model description and assumptions 

The P. falciparum infection model. A nonlinear relationship exists between the 
entomological inoculation rate (EIR) and P. falciparum infection in children (Smith et al. 2005). 
Smith et al. (2005) fitted various mathematical functions to 119 published paired annuell EIR 
(EIRa) and PR<15 observations from Africa (Hay et al. 2005) by the maximum likelihood 
method. The best-fitting model (the S2005 model) assumed heterogeneous infection rates and 
no immunity to reinfection but includes superinfection (i.e., an infection that follows a 
previous infection): 

 

where b represents the transmission efficiency (the probability that an infectious mosquito 
bite causes infection) and 1/r is the expected time for parasite clearance. The S2005 model 
assumes heterogeneous infection rates following a (gamma) distribution, with a mean of 1 
and variance 1/k. The estimated parameters were b/r = 0.45, 1/k = 4.2. Note that the S2005 
model reveals a large uncertainty because of the large variability of the observations (Smith et 
al. 2005, see their figure One). 

The Liverpool Malaria Model (LMM). The LMM is a weather-driven, mathematical–
biological model of malaria that was originally formulated by Hoshen and Morse (2004). It 
simulates daily malaria transmission and infection rates based on daily mean temperature 
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and 10-day accu- mulated precipitation. However, the model does not include some detailed 
aspects of the malaria infection, for example, the immune status of humans. 

Ermert et al. (2011a, 2011b) constructed the improved 2010 version of the Liverpool Malaria 
Model (LMM2010) to include structural changes. For example, they parameterized hydrological 
conditions by a fuzzy distribution model (Ermert et al. 2011a), which considers the flushing of 
breeding habitats by excessive precipitation. Their study calibrated and extensively validated 
the LMM2010 by numerous field observations from West Africa in terms of 11 entomological 
and parasitological variables (Ermert et al. 2011b). They measured, using a problem-adapted 
skill score, the ability of the model to capture the range of observations in the vicinity of 
weather stations. Their study provided evidence that the LMM2010 simulates realistic EIRa 
values and reasonable malaria seasons. The results show that the model reproduces the 
strong observed interannual variability of EIRa. The performance is somewhat weaker 
regarding parasitological variables. For this reason, the S2005 model was applied for the 
simulation of P. falciparum infection rates. The EIRa values were passed from the LMM2010 to 
the S2005 model to produce meaningful PR<15 values. 

Model Input dataset and disease observation dataset  

Regional model (REMO) climate simulations. The malaria model chain is driven by 
temperature and precipitation data from the Regional Model (REMO), which is a limited-area 
regional climate model with a horizontal grid resolution of 0.5°. An ensemble of three REMO 
integrations was produced for the historical period (1960-2000) to take into account the 
internal variability of the model. In this case, REMO was forced by the observed greenhouse 
gas emissions. It is found that REMO simulates a reasonable climatological pattern of annual 
rainfall in Africa (Paeth et al. 2009). The highest precipitation amounts are simulated for the 
Congo basin and at the luvward sites of mountain ranges such as the Guinean Mountains (~ 
8°N, 12°W).  

Bias correction. Climate models are subject to biases that, when they are systematic in 
nature, can be compensated for by appropriate statistical methods. Therefore, the simulated 
weather data was corrected to ensure realistic LMM2010 input data using climatological 
differences between the REMO data and observed monthly rainfall from the Climatic Research 
Unit (version CRU TS 1.1; University of East Anglia, Norwich, UK), as well as daily 
temperatures from ERA40 (European Centre for Medium-Range Weather Forecasts Re-analysis, 
40 years). 

The integrated weather-disease model. The LMM2010 was used for the simulation of the 
spread of malaria under past weather conditions. Three LMM2010 runs were simulated on a 
0.5° grid by daily temperatures and rainfall amounts from different REMO integrations of the 
present-day climate of 1960-2000. Subsequently, the S2005 model integrations were 
performed by EIRa values of single years from the LMM2010 runs. The model chain (REMO-
LMM2010-S2005) is denoted as the integrated weather-disease model (see Figure 1), which 
output is quantified in this study by data from the Malaria Atlas Project (MAP; Hay et al. 
2009). 
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Figure 1. Illustration of the model chain of REMO, LMM2010, and the S2005 model, which is 
denoted as the integrated weather-disease model. REMO provides the daily temperature and 
precipitation values to the LMM2010 and the LMM2010 supplies EIRa values to the S2005 model. 

Performance Assessment  

The LMM2010 was calibrated by the usage of data from 34 West African weather stations and 
malaria observations from field sites in their vicinity. The main result of this calibration was 
that the LMM2010 is able to reproduce EIRa in the range of field observations. In addition, the 
S2005 model was built by using paired EIRa and PR<15 values, which should ensure the 
calculation of realistic infection rates of children. It is true that the simulated two-dimensional 
malaria distribution lacks a quantitative verification, which is provided by this study. 

The integrated weather-disease model is compared with an existing modelled malaria map. 
This provides a comparison between the simulated PR<15 values from the S2005 model and that 
of the predicted Plasmodium falciparum parasite ratio of children between 2 and 10 years 
(PfPR2-10) from the Malaria Atlas Project (MAP; Hay et al. 2009). Note that this comparison is 
somewhat problematic since: (i) The map of malaria endemicity of MAP was produced for 
2007 and the integrated weather-disease model represents average values with regard to 
1960-2000. Due to the fact that there is a strong interannual variability, parasite ratios of 
single years should normally not been compared to climatological values (here: 1960-2000). 
Hay et al. (2009) found, for example, that the observations from 2007 were substantially 
lower than the data from the other considered years (1985-2006). In Senegal, the malaria 
endemicity was, for instance, much higher in the 1960s than after the following drought 
conditions, when a substantial malaria decline was observed (e.g. Faye et al. 1995). (ii) Hay et 
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al. (2009) computed the parasite ratio of children between 2 and 10 years, whereas the S2005 
model is constructed for children under the age of 15 years. Due to the increase of immune 
individuals with age and the simultaneous decline in the infection rate (e.g. Bekessy et al. 
1976), the values from the S2005 model should be somewhat lower than that of the MAP model. 
Despite these two issues the comparison of the two maps enables a further insight in terms of 
the skill of our integrated weather-disease model. 

In order to compare the two maps, the MAP data was aggregated from the 5 km x 5 km 
latitude-longitude grid to the resolution of the integrated weather-disease model of 0.5°. 
Differences between the two maps cannot be avoided at the fringe of the malaria area. For 
example, the malaria gaps (according to an asexual parasite ratio threshold of 0.1%) in the 
north-east of Somalia included in the MAP data are not captured by the aggregated data (cp. 
Figure 1b & c). In general, small gaps such as in the East African highlands are reduced by the 
0.5° grid. 

 
Results 

Simulation of the geographic malaria distribution. The geographic distribution is 
compared between the integrated weather-disease model and MAP. According to the 
difference plot of the two maps (Figure 2d), two general statements can be made: (i) Both 
models show about the same geographic distribution of asexual parasite ratios. (ii) The 
integrated weather-disease model underestimates the territory of malaria endemicity in the 
Horn of Africa, especially for the north-eastern part of Somalia (see the crosses in Figure 2d). 
However, also the MAP model partly predicts gaps for North-Eastern Somalia (Figure 2b), 
which disappear in the 0.5° latitude-longitude resolution (Figure 2c). Beyond these two major 
aspects, small differences are found at the fringes of the endemicity area. The distribution of 
the integrated weather-disease model extends one to two degrees further to the north in 
various parts of the Sahel (see the dots in Figure 2d). This might be realistic since Hay et al. 
(2009) found higher parasite ratios for 1985-2006 than for 2007. It should be further noted, 
that malaria will probably be distributed further north under wet atmospheric conditions 
such as that before 1970. There seem to be also differences between the two maps for the East 
African highlands and the Adamawa plateau (see the crosses in Figure 2d). However, this 
again is an issue of the different grid resolution. The integrated weather-disease model, for 
instance, simulates a gap in the parasite ratios for the Adamawa plateau (Western Cameroon), 
which is evident in the full resolution, but vanishes in the 0.5° aggregated resolution (Figure 
2a-c). 
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Figure 2. Validation of the integrated weather-disease model by the usage of the malaria 
endemicity map of the MAP (Hay et al. 2009): (a) S2005 model simulated PR<15 values of 1960-
2000. (b) MAP model predicted PfPR2-10 values of 2007 on the original 5 km x 5 km latitude-
longitude resolution. (c) Same as (b) but for a resolution of 0.5°. (d) Difference between the PR<15 
values of 1960-2000 from the S2005 model and the PfPR2-10 values of 2007 from the MAP model. 
Dots indicate those areas where the S2005 model simulates PR<15 values, which are higher than or 
equal to 0.1% and where the MAP model predicts PfPR2-10 values lower than 0.1%. Crosses mark 
grid boxes where the MAP model predicts PfPR2-10 values, which are higher than or equal to 0.1% 
and where the S2005 model simulates PR<15 values lower than 0.1%. (e) Uncertainty (standard 
deviation) of the PfPR2-10 2-10)) of 2007 from the MAP model. (f) Same as (d) but 
including the uncertainty of the PfPR2-10 values of 2007. In all maps those areas are excluded 
which show PR<15 or PfPR2-10 values below 0.1%. 

 
Quantitative verification. The parasite ratios between the integrated weather-disease model 
and MAP are now quantitatively compared using a difference plot. This comparison leads to 
further three statements: (i) The differences in the values of the parasite ratio disappear in 
most areas when the uncertainty of the MAP model is considered (Figure 2f). However, the 
integrated weather-disease model produces for most parts of tropical Africa higher parasite 
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ratios than the MAP model. (ii) The simulated parasite ratios of parts of Senegal, Chad, Sudan, 
Ethiopia, and Kenya from the integrated weather-disease model are too high. For these 
regions, the parasite ratios are 40% higher than predicted for 2007 by the MAP model and 
this difference is still present when the uncertainty of the MAP model is taken into account 
(Figure 2f). Either the integrated weather-disease model either fails to simulate lower 
parasite ratios in these areas or the values of 2007 are not representative for other years. It is 
most probable, that other factors than weather and climate conditions such as malaria control 
measures caused these comparable low PfPR2-10 values for 2007. Hay et al. (2009) noted that 
the malaria endemicity was in general stronger in former years (see also Hay et al. 2009, their 
figure One). Note the present study does not account for other factors than weather and 
climate such as malaria control measures. (iii) The integrated weather-disease model 
simulates too low parasite ratios in low endemicity areas in comparison to the MAP model 
(Figure 2d). For example, in the northern Sahel the parasite ratios of the integrated weather-
disease model are up to 20% lower than that of the MAP model (Figure 2d). It must be noted 
here that the MAP model overestimated the PfPR2-10 values of low endemicity areas (Hay et al. 
2009) and the difference totally disappears, when the uncertainty of the MAP model is taken 
into account (Figure 2f). 
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Conclusions  

Parasite ratios from children as simulated by an integrated weather-disease model (REMO-
LMM2010-S2005) were quantitatively compared with analysis data from the Malaria Atlas 
Project. Given the uncertainty in the MAP model and the constraints when comparing parasite 
ratios from a single year (here: 2007) with average values of a period (here: 1960-2000), it is 
valid to state that: The geographic malaria extent of the integrated weather-disease model is 
comparable to that of the MAP model. Most differences in terms of values of the parasite ratio 
vanish when the uncertainty of the MAP model is considered. Differences are found for the 
north-eastern part of Somalia, where the model underestimates the malaria occurrence. The 
integrated weather-disease model overestimates the malaria prevalence in parts of Senegal, 
Chad, Sudan, Ethiopia, and Kenya, which is likely attributed to factors such as malaria control. 
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[C] VECTRI - VECtor borne disease community model of ICTP, TRIeste. 

Overview  

VECTRI is a mathematical model for malaria transmission that accounts for the impact of 
temperature and rainfall variability on the development cycles of the malaria vector in its 
larval and adult stage, and also of the parasite itself. The majority of the relationships are 
taken from the literature for the Anopheles gambiae vector and the Plasmodium falciparum 
species of the parasite. Temperature affects the sporogonic and gonotrophic cycle 
development rates, as well as the mortality rates for adult vectors. Water temperature, closely 
related to air temperature impacts both the growth rate and mortality of larvae.  

Rainfall effects on transmission are represented by a simple physically-based model of surface 
pool hydrology, where low rainfall rates increase available breeding sites that decay through 
evaporation and infiltration, while intense rain events decrease early stage larvae through 
flushing. A unique development for a regional scale malaria model is that VECTRI accounts for 
human population density in the calculation of biting rates. Higher population densities lead 
to a dilution effect resulting in lower parasite ratios (PR) in urban and peri-urban 
environments compared to nearby rural locations. In this respect the model is able to 
reproduce the reduction in Entomological inoculation rates (EIR) and PR with population 
density that has been widely observed in field observations in Africa.Future population 
growth could potentially reduce transmission intensity in VECTRI if included. 

A schematic of the model approach is shown in the figure below 
 

 

The model is designed for regional to continental scales at high spatial resolutions of up to 5-
10km. For full details of the models mathematical framework and its evaluation, [Tompkins 
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and Ermert 2013]. 

 

Model Input dataset and disease observation dataset  

The model has been operated and tested using the following types of input climate data for 
the following purposes: 

 

 

 

Performance Assessment and results 

 

Two example of a performance assessment are given here, reproduced from Tompkins and 
Ermert (2013)  

a) Station assessment  

Input Data  Purpose Reference 

>50 station data for single 
locations in W. Africa 

Intercomparison with LMM2010 and 
evaluation of EIR and PR against 
survey data taken from the literature 

Tompkins and Ermert 
(2013) 

Present day integrations for West 
and East Africa domains using 
temperature downscaled from 
ERA-interim and rainfall from  

 TRMM 

 CMORPH 

 FEWS 

Examine regional validity of the 
simulations in terms of mean spatial 
distribution of PR and EIR. 
Comparison made to the 2010 MAP 
(Malaria Atlas Project) maps 

Tompkins and Ermert 
(2013) 

re-Forecasts for period 1992 to 
present using ensemble  forecasts 
from monthly EPS and system 4 
seasonal forecasting system of 
ECMWF  

Examine potential for an operational 
forecasting system for malaria early 
warnings. 

Reanalysis compared to MAP, while 
forecasts evaluated again malaria 
reanalysis in “tier 2” approach.  

In-country evaluation using case data 
in Malawi ongoing. 

Tompkins and Di 
Giuseppe (2013) in 
preparation 

Future climate projections using 
CMIP5 global model output 

Future projections of malaria risk – 
not part of QWeCI project. 

Kovats RS, Rocklov J, Caminade 
C, Tompkins AM, Morse AP, 
Jesus Colon-Gonzalez F, 
Stenlund H, Martens P, Lloyd SJ, 
2013: Modelling the impact of 
climate change on malaria: a 
comparison of global malaria 
models, PNAS submitted 

Franziska Piontek et al. 2013: 
Leaving the world as we know 
it: Hotspots of global climate 
change impacts, PNAS 
submitted 
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Note that in the following, the LMM refers to the model version with modified parameter 
settings as given by Ermert et al. (2011) and referred to as LMM2010. A summary of the 
results for a selection of stations across the region (Figure below) the control model 
LMM2010 agrees well with the range of EIR values, which is not surprising, considering these 
data were used to calibrate the model settings. Although VECTRI was not calibrated with the 
data, at seven of the eight locations the rural VECTRI EIRa values overlap with the field 
observations mean- ing that the VECTRI runs produce realistic transmission values for most 
parts of West Africa. In comparison to the LMM2010, VECTRI shows a much smaller year-to- 
year variability and some field observations lie outside the range of the model interannual 
variability. To a certain extent, this is to be expected, since the model is only able to simulate 
the interannual variability due to climate - other factors such as interventions are neglected. 

Instead, the LMM is calibrated to reflect all variability in the observations in its sensitivity to 
rainfall and temperature, as seen in the earlier equilibrium integrations. That said, VECTRI 
underestimates the malaria transmission in the northern Sahel. Too small transmission values 
are simulated by VECTRI in Podor for example. Transmission in urban areas appears to be 
under-simulated, and in two urban locations in Dakar no transmission at all occurs in the 
model. Further south, where more rainfall occurs during the monsoon season, VECTRI in 
general simulates somewhat too high EIRa values in comparison to the rural observations. 
VECTRI also seems to simulate too high  ransmission values in equatorial Africa in Douala, 
which is subject to high annual rainfall rates. The simulated EIRa values exceeding 500 
infectious bites per human per year are rarely observed in Africa with 13 surveys out of a 
total of 180 reported by [32] registering EIR in this range. 

 

 

 

A further detailed analysis is made for Bobo-Dioulasso in southwest Burkina Faso, which was 
chosen due to a particularly large number of field experiments with which to compare the 
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models. Malaria is seasonally endemic in this location and a number of field campaigns have 
sampled EIR and CSPR in both (peri) urban and rural (some with nearby irrigation schemes) 
environments [97-106]. 

Only one integration is conducted for the LMM 2010 since it is unable to account for 
population density. This is compared to two VECTRI integrations representative of rural 
 latitude 11.43°   lon itude 4.25°E  human population density H=32.2 km−2  and urban 
(latitude 11.2°N, longi- tude 4.30°E  H=1040 km−2  field locations.  he timeseries of annual 
EIR and CSPR values from the 3 integrations (Figure 8) show that both models reproduce the 
correct order of magnitude for these two variables in the rural location. The EIR in the VECTRI 
model and LMM2010 lie within the spread of measured EIR. The significant variability 
between the observed EIR values is noted, which could derive from differences in terrain, 
topography, altitude, vicinity to water bodies, irrigation and land use, interventions and 
simply experimental sampling error. It emphasizes the uncertainty in individual 
measurements and the need for ensembles of experiments to gauge this uncertainty. The EIR 
is generally lower in rural locations with irrigation, possibly as a result of preditor 
establishment in longer-lived pools but may also be due to irrigation providing farmers with 
higher incomes permitting further prevention and treatment measures.  This emphasizes the 
difficulty in gauging such influences in the w0 parameter of the VECTRI model. 

Intercomparing EIR from the two malaria models, the very high interannual variability of the 
LMM2010 is obvious, related to its elevated sensitivity to rainfall demonstrated in the earlier 
constant-input experiments. The LMM2010 EIR value ranges by more than an order of 
magnitude between the lowest and highest year, while the interannual variability is less than 
a factor of two for the VECTRI model. It is interesting to note that, despite the basic underlying 
structure being very similar in the two models, the parametrization choices, in particular the 
implementation of the surface hydrology in the VECTRI model, results in almost a zero 
correlation between the two models in their representation of interannual variability 
(recalling that this is one particular parameter setting for the LMM and that the original LMM 
uses a different rainfall egg-laying relationship with a positive correlation); indeed, the EIR 
appear anti-correlated indicating that rainfall variability is determining the interannual 
variability to a large extent. 

The black squares in the figure give EIR values for high population areas in peri-urban Bobo-
Dioulasso, which are much smaller than in the rural environments but nevertheless non-zero. 
The LMM2010 is not designed to simulate these urban cells, however the VECTRI model is 
seen to reproduce reasonably well the contrast between rural and urban areas. Even though 
the treatment of the surface hydrology is identical in urban and rural environments - a gross 
oversimplification - the VECTRI model is able to mimic the drop in EIR which derives merely 
from the lower ratio of vector to host in urban areas. In contrast with the other West African 
locations, urban transmission is overestimated in this location. In the second panel, it is seen 
that while both models are again similar and perform well in reproducing the observed CSPR 
rates, the VECTRI model does less well in reproducing the distinction between rural and 
urban environments. Although the CSPR is lower in urban environments, it is still far larger 
than the observations in VECTRI. An possible implication is that vector lifetimes for urban 
areas are too long in the model. 
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b) Regional integrations 

The strength of the VECTRI model is its ability to run on a regional scale at a relatively high 
horizontal resolution. The VECTRI integration made for Eastern Africa is com- pared to the 
MAP malaria analysis (Figure  below). As this is a single deterministic integration of the 
malaria model it is simply compared to the mean PR of MAP. This simple comparison of mean 
PR distributions indicates that the model is able to reproduce the general patterns observed 
in the MAP analysis, with high rates in central and northeastern Uganda and Western Kenya, 
but dropping over the higher terrain, with the central Kenya, central Tanzania and most of 
Rwanda largely malaria-free (EIRa < 0.01, PR < 1%), as is the southwestern-most tip of 
Uganda. 
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The VECTRI model also reproduces the malaria zones in the warmer and more humid coastal 
regions in Kenya and Tanzania, but with values of PR along the Kenyan coast and northern 
Tanzania in VECTRI (30-70%) appear to greatly exceed those in the MAP analysis (0-30%). 
This is a region in which the survey data incorporated into the MAP analysis is dense, 
although still identified as relatively uncertain. A large part of the discrepancy between 
VECTRI and MAP is likely due to the increasing interventions including widespread 
distribution of insecticide-treated nets (ITNs) that have occurred over the past decade that 
have greatly decreased parasite ratios and hospital admissions. For example, the survey of 30 
villages in Malindi, Kilifi, and Kwale Districts carried out in the late 1990s before ITN 
distribution started [119] (included in the MAP analysis) reported a parasite prevalence 
ranging from 38 to 83%, with a mean slightly exceeding 60% in each district, in close 
agreement with the VECTRI model. This highlights the importance of the future 
incorporations of interventions into VECTRI if it is to be applied to the seasonal forecasting 
task. 
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Conclusions  

A new dynamical community malaria model is publicly available that accounts for climate and 
population density to simulate malaria transmission on a regional scale. The model structure 
facilitates future development to incorporate migration, immunity and interventions. It has 
been evaluated in a number of settings and forms the basis of the monthly to seasonal 
forecasting system that has been developed within the QWeCI project with partner 
ECMWF.  

While already representing a useful tool to aid research into the understanding of malaria 
transmission, the VECTRI is undergoing further development to incorporate further aspects 
important for malaria transmission. These developments include: a flexible incorporation of 
various models for host immunity, a stochastic ensemble framework to account for 
uncertainty in model parameters and observations, improved surface hydrology that accounts 
for terrain slope, soil type and land use characteristics, a dynamical host model that includes 
migration, population demographics and urbanisation, explicit incorporation of commonly 
employed interventions, and lastly multiple vector types and vector dispersion. 
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[D] Mixed malaria model for Malawi 

Overview  

A spatio-temporal statistical model framework (Lowe et al., 2011, Lowe et al., 2012) has been 
extended to simulate malaria risk, as a function of climate and socio-economic drivers, in one 
of the QWeCI pilot sites: Malawi. Malaria transmission is influenced by variations in 
meteorological conditions, which impact the biology of the mosquito and the availability of 
breeding sites, but also socio-economic conditions such as levels of urbanisation, poverty and 
education, which influence human vulnerability and vector habitat. The many potential 
drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity 
are often difficult to disentangle. This presents a challenge for modelling of malaria risk in 
space and time.   
 

Model Input dataset and disease observation dataset  

Using an age-stratified spatio-temporal dataset of malaria cases from July 2004 – June 2011, a 
spatio-temporal modelling framework has been developed to explore variations in malaria 
risk in the 28 districts of Malawi. District level data is tested in the model to account for 
confounding factors, including the proportion of the population living in urban areas; residing 
in traditional housing; with no toilet facilities; who do not attend school, etc, the number of 
health facilities per population and yearly estimates of insecticide-treated mosquito net 
distribution.  

Climatic and topographic variations are included by using an interpolation method to relate 
gridded products (e.g. CPC FEWS-Net rainfall estimates based on satellite and rain gauge data 
and ERA-Interim Reanalysis temperature data) to administrative districts. Figure 1 shows the 
relationships between malaria standardised morbidity ratios (SMR, the ratio of observed to 
expected malaria cases), climate variables are the most significant time lags (precipitation 1 
month lag, temperature 3 month lag) and the relationship between precipitation and 
temperature. The solid line shows the linear model fit and the dashed curve shows the local 
polynomial regression fit.   
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Figure 1: Scatter plots to show the relation between malaria standardised morbidity ratios 
(SMR) and precipitation (1 month lag) and temperature (3 month lag) for the 28 districts of 
Malawi, July 2004-June 2011. 

Performance Assessment and Results 

 
Using the exploratory variable outlined above, a generalised linear model framework was 
used to test and select spatial and temporal variables, factors, interactions and polynomial 
terms. Stepwise model selection was performed using Akaike Information Criterion (AIC). 
Categorical variables of importance were age group (over and under five years), region 
(north, central, south), zone (lowland, lake shore, highland and combinations), annual cycle. 
Important climate information was temperature (lag 3 months), precipitation (lagged 1 
month with a quadratic association, see Fig. 1), interaction between temperature and 
precipitation (see Fig, 1). Non-climate information included altitude, longitude and latitude 
(quadratic relationships), demographic information: urbanisation, population density, 
housing conditions: one room for sleeping, no toilet facilitates, health facilities per population 
and education level.   
 
In order to account for the unobserved confounding factors that influence malaria, which are 
not accounted for using measured covariates, a generalised linear mixed model (GLMM) is 
adopted, which includes structured and unstructured spatial and temporal random effects. A 
hierarchical Bayesian framework, using Markov chain Monte Carlo (MCMC) simulation, was 
used for model fitting and prediction.  Using a stepwise model selection procedure, several 
explanatory variables were identified to have significant associations to malaria including 
climatic, cartographic, and socio-economic data. Once unobserved confounding factors and 
spatial correlation were considered in a Bayesian framework via spatial random effects (see 
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Figure 2), a final model emerged with statistically significant predictor variables limited to 
age group, an autocorrelated annual cycle, the number of health facilities per inhabitant, 
average precipitation (quadratic relation) and average temperature during the three months 
previous to the month of interest (see Figure 3).  
 
 
 

 

 
 

Figure 2. Spatial distribution of multiplicative contribution of posterior mean spatially (a) 
unstructured (to account for heterogeneity between districts) and (b) structured (to account for 
correlation/clustering between districts) random effects. 
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Figure 3. Kernel density estimates for the marginal posterior distributions for the significant 
parameters estimates associated with the categorical variables (a) age group and (b) calendar 
month and (c) health facilities per inhabitant, (d) temperature, (e) precipitation and (f) 
precipitation squared. 
 
 

Figure 4 shows a summary of the model fit, divided into five years and over age group (top 
panel) and under five years age group (lower panel). The scatter plots and time series show 
the relation between model fit and observed malaria SMR for the whole of Malawi for the 84 
month time period. Observed and fitted values appear to agree quite well. The annual cycle in 
malaria is well captured. Although the model does not well represent inter-annual variation in 
malaria, the temporally varying climate information does explain some of this variability. Over 
all, the model explains 41% of the variation in malaria risk. The maps show the root mean 
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squared error (RMSE) of the difference between model fit and observed SMR over the time 
period in each of the 28 districts, highlighting districts where the model performs less well. 
The feasibility of using dynamical disease model output to drive statistical models is in 
progress.    
 

 

Figure 4: Space averaged scatter plot (left) and time series (centre) of observed and model fit 
malaria SMR in Malawi for the 84 month time period. Map (right) of the root mean squared 
error (RMSE) between observed and model fit malaria SMR for each district in Malawi over the 
84 month time period. Top panel: five years and over age group, lower panel: over 5 years age 
group.   

 

We plan to drive this statistical malaria model for Malawi using seasonal to decadal forecasts, 
in order to assess the ability of a forecasting system to predict variations in malaria seasons, 
from one year to the next, with a lead time of several months. This will require a thorough 
skill assessment of seasonal climate forecasts for this region of Africa. 

Conclusions  

When modelling malaria risk in Malawi it is important to account for spatial and temporal 
heterogeneity and correlation between districts. Once observed and unobserved confounding 
factors are allowed for, precipitation and temperature in the months prior to the malaria 
season of interest are found to significantly determine spatial and temporal variations of 
malaria incidence. Climate information was found to improve the estimation of malaria 
relative risk in in 41% of the districts in Malawi. 
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[E] Statistical modelling of Rift Valley fever vectors abundance in a 
Sahelian area (Barkédji in Senegal) 
 

Overview  

 
A spatio-temporal model (Statistical Bayesian model) was developed in order to investigate 
the impact of climatic factors on Rift Valley fever (RVF) vector abundance and to predict the 
period as well as the areas with the highest vector productivity. Datasets on RVF vectors and 
environmental factors were generated as part of a longitudinal study conducted in 2005 every 
fortnight at 79 sites including temporary ponds, barren, shrubby savannah, wooded savannah, 
steppes, and villages at different distances (ranging between 0 and 600 m) from the main 
ponds of the Barkedji area (northern Senegal). 
 
Our findings showed the importance of environmental conditions in predicting mosquito 
abundance. Relative humidity was positively correlated with the main RVF vectors 
abundance. Maximum temperature and rainfall were associated with the number of collected 
mosquitoes. The highest vector densities were observed around ground pools and 
neighboring sites. Improvements to the model have been carried out as part of this pilot 
study. 

Model Input dataset and disease observation dataset  

 
Maximum and minimum temperature, relative humidity, Normalized Difference Vegetation 
Index (NDVI), and cumulative rainfall were used to fit the Bayesian model. NDVI was derived 
from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite (National 
Aeronautic and Space Administration, NASA). NDVI data was based on a 16-day average at a 
spatial resolution of 250 m. Temperature, rainfall and relative humidity were provided by the 
ground level weather stations managed by CSE (Centre de Suivi Ecologique) in the area. 
Cumulative rainfall 15-20 days prior to mosquito collection was chosen to take into account 
the cumulative effect of rainfall on ponds and consequently on vector productivity and 
abundance. Six landscape classes were defined using SPOT 5 satellite images. The method is 
based on a combination of two different studies (FAO, 1997 and Anon, 1956).  Mosquitoes 
were collected bi-weekly using CDC light traps in 79 sites including all landscape classes. 

Performance Assessment 

 
The Rift Valley Fever vector model performance is assessed using the following metric: 
 

 Comparison of the modelled versus observed vector abundance for all landscape 

classes. 

 Generation of forecast maps during the vector abundance peak in order to provide 

information about the areas at risk  
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Results 

 
Comparison between modelled and observed data in all landscape classes  

 

For Culex poicilipes, except in the barren and in the steppe categories, the best model 

simulates the spatial variability of observed data in the other land cover classes (Figure 1.1). 

For Aedes vexans, the model reproduces the observed seasonality distribution for the different 

landscapes. All observed data were included in the prediction interval (Figure 1.2).  

 

 
Figure 1.1: Observed (solid line) and predicted (dashed; shaded area=95%prediction 

interval) abundances for Culex poicilipes for the different landscapes. 
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Figure 1.2: Observed data (solid line) and predicted (dashed; shaded area=95%prediction 

interval) for Aedes vexans for the different landscapes. 

 

Comparison between modelled and observed data during the vector abundance peak   

Forecast maps were generated during the peak in vector abundance. In September and 
October, maps predicted that the highest number of Culex poicilipes will be found near the 
Kangaledji and Niakha ponds (Figure 2.1). For Aedes vexans vector the highest abundance was 
simulated around the Niakha pond and in the northern part of the study area (Figure 2.2).  
 

 
Figure 2.1: predicted maps during peak abundance for Culex poicilipes.  
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Figure 2.2: predicted maps during peak abundance for Aedes vexans   

 

 

Conclusions  

 
These results indicate that climatic factors affect the abundance of both RVF vectors. The 
modelling approach indicated that cumulative rainfall, minimum temperature were negatively 
associated with Culex poicilipes abundance while NDVI, minimum temperature and relative 
humidity were positively associated with it. For Aedes vexans, only rainfall was positively 
associated with the vector abundance (peaking in phase with the rainy season e.g. boreal 
summer). These results can be used to improve the survey and control of Rift Valley Fever 
vectors in the Barkedji area in northern Senegal. 
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[F] Pilot Integrated multi-agent system for RVF in Senegal 
 

Overview  

The main objective was to implement a multi-agent pilot system based on different 
environmental parameters and RVF disease components (vector-host-pathogen) for the 
Barkedji area in Senegal. 
 
We developed a data management platform to centralize the environmental and 
epidemiological field/laboratory data collected by the different QWeCI project partners in 
Senegal. 
 
Based on the published literature, we setup a decision system with the same data to integrate 
analyses tools and data mining with cartographic views. 

UML formalization 

 
UML (Unified Modeling Language) is used to formalize the different model components. UML 
is an object oriented standardized programming language. It includes a set of graphic notation 
techniques to create visual models of object-oriented software-intensive systems and is 
commonly used in the field of software engineering. 
 
In stren th depends on its ability to “clearly and accurately model the structure and behavior 
of a system irrespective of any method or pro rammin  lan ua e”  Muller and Gardner, 
2000). 

MAS implementation 

The approach we used is based on the implementation of a multi-agent system. The MAS 
principle is to study at an aggregate level several sub-systems known at the local level (Daude, 
2005). 
 
The selected approach aims at identifying the agents; specifying the environmental conditions 
through which these agents evolve and finally transcribing the different algorithms governing 
their behavior and interactions. We used different idealized scenarios to improve our 
understanding of the relationship between RVF disease outbreaks and environmental factors 
for the Barkedji area. 

GAMA platform 

GAMA (Taillandier et al, 2000) was used to run and interpret the integrated model system. 
GAMA is a simulation platform, which aims at providing field experts, modellers, and 
computer scientists with a complete modelling and simulation development environment for 
building spatially explicit agent-based simulations. It is being developed by several French 
and Vietnamese research teams under the umbrella of the IRD/UPMC International Research 
Unit since 2007. GAMA is easy to use and proposes: 
 

- Spatial analysis tools: a GIS (geographic information system) interface which allows 

studying the Barkedji area 
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- Configuration tools: parameterization of the number of camps, the initialization of 

population of vectors and hosts … 

- Models output tools: Estimate vectors and hosts population dynamics, output risk 

maps and simulations… 

Model Input dataset and disease observation dataset  

 

Spatial data 
 
The study was conducted with field and environmental data collected from the rural Barkedji 
area which is included in the district with the same name (Common Dahra-Linguère 
Department Linguère Louga). We selected the Barkedji area because of the large RVF 
outbreaks that took place historically over the region. The Barkedji area is characterized by a 
large livestock density and by a large number of temporary ponds. For the sake of 
generalization, we chose to integrate a broader spatial dimension which starts from the 
administrative division of Senegal. All actions are logged handled according to the following 
temporal hierarchy: Year -> period (dry or rainy season) -> month -> day. All fixed objects 
were geo-referenced. 

Climatic, hydrological and water quality data 

One of the fundamental subjects of our study is the pond dynamic which is related to several 
environmental factors: 

- The rainfall stations and automatic weather stations were installed around water 

bodies: measures such as wind speed, temperature  rainfall… were automatically 

generated and collected periodically. 

- Limnimetric measurements: they can measure the water level of ponds. 

- Water quality parameters: they measure the pH, temperature, suspended solids from 

pond water, turbidity of the ponds… 

Entomological and virological data 

During fieldwork, mosquitoes were captured using standard and CO2 bait traps surrounding 
large livestock population (mutton and chicken). This was followed by individual 
identification of the different mosquito species to determine their a e  sex… In addition, blood 
samples were collected on sentinel herds. Virology parameters in mosquitoes were assessed 
on the basis of ground sample. Virology parameters in animals were also tested in order to 
check for RVF circulation (using IGG, IgM antibody standard tests). 

Results  

 

A first simulation has been developed using the GAMA platform (Figure 1) to allow us to 
investigate the impact of different rainfall scenarios on RVF dynamics in the Barkedji area. 
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Figure 2 : Screen simulation (initialization phase) 

The first simulation results for Barkedji corroborate the RVF emergence mechanism identified 
for the Ferlo region (Ba et al, 2005; Ndione et al, 2008) e.g. unusual large precipitation 
occurring during the end of the rainy season (Sep-Oct) drives risk in RVF outbreaks. The 
simulation data essentially came from different scientific areas such as climatology, 
hydrology, entomology, veterinary science...  
 

 

Figure 3 : Output Screens of the simulation 

Scenario 1: Reference scenario 

The 2012 rainy season remains the reference scenario. Large intra-seasonal rainfall 
variability was observed over the study area. Large precipitation was observed from week 20 
to week 27 (figure 3). Then a long pause in rainfall (21 days) was observed between the 
weeks 28 and 32. This seasonal rainfall distribution had significant impacts on the vector 
dynamics as shown on figure 4. 
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Figure 4: Reference scenario rainfall curve 

Number of simulated Culex Poicilipes and Aedes Vexans (related to Scenario 1) 

A quasi extinction of Aedes Vexans population following the end of the rainy season (day 220) 
can be observed (red line on Figure 4). At the same time, the large hatching of Culex Poicipiles 
is shown on Figure 4 (white line) corresponding to the Aedes Vexans extinction phase. In an 
average situation, the Aedes emergence only occurs during the first half of the rainy season. 
On the other hand, following the long rainfall pause (that lasted 21 days) that particular year, 
a large rainy event has favored deposition formerly sufficiently dry Aedes Vexans eggs in 
temporary ponds, to finally cause uncommon Aedes Vexans emergence in October (Weeks 32 
and 33). 

 

 

Figure 5: Evolution of the RVF vectors based on the reference scenario 

 
Those unusual late rainfall events (occurring at the end of rainy season e.g. Oct) allow the 
Aedes eggs to hatch, while in principle they should have hatched at the beginning of the 
following rainy season. This also maintains the Culex population at a relatively high level. 
The RVF virus is found again in a double favoring environment with possibilities of dispersion 
(or initialization of the epidemiological cycle e.g. Aedes role) and of intensification (Culex 
amplification role). A strong virus circulation was consequently simulated in herds (Figure 5) 
when the hatching of both vectors occurred (day 235-250). 
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Figure 6: Reference scenario Infected herd evolution 

Scenario 2: intense and regular rains 

Scenario description: We selected a particular season when the rains were intense (clearly 
higher than the reference threshold of efficient rains e.g. 20mm) and regular (Figure 6). 

Number of simulated Culex Poicilipes and Aedes Vexans (related to Scenario 2) 

The first efficient rain has caused a large emergence of the Aedes Vexans population; the 
abundance of Aedes vectors then varies following the rainfall intra-seasonal variability before 
falling dramatically at the end of the rainy season (Figure 7). 
 

 

Figure 7: Scenario 2 rainfall curve 

The emergence of culex Poicilipes occurs early in the season (day 200), but their presence is 
only observed when Aedes Vexans population are almost non-existent. 
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Figure 8: Scenario 2 Vectors Evolution 

Low infected herd peak (less than 2% of infected herds; not shown): 
 The first peak coincides with the massive hatching of Aedes Vexans. As there is almost 

no Culex Poicilipes emerging during that period, Aedes Vexans are the only vectors 

able to transmit RVF. However, their abundance and aggressiveness are not sufficient 

to allow significant virus transmission. 

 The second peak coincides with the hatching of Culex eggs without the presence of 

Aedes. Despite large vector densities, the virus transmission remains relatively low. 

 

Conclusions  

We highlighted the relationships between rainfall, RVF vectors and infected herds (mainly 
livestock). We showed that an unusual rainfall event occurring at the end of the rainy season 
drives an unusual hatching of Aedes Vexans (that should have hatched during the following 
rainy season). Large abundance of Aedes in phase with the emergence of Culex mosquitoes 
during that period causes amplification in virus transmission, leading to an increased risk of 
RVF outbreaks over the region. 
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[G] RVF mixed statistical Model for Kenya 
 

Overview  

 
Rift Valley fever is a mosquito-borne viral zoonosis that mainly affects sheep, goats, cattle and 
camels. It has been recognised as an important disease problem internationally; its emergence 
and spread is influenced by climate, land use patterns and trade. We analysed historical data 
on the disease outbreaks in Kenya obtained from the Department of Veterinary Services over 
the period 1951 – 2010 to identify predictors for outbreak. The analysis was conducted at the 
spatial scale of the division (n = 505) and the monthly infection status of each division was 
modeled as a binary response variable. Explanatory variables investigated included: monthly 
precipitation, normalized difference vegetation index (NDVI), elevation, land use/land cover, 
livelihood zone, soil type, livestock and human population densities and the number of times a 
division has had an outbreak before. Multiple regression models were used but the spatial 
multiple membership model supported by a Bayesian Markov Chain Monte Carlo (MCMC) 
framework provided the best fitting model. Descriptive analyses indicate that a total of 91 
divisions in 42 districts (of the original 69 districts in place by 1999) reported RVF outbreaks 
at least once over the period. The mean interval between outbreaks was determined to be 43 
months.  Factors that were positively associated with RVF occurrence included increased 
precipitation, NDVI, low altitude and soil types: vertisols, solonertz and luvisols. The model 
generated has been used to generate a risk map that can be used to design risk-based 
surveillance. Its utility is demonstrated by its ability to identify new/potential hotspots (e.g. 
the northwestern Kenya) where outbreaks had not been reported.     
 

Model Input dataset and disease observation dataset  

 
RVF outbreak data  

 
Annual records on RVF outbreaks for the period 1912 to 2007 were obtained from the 
Department of Veterinary Services (DVS) and Centers for Disease Control (CDC), Kenya. These 
records identified the province, district and division affected and the year when each area 
reported an outbreak. These data have been published by Murithi et al. (2010) and they have 
also been used by CDC to generate an RVF risk map for Kenya (Ministry of Livestock 
Development [MoLD], 2010).  In these records, RVF outbreak is defined as a higher than 
normal occurrence of still births, abortions of perinatal mortality and hemorrhagic syndrome 
in livestock. However, some of the cases were confirmed using antigen and antibody enzyme-
linked immunosorbent assay (ELISA) and real-time reverse transcription polymerase chain 
reaction (RT-PCR) tests for the purposes of official declarations.  
 
For this analysis, data cleaning and refinement, guided by the records archived at the 
Department of Veterinary Services (DVS), were done to change the time component to 
monthly rather than the annual scale reflected in the original data.  
 

Spatial data 

 
Table 1 shows a list of variables used as predictors and the source of each data type. Data on 
livelihood zones were obtained from Famine Early Warning Systems Network (FEWS NET, 
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http://www.fews.net/Pages/default.aspx). FEWS NET has classified geographical areas into 
homogeneous units where people share similar livelihoods including options for obtaining 
food, income and market opportunities to inform food security analyses. Maps produced from 
this livelihood profiling are also used for monitoring food security risks and identifying 
intervention needs. Kenya has 19 livelihood zones (Grillo and Holt, 2009). For the purpose of 
descriptive analyses, these levels were collapsed into 6 more general livelihood categories: 
high potential, medium potential, marginal, pastoral, agro-pastoral and riverine.  
 
We used global land cover data assembled by Food and Agriculture Organization of the United 
Nations (FAO) from the Global Land Cover (GLC2000) analysis that had been done by an 
international partnership of research  roups coordinated by European Commission s Joint 
Research Centre (Di Gregorio and Jansen, 2000).  GLC2000 data comprised daily observations 
collected over a 14-month period from VEGE A IO  s sensor on board SPO  4.  he GLC 2000 
analyses led to the production of detailed regional and cover maps that were then aggregated 
by FAO using a simpler thematic global legend. These data are gridded at 1 km spatial 
resolution. The distribution of land cover types (at 1 km2) was generated by division and the 
most dominant land cover type was assigned to corresponding divisions.  Overall, the country 
has 11 land cover types; the most common types are various herbaceous domains, cultivated 
and managed areas. These were collapsed into 6 land use types including artificial, cultivated, 
herbaceous cover, tree cover, mosaic and water, for ease of use in the analysis.  
 
Gridded ERA-Interim reanalysis precipitation data and minimum and maximum temperature 
estimates for the period January 1979 to December 2010 were downloaded from European 
Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). These data have 
been optimised (global best estimates) to fit both short-range forecasts (from a model) and 
observed data. Normalised Difference Vegetation Index (NDVI) data for the period 1999 to 
2009 were obtained from SPOT VEGETATION (http://free.vgt.vito.be/). NDVI, a measure of 
amount and vigour of vegetation on land surface, is derived from radiometric sensor 
measures of reflectance for both red and near infrared bands on two separate channels or 
images. NDVI estimates are derived by subtracting red band measures from the near-infrared 
and dividing the difference by the sum of the two measures. These values range between -0.1 
and 1.0; negative values indicate clouds and water, positive values near zero indicate bare soil 
and higher values indicate dense vegetation. NDVI extracts are available on 10 day-intervals 
at a spatial resolution of 1 km. For this study, minimum, maximum and average values for 
each division were extracted.  
 
The digital elevation data were originally generated by NASA Shuttle Radar Topographic 
Mission (SRTM) based on Digital Elevation Models (DEM) (http://www.cgiar-
csi.org/data/srtm-90m-digital-elevation-database-v4-1). The data used in this analysis were 
obtained from CGIAR-CSI STRM at a resolution of 90 m. The CSI STRM data have been 
upgraded using new interpolation algorithms for completeness and to enhance wider 
application for geospatial analyses.  
 
Data on soil types were extracted from the Harmonised World Soil Database (HWSD) 
developed by FAO and the International Institute for Applied Systems Analysis (IIASA) 
(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). The data has a resolution of 1 km and over 15000 
different soil mapping units are recognised in the database. The database contains 
information of the soil units, soil properties and other parameters such as organic carbon, pH, 
water storage capacity, soil depth, etc.   
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Human population data for the years 1960, 1970, 1980, 1990 and 1999 were obtained from 
the Kenya National Bureau of Statistics.  

 

Table 1: Predictors used in the RVF statistical model   

 

Variable Description 

Livelihood zones Livelihood practices (2006), FEWS NET 
Land cover Global land cover data (GLC2000), FAO 
Precipitation Monthly minimum, maximum and average for the period: 1979 – 

2010, ECMWF 
NDVI Monthly average, minimum, maximum values from: 1999 – 2010, 

SPOT VEGETATION 
Human population Human and household census for 1960, 1970, 1980, 1990, 1999, 

Kenya National Bureau of Statistics 
Elevation CSI SRTM 
Soil types FAO s Harmonized World Soil Database  HWSD   200   FAO 

 

Statistical analyses 

 
A dummy variable was used to indicate whether, in a given month, a division had an outbreak 
(1) or not (0). A value of 1 was assigned only when a division reported the disease for the first 
time within a period of 6 months. Descriptive analyses were conducted to determine the 
distribution of outbreaks. Crude associations between RVF outbreaks and most of the 
predictors given in Table 1 were analysed using various types of statistical tests. A Chi-square 
test was used to determine the association between soil texture (broad classification of soil 
types into clay, loamy, sandy, and very clayey). The effect of elevation was assessed via a 
graphical analysis that allowed for the establishment of a threshold height under which a 
majority of the outbreaks were found.  
 
Univariable analysis 
 
Univariable Logistic regression models were also used to assess the association between 
precipitation and NDVI and RVF outbreaks. Precipitation variable was formulated in various 
ways before fitting in the model, i.e.:  

- monthly values,  

- 1- and 2-month lagged values,  

- 2- and 3-month running cumulative values,  

- 2- and 3-month running mean values.  

 
For NDVI, minimum, mean and maximum values were fitted. Forms of precipitation and NDVI 
variables that gave the largest log likelihood estimates were used in the subsequent analyses.   
 
Elevation and the number of times a division had experienced an outbreak were fitted as a 
continuous variable to assess the linearity assumptions. Both of these variables were 
categorized since this assumption was not met.  
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Multivariable analysis  
 
Multivariable models fitted to the data included: 

(i) Mixed effects logistic regression model with livelihood zone as a random variable 

(ii) Mixed effects logistic model utilizing Bayesian MCMC estimation methods,  

(iii) Spatial Multiple-Membership (MM) model fitted under the MCMC framework to 

account for spatial autocorrelation at the division level.  

 

Random variables were included in the models to account for spatial clustering at the 
livelihood zone level. MCMC model used non-informative priors and up to 50,000 iterations 
were executed to allow for a good mixing of the chains. 

Results  

 

Descriptive analyses 

 

Spatio-temporal distribution of RVF cases 

 
A total of 505 divisions (from the 1999 human and housing census) were used in the analysis. 
Twenty percent (n = 102) of these had at least one outbreak of RVF over the period 1979 – 
2010. Mean inter-epidemic period was estimated to be 5.4 years, with a 95% confidence 
interval of 4.4 – 6.4 years. Temporal and spatial distributions of the outbreaks per month for 
the period January 1979 to December 2010 are outlined in Figures 1 and 2, respectively. 
Figure 1 suggests that the number of divisions affected by RVF outbreaks have been 
increasing over time, particularly in 1997/98 and 2006/2007 outbreaks.  
 
Univariate analyses  

 

Soil texture 

 
Table 2 gives the results of a Chi-square test used to determine the association between soil 
texture and RVF occurrence. The analysis uses 502 divisions that had reliable information on 
the dominant soil texture and the outcome represents the number of divisions that had had at 
least one infection over the study period. This analysis shows RVF incidence was significantly 
higher in divisions where clay soils were the dominant soil texture.  
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Figure 1: Temporal distribution of RVF outbreaks per division-month over the period January 1979 to 

December 2010  

 

Figure 2: Spatial distribution of RVF outbreaks per division-month over the period January 1979 to 

December 2010  
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Table 2:  Association between the soil texture and RVF occurrence based on historical data on RVF 

(January 1979 – December 2010) 

 

Soil texture Number of divisions 
with  
Soil texture  

Number 
outbreaks by soil 
texture 

% Chi (P)1 

Clay  345  80  23.2  5.6 (0.02) 
Loamy  70  11  15.7  1.1 (0.30) 
Sandy  25  2  8.0  2.5 (0.12) 
Very clayey  53  8  15.1  0.1 (0.32) 
1Chi square is estimated for each soil texture by comparing the frequency of outbreaks in 
divisions with and without a given soil 
 

Land cover and livelihood zones 

 
The distribution of the number of divisions by land cover and livelihood variables is outlined 
in Table 3. The table also gives the distribution of the number of divisions that have had at 
least one outbreak at various levels of land cover and livelihood variables. A high proportion 
(30.1%) of divisions with herbaceous land covers as the dominant vegetation have 
experienced RVF outbreak at least once. Similarly, a high proportion (31.5%) of divisions that 
practice pastoralism as the dominant livelihood activity have had RVF outbreak at least once.   

 

Table 3: Distribution of the number of divisions that have had at least one RVF infection by land cover 

and land use variables based on historical data on RVF epizootics   

 

Land cover  Livelihood zones 
Levels cases n %  Levels Case n % 
Artificial 3 6 50.0  High potential 30 174 17.2 
Cultivated 7 98 7.1  Marginal 20 111 18.0 
Herbaceous 62 206 30.1  Medium 

potential 
12 57 21.1 

Mosaic 1 55 1.8  Pastoral 29 92 31.5 
Tree cover 22 111 19.8  Agro-pastoral 8 41 19.5 
Water 0 2 0  Riverine 0 5 0 

 

Elevation 

A graphical analysis of the relationship between elevation and incidence of RVF is given in 
Figure 3. This graph uses monthly incidences of RVF over the period. It shows that most areas 
that have had the disease fall below approximately 2300 m above sea level. The variable was 
then categorized into three levels: 0 – 1000 m, >1000 - <2000 and >2000 m.  
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Figure 3: Scatter plot showing the relationship between elevation (in metres) and RVF cases in Kenya 

based on historical data on RVF outbreaks for the period Jan 1979 – Dec 2010.  

 

Precipitation and NDVI 

 
Log likelihood estimates generated from crude Logit models used to analyse forms of the 
precipitation variable were:  
 

 -3102.69 for monthly values,  

 -3050.08 for 1-month lagged estimates,  

 -3033.71 for 2-month lagged values,  

 -3061.06 for 2-month running cumulative values, and  

 -3018.20 for 3-month running cumulative values.  

 

This suggests that using cumulative values of precipitation for the recent 3 months gives a 
better fitting model than the other forms of the variable. Means and variances from 
precipitation estimates for the last 2 and 3 month had similar log likelihood estimates as their 
respective running cumulative values. A similar analysis using forms of NDVI variables 
(minimum, mean and maximum) suggests that maximum NDVI values predicts RVF outbreaks 
better than minimum and mean values.   
 
Multivariate analyses  

Three models fitted to the data are illustrated in Table 4. All the models, identified soil type 
(vertisols, solonertz, and luvisols), elevation, precipitation, NDVI and the number of previous 
outbreaks as significant predictors. Livelihood zone was also significant as a random effects 
variable.  
SMM was the best fitting model indicated by the low DIC. The results indicate: 

- Low altitude has a higher risk of RVF than high altitude 

- Areas that have had repeated infections have higher chances of experiencing new 

outbreaks  

- Cumulative precipitation (over recent 3 months) and maximum NDVI are positively 

associated with outbreaks. For each of these variables, squared derivatives- 

precipitation2 and NDVI2 - were included since the linear forms failed to meet the 

linearity assumption.  

0

10

20

30

40

0 500 1000 1500 2000 2500

Elevation in m

N
u
m

b
e
r 

o
f 
R

V
F

 c
a
s
e
s



60/57 

Table 4: Regression models fitted to the RVF historical data from Kenya 

 
The risk map generated from predicted risk of RVF is given in Figure 4. Compared to the 
mapped surveillance data illustrated in Figure 1, this output indicates new/potential RVF 
hotspots in the northwestern Kenya where RVF outbreaks have not been reported before.  

 
Figure 4: Predicted risk of RVF based on the mixed logistic regression model 
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Conclusions  

 

This analysis has generated fundamental information on risk factors for RVF outbreaks and 

enabled the development of a risk map that can be used to design risk-based surveillance. We 

used surveillance data obtained from the DVS, Kenya which were collected in the course of 

RVF epizootics for there haven t been any structured surveys to determine the distribution of 

the disease nationally. Surveillance data have inherent biases related with spatial distribution 

of cases given that areas that report outbreaks diligently would get overrepresented in the 

surveillance databases. In addition, confirmatory laboratory diagnosis based on PCR/ELISA 

tests are often done for initial/primary outbreaks but as the epizootic unfolds, surveillance 

would be diagnosed based on syndromes /case definitions that match with the confirmed 

outbreaks.      

 

Multiple models were used to compare their efficiencies in accounting for spatial 

autocorrelations. Spatial autocorrelation is an important factor to consider in this analysis 

because most of the areas that report RVF epizootics practice pastoralism where livestock 

move across community boundaries, potentially introducing the virus to contiguous areas 

that they visit. The mixed effect logistic regression model controls for spatial autocorrelation 

within a livelihood zone by using livelihood zone ID as a random effects variable. The 

Bayesian MCMC model uses structure though with a Bayesian estimation routine. The SMM 

model however uses an advance model that takes into consideration the neighbourhood 

structure of the divisions. Judging from the low DIC, this model fits the data better.  

 

RVF outbreaks occur when multiple events converge in a given space/time.  The relationship 
between RVF outbreaks and physical or climatic factors – precipitation, NDVI and soil types, 
as highlighted earlier, have been described earlier (Hightower et al., 2012; Anyamba et al., 
2009). This work has revealed additional information such as the type of soils associated with 
outbreaks. Clayey soils such as vertisols, luvisols and solonetz have low water percolation 
rates and most often occur in lower altitudes, leading to the development and persistence of 
floods whenever persistent precipitation occurs. Linthicum et al. (1983) have shown that 
floods, whether local or extensive, increases the risk of RVF. They further shows that the 
persistence of floods for 10 – 15 days is necessary for the emergence of flood water Aedes 
mosquitoes and the persistence of floods for a further 4 – 6 weeks and their colonization by 
seconday mosquito vectors such as Culex spp, Mansonia spp and others can allow 
amplification of the virus to epidemic levels provided susceptible hosts such as sheep, goats 
and cattle are available.  In arid and semi-arid areas, vegetation responds to precipitation 
changes and so it is expected that there would be a strong correlation between precipitation, 
NDVI and the disease outbreaks. Good vegetation cover also acts as good breeding sites for 
the vectors.    
 
Further analyses are being do to better understand RVF transmission dynamics from a 
multidisciplinary perspective. This involves the collation of socio-economic data such as 
poverty levels, risk practices and levels of investment in disease control efforts e.g. 
vaccination.  These analyses would involve the use of ecological niche models to capture 
future patterns of risk depending on climate, land use and livelihood changes.  
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This model will also be used to map RVF risk over West Africa in a near future. 
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[H] Malaria and climate seasonality over Limpopo, South Africa 

Overview  

 

Malaria is the most nagging parasitic infection affecting humans, accounting for an estimated 
300–500 million cases of malaria worldwide of which ninety percent of this occurs each year 
in sub-Saharan Africa [1]. Recent resurgence of Malaria in the East African highlands involves 
multiple factors, ranging from climate and land use change, to drug resistance, variable 
disease control efforts, and other socio-demographic factors [2, 3]. Malaria epidemics have 
long been reported to occur among vulnerable populations where immunity is often non-
existent or poorly developed. It is estimated that epidemic malaria causes between 12% and 
25% of estimated annual worldwide malaria deaths, including up to 50% of the estimated 
annual malaria mortality in persons less than 15 years of age [4]. Malaria is an extremely 
climate-sensitive tropical disease [5]. Whereas rainfall anomalies are widely considered to be 
a major driver of inter-annual variability of malaria incidence in the semi-arid areas of Africa 
[4, 6], recently recorded warming trend in East African highlands corresponded with 
concomitant increases in malaria incidences [3, 5]. The same study also reported that the 
biological response of mosquito populations to warming can be more than an order of 
magnitude larger than the measured change in temperature. This finding thus shows the 
importance of nonlinear and threshold responses of malaria (a biological system) to the effect 
of regional temperature change.  
 
A mere 0.5°C increase in temperature trend can translate into a 30–100% increase in 
mos uito abundance  thus indicatin  a ‘‘biolo ical amplification   of temperature effects [3]. 
Climatic determinants are considered particularly important, since both the disease agent 
(Plasmodium) and vector (Anopheles mosquitoes) are strongly affected by climate. 
Temperature, rainfall and humidity have been associated with the dynamics of malaria vector 
populations and, therefore, with spread of the disease [7]. Temperature determines parasite 
and vector development; rainfall provides conducive conditions for mosquito breeding sites; 
humidity and temperature together affects mosquito survival [8]. It is now believed that 
malaria epidemics caused by meteorological factors can be predicted from climatic indicators 
and climate forecasts. However, further efforts are needed to assess Malaria response to 
climate change in view of the known climatic determinants. Edi et al. [9] have compared 
climate suitability maps for malaria in the topographically diverse country of Zimbabwe and 
found that the pro ected warmin  from  lobal climate models would make the country s 
entire highland area climatologically more favourable to malaria by the year 2050. 
 
Malaria is a notifiable disease in South Africa. By using both passive and active surveillance, 
the case reporting system aims to capture every infection rather than clinical cases only [10]. 
Malaria transmission is distinctly seasonal, with transmission limited to the warm and rainy 
summer months [11].  Historically, and without intensive control programs, case notifications 
generally increase from November onwards, peak in late-summer to autumn (March–May) 
and decline by the end of June. As a result, the average seasonal pattern in malaria incidence 
follows the periodicity in rainfall and temperature with a 3–4-month lag [11].  
 
Large epidemics of malaria elsewhere have been associated with climate and temperature 
anomalies, such as in Colombia, the Indian subcontinent, and Uganda; and recently, it is 
shown that, in Botswana, indices of El Niño-related climate variability can serve as the basis of 
malaria risk prediction and early warning [4, 8, 12, 13 and 5]. In South Africa, there have been 
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reports of significant reduction in Malaria trends over recent years [14] as a result of 
increased DDT spraying. It is also known that changes in temperature and rainfall results in 
changes in habitat. This could result in shifting, expanding, or contracting known mosquito 
boundaries, and thus result in changes in Malaria transmission. However, despite being armed 
with this knowledge, it still remains very poorly understood what the influence of recent 
climate changes has on Malaria prevalence in South Africa. There are also indirect effects of 
climate change on Malaria transmission emanating from population movements due to 
extreme events such as droughts. Such population movement may be from non-infested to 
infested areas, or it could result in transferring the parasite to a population with no immunity. 
It is important to understand current drivers of malaria, so as to put in place effective 
measures toward its control. 
 
In South Africa, Malaria is endemic in the low-altitude northern and eastern areas along the 
border with Mozambique and Zimbabwe. Transmission is prevalent mainly in KwaZulu-Natal, 
Limpopo, and Mpumalanga provinces (10, 15 and 16). All the three provinces have recorded 
reduction of Malaria cases as a result of various social, policy and economic factors [15, 16]. 
Although climate is known to influence Malaria significantly, it was not considered in their 
analysis [15, 16]. Landman et al. [17] analysed meteorological station data from 1960 to 2003 
and found that 15/26 stations in central and eastern parts of the country had experienced the 
largest positive trends in mean temperature during April. Also, the months of largest 
minimum trend appears to fall in the late spring and early summer (September to December). 
Results further show that cool days are generally on the decline, thus re-affirming that 
temperatures have generally risen all over South Africa. The records of minimum 
temperatures (Tn) also revealed that warmer nights have increased while cooler nights have 
decreased. It is known that after the Mozambican floods in 2000, there was a huge increase in 
Malaria cases.  Floods and higher rainfall in areas such as Mozambique have also played their 
part by creating new, or larger, breeding sites for mosquitoes which carry the malaria parasite 
[18]. Due to the fact that climate change by itself will increase vulnerability [19, 20], target 
planning is necessitated, and the need to obtain clear pictures by carefully considering all 
factors cannot be overemphasized. This study complements existing studies on social, policy 
and economic factors as determinants of malaria transmission, by analyzing the importance of 
climate variability and change on malaria transmission in South Africa. 
 
This paper aims to assess the temporal and spatial pattern of malaria in Limpopo province in 
relation to current climate variables. This will form the basis for the development of an early 
warning system, based on seasonal climate forecast. For improved control in epidemic 
regions, the World Health Organisation (WHO) advocates the development of integrated 
malaria early warning systems, based on vulnerability assessment, seasonal climate forecasts, 
weather and environmental monitoring, and case surveillance [21].  In order to achieve the 
above aims, this study assesses a 10 year spatio-temporal spread of malaria in Limpopo 
province (at municipality and district levels) in relation to current climate variables. It 
superimposes rainfall and temperature (minimum and maximum) of the closed stations, and 
assesses the correlation between climate variables and Malaria cases.  We present a 10 year 
spatial spread of malaria in Limpopo province at district level, superimpose rainfall and 
temperature (minimum and maximum) of the closed stations, and assess any correlation 
between the climate variables and malaria cases using Pearson Correlation. Ordinary Least 
Squares (OLS) Method is applied to test whether variation in rainfall and temperature can 
help explain malaria cases, and Pearson correlation used to test correlation of the variables. 
Time series data are tested for stationarity using ADF and KPSS, and Autoregressive 
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Distributed Lag Model (ARDL) – bounds test method is applied to establish the existence of 
short-run and long-run relationship.  
 
In essence, this study attempts to analyses spatial and temporal change in malaria incidences 
at district level; determines the influence of rainfall and temperature on malaria transmission; 
ascertains the strength of the influence and; finally, test existence(or non-existence) of any 
short or long-run relationship between climate variable and malaria cases in Limpopo 
Province, South Africa. 

Model Input dataset and disease observation dataset  

 
This study uses combination of methods: spatial-temporal, correlation anaysis and 
econometric approaches. Ordinary Least Squares (OLS) is used to analyse variation in rainfall 
and temperature in explaining malaria cases and Pearson Correlation tests the strengths of 
the influence. Time series data are tested for stationarity using Augmented Dickey Fuller Test 
(ADF) and Kwiatkowki-Phillips-Schmidt-Shin (KPSS), and Autoregressive Distributed Lag 
Model (ARDL) – bounds test method is applied to establish existence of short-run and long-
run relationship. 
 
Data and Sources 
The study uses time series of average rainfall and temperature, as well as malaria cases 
spanning the period from 1998 to 2007. Climate data was obtained from the South Africa 
Weather Services. Daily station data of precipitation and temperature (minimum and 
maximum) from 1998 to 2007 was used to construct climate disease envelopes at municipal 
and district levels, while malaria data were obtained from the South African Department of 
Health and from the Malaria control Centre in Tzaneen (Limpopo Province). This data 
contains different variables, including malaria cases captured through passive and active 
surveillance systems. Demographic, geographic and social-economic data were also captured, 
these include: sex, age, date of which blood sample was taken, district (current and of origin), 
local municipality, and the name of the health facility.  The data also contain information on 
deaths. Details of the methods on how this data was collected can be obtained from [15]. For 
the purposes of this paper however, municipal and district malaria cases were extracted for 
analysis.  
 
Conceptual Framework  
The conceptual framework for this study advances a multiple-factor explanation for malaria, 
ranging from climate and land use change, to drug resistance, variable disease control efforts, 
and other socio-demographic factors. Figure 1 below illustrates a simplified non-detailed 
interrelationship. 
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Malaria is influenced by social, economic and/or environmental factors [22]. Of importance to 
this study is the influence of environmental factors in terms of variation in rainfall and 
temperature. Empirical studies have reported rainfall [4, 23 and 24] and temperature [25, 26] 
as the main climate factors that influence malaria transmission; however, other studies have 
included climate variables such as humidity and vegetation [27]. Variation in rainfall and 
temperature influences mosquito population. By shortening its life cycle, its population is 
increased [28, 29]. High temperature shortens the development time of vector-borne 
pathogens; and combined with favourable climate conditions, the population of carrier-
mosquitoes increases. In both theory and in literature, variation in rainfall and temperature 
will lead to the increase or decrease in malaria cases observed. Growth of Anopheles vector is 
accelerated under conditions of increased temperature with optimal larval development at 
280C and optimal adult development between 280C and 320C [30, 31]. Very high rainfall and 
temperatures negatively affect mosquito development, but a moderate climate will provide a 
condusive environment for the vectors to grow. Significant warming trend therefore amplify 
mosquito population dynamics, so as to contribute alongside drug resistance, and land-use 
patterns, to the increased incidence of malaria [3, 32, 33, 34]. Apart from the influence of 
climate in malaria transmission, socio-economic factors such as population and migration also 
play significant roles [35].  Rise in malaria disease increases pressure on the health sector. 
Moreover, a combination of mutating malaria parasites (and subsequent resistance to drugs), 
resource constrains, and weak health systems, implies low adaptive capacity [36].  
 
This paper uses correlation, spatial, and econometric approaches to analyse the relationship 
(and strength of the relationship) between malaria and climate variables (i.e. temperature 
and rainfall).  
 
Spatial and temporal change of district Malaria incidences in Limpopo Province 
Using GIS, the spatial distribution of Malaria at municipality and district levels were mapped. 
Changes in the distribution were obtained using GIS spatial analytical techniques.  Malaria 
records for the various municipalities were spatially weighted and aggregated at district level. 
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Weighted points at the centroid of each district were then interpolated using the Inverse 
Distance weighting (IDW) model [37, 38 and 39]. By assigning values to locations based on 
the surrounding weighted values, the model outputs continuous surfaces which represent 
spatial distribution of malaria cases at a power of 2 and a search radius of 20km. The model 
assumes that the mapped variable (malaria cases) decreases in influence with distance from 
its weighted location [40].  
  
Given the large seasonality in climate variables; temperature (T) and total precipitation (P) 
and malaria cases (M), a linear relationship between T & M, P & M and T & P can be derived 
from the Pearson Correlation coefficients  γT,M; γP,M and γT,P) as reported in [41]. According 
[42, 43], the linear relationship between say, T & M with the influence of P removed can be 
determined from the partial correlation given by  

 
2 21 1

TM PM TP
TM

PM TP

    
 

    
................................................................................................... (1) 

Here  γT,M is computed as a simple correlation between the residuals from a regression of M 
on T and a regression of P on T. In this correlation analysis, three season lengths i.e., number 
of months j={1, 3, 12} are considered over a 14 month malaria cycle (resulting in  42 season 
groupings). The correlation analysis is repeated for all the 42 seasons specified by a malaria 
ending month (in this case September is considered as the ending malaria month). 
 
Econometric approach 
The study applies ordinary least squares estimation technique, and tests for stationarity and 
cointegration. As a standard procedure when working with time series data, rainfall, 
temperature and malaria data are tested for stationarity, to avoid spurious results common to 
running regressions with non-stationary data.  A stationary process (unit root) is a stochastic 
process whose joint probability distribution does not change when shifted in time or space. 
Consequently, parameters such as the mean and variance, if they exist, also do not change 
over time or position. Stationarity is used as a tool in time series analysis, where the raw data 
are often transformed to become stationary. Stationarity test for data is a fundamental 
requirement if the results of relationship between variables are to be considered reliable in 
time series analysis [44, 45].  In the mathematical sciences, a stationary process is a stochastic 
process whose joint probability distribution does not change when shifted in time or space. 
We test the null hypothesis of unit root (stationary) in our variables. If the null hypothesis is 
not rejected, this implies that the variable(s) are stationary. 
 
Model specification 
We follow the same methodology applied by [27] who investigated the relationship between 
climatic parameters: rainfall, temperature, humidity, sea surface temperature (SST), El Niño-
Southern Oscillation (ENSO), and the normalized difference vegetation index (NDVI), to 
examine malaria cases in a district in Bangladesh.  
 
However we simplify the model to include only two variables: rainfall and temperature. Our 
objective is to determine whether there is a long term relationship between rainfall, 
temperature, and malaria in Limpopo Province, South Africa. We used simple Ordinary Least 
Squares (OLS) method and Cointegration analysis to investigate this long term relationship.  
 

  LOGTEMPLOGRAINYLOG 12)( ................................................................. (2) 

Where  

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Joint_probability_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Joint_probability_distribution
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)(YLOG  : Change in Malaria cases 

LOGTEMP  : Change in average temperature  
LOGRAIN  : Change in average rainfall  

21  and are the coefficients  

  : is the error term  
 
The error term,   accounts for all other variables that may explain malaria cases. Thus, while 
the model could have been significantly improved by accommodating more variables 
influencing malaria, for a long term relationship two variables can suffice.   
 
We test the following hypothesis:  
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The null hypothesis states that the coefficients of the regression mode would jointly equal to 
zero, while the alternative hypothesis states that they would not jointly equal to zero. We 
expect the coefficients of the regression to exhibit a significant divergence from zero because; 
the notion that malaria is affected by temperature and rainfall is a scientific axiom.  
 
From the hypothesis (Ho) of no co-integration, the asymptotic distribution of the obtained F-
statistic is nonstandard, regardless of the degree of integration of the variables. This depends 
on: whether variables included in the ARDL model are I (0) or I (1); the number of regressors; 
whether the ARDL model contains an intercept and/or a trend and; the sample size. Two sets 
of critical F-values, representing the lower bound and the upper bound, have been provided 
by [46] for large samples. Narayan [47] presents the critical F-values for sample size ranging 
30–80. If the computed F-statistic for a chosen level of significance lies outside the critical 
bounds, a conclusive decision can be made regarding the cointegration of the regressors. If the 
statistic is higher than the upper bound, the null hypothesis of no cointegration can be 
rejected and the next step is to estimate the ARDL ECM where the short-run and long-run 
elasticities may be determined [46, 47  and 48].  
 
 
The Autoregressive Distributed Lag (ARDL) Model Specification 
The study used Autoregressive Distributed Lag (ARDL) cointegration framework to examine 
the short term and long term characteristics of rainfall and temperature, as it relates to 
Malaria in Limpopo Province, South Africa. The ARDL specification takes the following form: 
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means first difference  
ARDL estimation proceeds in two steps. The first step is to estimate the above equation by 
OLS in order to establish the existence of a long run relationship. Once cointegration is 
confirmed, the second step is to estimate the long run coefficients and the short run 
coefficients using the respective ARDL and Error Correction Methods (ECMs). We estimate the 
unrestricted model and progressively reduce it by eliminating the statistically insignificant 
coefficients, and reformulating the lag structure where appropriate, to achieve orthogonality 
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in terms of levels and differences. The lag of the error term, 1tEcm , indicates the speed of 

adjustment of the model towards equilibrium when there are shocks in the system. 
 
This procedure is applied irrespective of whether the regressors are purely I (0), purely I (1) 
or mutually cointegrated [49]. The unrestricted ECM minimizes the possibility of estimating 
spurious relations, whilst retaining the long run information, suitable for economic 
interpretation [50].  The investigation of the long run relationship using ARDL approach 
involves the estimation of equation 3, through an Unrestricted Error Correction Model 
(UECM). Since specification assumes that the disturbances are serially uncorrelated, the 
choice of appropriate lag order is important [48].  To obtain the appropriate lag length, a 
parsimonious UECM is estimated by introducing a lag length of three for the differenced 
variables and then, variables which are non-significant are dropped. A battery of diagnosis 
test can then be used to check the performance of the UECM [51, 52 in 48].  
 
The ARDL Bounds Test   
Testing the presence (or absence) of cointegration in variables implies a test of the existence 
of long run relationship. We use the Wald test (Bounds Test) to test the long-run relationship. 
Computed and critical bounds of the F-Statistic are provided by [49]. The F-statistics should 
lie outside the bounds for a long-run relationship to exist, but for short run, the coefficient of 
the error correction model (ECM) should be negative and statistically significant. 

Results  

 
In this section, we report spatial, correlation, time series, and short and long-run results in 
sequence:  
 
Spatial distribution of Malaria in Limpopo Province 
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A visual analysis of district malaria cases in Limpopo province show that there has been a 
reduction in total cases from 1998 to 2007. However not all districts show the same change.  
Throughout the period of analysis, Vhembe district consistently shows more Malaria cases.  
Very few cases were reported in Capricorn, Waterberg and Greater Sekhukhune throughout 
the period of analysis. In Mopani district on the other hand, Malaria cases appear to be erratic 
(i.e. increasing and decreasing with no marked trend) as shown in the maps. Overall trend 
shows that, whereas there were fewer cases in 1998, this was followed by a somewhat 
increase from 1999 to 2006. More Malaria cases were recorded in 2004 and 2006, and were 
followed by a reduction in 2007.   
 
 
 
Relationship between malaria cases with rainfall and temperature 
It is sometimes recommended that feel techniques are first applied, to check correlation 
between the variables. This helps to roughly determine the expected signs of the regression 
model (positive or negative) “a priori”. Here, the two independent variables (rainfall and 
temperature) are plotted against the independent variable (malaria). The closer and higher 



71/57 

the number of observations to the fitted values of malaria cases -the straight line, the higher 
and positive the correlation. It is negative otherwise.  Figure 3 summarises the results of this 
exercise. 
  

 
 

From figure 3 above, both panels indicate a positive correlation with malaria. However, more 
observations are scattered away from the fitted line in the first panel (for rainfall) than in the 
second panel (for temperature).  In this case, temperature shows a higher correlation than 
rainfall, as it relates to malaria cases. Since positive relationships are observed, we expect the 
regression coefficients to also match the above plots and thus carry a positive sign.   
 
Figure 4 illustrates the trend relationship between average rainfall and average temperature 
as it relates to malaria.  
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From the figure, it is clear that rainfall and temperature are important in explaining malaria in 
Limpopo. A casual look shows that very high rainfall does not increase malaria cases 
significantly (e.g. 1999, 2001 and 2005); increase in temperature is however consistent with 
increase in malaria cases. From a statistical viewpoint, the actual influence is further 
confirmed by the correlation coefficient as summarised in the table below. 
 
Cross Correlation Matrix 
 

pwcorr
 lmal 

lrainltemp, star(5)  

 Lmal lrain ltemp 
 lmal 1.0000    

 lrain 0.2810* 1.0000   
 ltemp 0.5212* 0.6656* 1.0000  
*Indicates significance at 10% 

 
Correlation coefficient for temperature is 0.5212 and 0.2810 for rainfall. Rainfall and 
temperature are thus positively correlated with malaria.  Temperature however shows 
stronger influence as compared to rainfall in relation to malaria. 
 
Seasonal grouping   
The occurrence of malaria cases in Limpopo province has been reported to be highly 
dependent on seasons (12). In order to assess the seasonal climate signal in malaria cases, 
temperature and precipitation have been partially correlated across each of 42 seasons and 
are depicted in Figure 5. 
 

 

 

Top panel: Simple correlations with maximum temperature (T: primary climate variable). 
Bottom panel: Partial correlations (the influence of primary climate variable is removed) of 
malaria index with secondly climate variable (P: monthly total precipitation).  

 

As shown in Figure 5, bars are proportional to simple correlations. Confidence interval is 
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approximate with no adjustment for serial correlation and non-normality. The approximate 
95% confidence interval is set at 1.96/N0.5, where N is the sample size. Correlation of P and T 
is negative for all months and significant for more than six months. The negative correlation 
carries over to multi-month seasons as it is largely same-sign in individual months and this 
could be attributed to land-surface energy balance relationships, with variant allotment of 
energy to latent and sensible heat. 

 

 

 

Note: for figure 6, these are seasons with the highest correlation for each of the three specified 
season-lengths 

 

Figure 6 depicts a fairly linear relationship between the primary climate model and the 
malaria cases during the best seasons (corresponding to the largest absolute correlations in 
the Top panel of Figure 6). The corresponding time series of the malaria cases and maximum 
temperature are depicted in Figure 7.  
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The time plots in Figure 4 enable the identification of years in which the agreement in malaria 
cases (hereafter malaria index) and maximum temperature is good or bad. Furthermore, a 
trend in one series and not in another might suggest that there could be some variable other 
than the primary climate variable for that season on the malaria index.  
 
Stationarity (Unit Root Tests) Results 
Before the tests for stationarity is done, informal test are used to test stationarity of the 
variables throu h plots. Informal method involves ‘eye-ballin   the  raphs of the series plots. 
A stationarity series reverts back to its mean over time. Figure 9 below, summarises the 
graphical outlook of rainfall, temperature and malaria over time.  
 
 

 
Temperature and malaria seems to exhibit mean reversion (stationary), while rainfall is 
inconclusive. This can only be validated using the formal approaches below. To validate this, 
we formally carried out two different tests for stationarity, that is, Augmented Dickey-Fuller 
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(1981) and the Kwiatkowski, Phillips, Schmidst and Shin (1992) tests. The ADF test has the 
null of unit root, whereas the KPSS tests the null of stationarity. The null hypothesis is the 
existence of a unit root (stationary).  

 

Table I: Unit root test results 
 

Test Log of Mala Log of Rain Log of Temp 
Levels First 

difference 
Levels First 

difference 
Levels First 

difference 
ADFμ 

ADFτ 
KPSSμ 
KPSSτ 

 
-4.283*** 
0.620 
 

 -7.926*** 
 
0.033*** 
 

 
 
 
 

-2.252 
 
0.021*** 

-11.029*** 
 
 

Conclusion Stationary 
at levels: 
I(0) 

 Stationary 
at levels: 
I(0) 

 Non-
Stationary  

Stationary 
at First 
Difference: 
I(1) 

*, ** and *** means significance at 10%, 5% and 1% respectively.  
Source: Computed 

 
 
Results above indicate that temperature and malaria follow an autoregressive process with a 
unit root. The null hypothesis of a unit root could not be rejected for the variables, expressed 
in levels. Rainfall, on the other hand, is integrated for order 1 (non-stationary).  
 
Short-run and long-run relationship between Malaria, RF and Temperature 
Given that we have a combination of I (0) and I (1) variables, we opt to use the Unrestricted 
Error Correction Model (UECM), and employ the ARDL, or rather, the General-to-Specific 
(GETS) modelling procedure. Following similar procedure by [51, 52], UECM results are 
summarised in table III (from estimation of equation 3).  
 
 
Table II: Unrestricted Error correction model  
 
Variables    Coefficient Standard Error 
Constant  -3.158603 2.156372 
D(LMALA(-2)) -0.473095 0.123357*** 
D(LRAIN(-1)) 0.745233 0.248330*** 
D(LTEMP(-1)) 4.343676 1.129335*** 
LMALA(-1) 0.249101 0.104620** 
LRAIN(-1) -0.499685 0.300813* 
*, ** and *** means significance at 10%, 5% and 1% respectively.  
Source: Computed 
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Rampsey RESET = 2.271595 (0.1350):  
 implying that Ramsey’s RESET; Null hypothesis: Model has no omitted variable is not 
rejected  
White s test = 1.266   0.3 6   
 implying that White’s test Null hypothesis of homoscedasticity is not rejected 
Breusch-Godfrey LM test = 0.868 (0.423) 
 implying that Breusch-Godfrey LM test: null hypothesis of No serial correlation is not 
rejected 
 
 
The R-Squared for the UECM is 50 percent, which indicates, a relatively good fit and 
satisfactory in this case. It means 50% of variation in malaria is explained by rainfall and 
temperature. This could have improved significantly with more independent variables.  
Durbin Watson statistic is 1.96, suggesting that the regression does not suffer from auto-
correlation.   he model passes the Ramsey RESE  test of omitted variables; White s test of 
homoscedasticity and; Breusch-Godfrey LM test of serial correlation (refer to table III). Test of 
skewness and kurtosis of residuals (Jarque-Bera test) confirm that the residuals are normally 
distributed.  
 
Bounds test (cointegration) results are presented in table IV. 
 
Table III: Cointegration Properties 
 
 
 
 
 
 
 
 
 
 
The F-statistic is outside the critical bounds (8.29 lies outside 4.35top and 3.23bottom). We 
therefore reject the null hypothesis of no cointegration at 5% significance level, and conclude 
that there exist a long-run relationship between malaria and the climate variables (rainfall 
and temperature). 
 
The long-run relationship is reported in table V, while the short-run results are reported in 
table VI.  
 
Table IV: Long run 
 
Variable Coefficient  Standard Error  
C -6.155823 0.0006*** 
LRAIN -0.373873 0.2648 
LTEMP 4.557185 0.0000*** 
*** means significance at 1% respectively.  
 
 

 
   

 Critical bounds 
(5%) 

Dependent variable F-stat Bottom Top 

d(lmala) 8.29 3.23  4.35 

k=3  
Source: Computed, critical bounds are obtained 
from [47] 
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Table V: Short run 
Variable Coefficient  Standard Error  
C -0.080311 0.2668 
D(LMALA(-2)) -0.231066 0.0047*** 
D(LMALA(-3)) -0.205359 0.0120** 
D(LRAIN) -0.263281 0.1509 
D(LTEMP(-1)) 4.784184 0.0000*** 

1tEcm   0.005002 0.9783 

** And *** means significance at 5% and 1% respectively.  
 
 
Cointegration results (based on ARDL error-correction model) show a long-run relationship 
between malaria and the climate variables. The long-run relationship between malaria and 
rainfall is -0.373873 (0.2648) and for temperature is 4.557185 (0.0000); while the short-run 
relationship between malaria and rainfall is -0.263281 (0.1509) and for temperature is 
4.784184 (0.0000). In both instances, long and short-run temperature maintains a very high 
level of significance; while rainfall is insignificant in both long and short-run. This leads us to 
conclude that temperature is the main driver of malaria in Limpopo province. This result 
contrasts with [16] who found that rainfall was the only climatic variable significantly 
associated with monthly malaria cases, with no significant association between temperature 
and relative humidity for a neighbouring province (Mpumalanga). 
 
We find coefficient of adjustment 1tEcm  to be 0.005002 (0.9783), positive and statistically 

insignificant instead of negative as expected. The implication of this is that, should there be a 
sudden rise or fall in malaria transmission (i.e. a shock in the system), there will be no 
possibility of the system adjusting back to equilibrium. This means that every shock will imply 
beginning malaria interventions at a higher/lower equilibrium than before. Although the R-
Squared performed fairly well, given the number of the explanatory variables (46%), the F-
Statistic is highly significant at 1% F-statistic 7.81 (0.000). 
 

Conclusions  

 
We report GIS results of 5 districts (Capricorn, Greater Sekhukhune, Mopani, Waterberg and 
Vhembe) in Limpopo Province, based on the availability of clinical malaria data.  Vhembe 
district consistently shows more Malaria cases, while very few cases were reported in 
Capricorn, Waterberg and Greater Sekhukhune throughout the period of analysis. In Mopani 
district on the other hand, Malaria cases appear to be erratic (i.e. increasing and decreasing 
with no marked trend). Many reasons can be put forwards to explain these spatial differences. 
Socio-economic reasons could range from access to health care; site of dwelling; to type of 
housing. Other possible reasons are patterns of migration in the area; Malaria control 
programs and; even climate change.  Although determining the reason behind the differences 
in spatial distribution of Malaria cases is important, it is even more important to know which 
areas are more burdened by Malaria, so that control measure are targeted.  
 
Positive correlation between malaria and climate variables (rainfall and temperature), has 
been reported elsewhere. Rainfall: Tibet [53], Sri Lanka [54]; rainfall and temperature [11, 
23]; rainfall, temperature, humidity and vegetation cover [27]. The strength of the effect 
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seems to flow from humidity to temperature and rainfall. In this study, although rainfall and 
temperature are positively correlated with malaria, temperature shows stronger influence as 
compared to rainfall in relation to malaria.  We find the temperature correlation coefficient to 
be 0.5212 as compared to rainfall correlation coefficient of 0.2810. This result is consistent 
with [53], who found the correlation coefficient for Tibet to be 0.518 and 0.348 for 
temperature and rainfall respectively, concluding that temperature had a greater influence on 
malaria and malaria responded quickly when temperature was varying.  
 
Correlation of minimum temperature and malaria cases is positive and significant between 
May and June of the preceding year. Summing over months increases the correlation (albeit 
being non-significant) between maximum temperature and malaria cases. The 3-month sum 
exhibits a non-significant positive between May and September of the preceding year, but 
negative in the months between June and May of the current year. A 12-month sum has 
positive simple and non-significant correlations overall.  The partial correlation of maximum 
temperature is only significant over a 12-month sum, ending in June of the previous year. The 
partial correlations vary (there is no consistent sign influence of precipitation on malaria 
index for a consecutive block of months) across summations over 1, 3, and 12-months; 
increasing only during the 12-month summation. 
 
The OLS results suggest that the coefficient of rainfall and temperature are both positive and 
statistically significant as expected. This implies that increasing rainfall and temperature leads 
to an increase in malaria transmission. Specifically, it means that, holding all other variables 
constant, a 1% increase in rainfall will lead to 0.74% increase in malaria cases in Limpopo 
Province. Consequently, a 1% increase in temperature will translate to 4.34% increase in 
malaria cases. Here again, results confirm the high influence of temperature on malaria 
transmission in Limpopo province  South Africa. Re ardless of temperature s  reater 
influence, this result indicates that, increases in temperature and rainfall would create the 
conditions for malaria vectors to thrive in areas immediately surrounding their current 
distribution limits [55]. Thus, small changes in temperature and precipitation will boost the 
population of disease carrying mosquito, and result in increased malaria epidemics [56, 57].  
In Ghana, a positive correlation was found to exist between malaria and climate elements 
[56]. Increases in temperature generally accelerate vector life cycles and also decreases the 
incubation period of the parasite [53, 58]. R-Squared of 50%, interpreted as the variation in 
malaria is explained by rainfall and temperature which corroborates the results found in 
KwaZulu Natal province, South Africa as 49.7% [11]. 
 
The coefficient of adjustment is statistically insignificant, instead of negative as expected. This 
implies that, given any sudden rise or fall in malaria transmission, there will be no possibility 
of the system adjusting back to equilibrium. Thus, we will always begin at higher (or lower) 
malaria levels after an increase (or fall), and malaria interventions at a higher/lower 
equilibrium than before in the province. 
 
It is interesting to find that malaria in Limpopo is found to be driven by temperature, while in 
Mpumalanga (the neighbouring province), malaria is driven by rainfall [16].  
 
This paper has provided useful basis upon which other studies can work. We recommend a 
probe to ascertain the thresholds of temperature (and rainfall) under which malaria cases are 
probable. In addition, there is need to ascertain the reason why malaria in Limpopo is found 
to be driven by temperature, but by rainfall in the neighbouring province. We find that 
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malaria pressure varies in different districts. Thus, in terms of combating malaria, the 
requisite public health response to climate-malaria interaction, should be part of the key 
functions that exist within public health systems in Limpopo Province. We recommend the 
development and enhancement of early warning systems for malaria at district level. For 
improved control in regions where malaria is endemic, the World Health Organisation (WHO) 
advocates the development of integrated malaria early warning systems, based on 
vulnerability assessment, seasonal climate forecasts, weather and environmental monitoring 
and case surveillance. There is therefore need to strengthen collaboration, partnership and 
response integration with other principle sectors, e.g. the social sector and the meteorological 
sector in this regard in Limpopo Province. The requisite public health response to climate-
malaria should be part of the key functions of the public health systems in Limpopo Province, 
in terms of combating malaria. 
 
The study only considered rainfall and temperature as the main drivers to malaria 
transmission. While is recognizes the importance of looking at mosquito characteristic in the 
province; this is limited by the lack of data on Entomological Inoculation Rates (EIR) and 
Human Biting Rate (HBR) of mosquitoes.  
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[I] Development of a stochastic differential equation model capable of 
simulating malaria dynamics in Senegal1 

Overview 

A dynamical stochastic differential equation (SDE) model of malaria has been constructed and 
validated against observed malaria data for Senegal. Due to the lack of other reliable long-
term time series of malaria incidence in any of the two other countries in QWeCi, namely 
Malawi and Ghana, a colloboration was established with partners external to the project that 
might provide the quality data for malaria needed to construct such a dynamical model. This 
as allowed the model to be validated against an extraordinary dataset existent for Senegal, 
probably the most reliable record of its sort in West Africa.  

 

 

Figure 1. Schematic flow diagram of the preliminary ODE system, constructed within the 
framework of the VIC3 malaria model for Dielmo (Senegal). 

 

                                                 
1
 Work in progress – only a partial report has been included here. 
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The malaria model structure is illustrated in Figure 1. According to the characteristics of this 
location in Senegal, we divided humans into five distinct classes: S1, susceptible to infection; 
E, exposed (i.e., carrying a latent infection but not yet infectious); I1, infected and infectious; 
I2, possessing an asymptomatic infection which is expected to be less infectious than I1; S2, 
recovered and having some load of parasites (not completely cleared), not enough to be 
detected but allow them to infect mosquitoes (expected to be less infectious than I2). 
Mosquito-parasite classes are λ  force of infection at previous time t-s  and λκ  force of 
infection at time t). The possibility of transition between class X and Y is denoted by a solid 
arrow  with the correspondin  rate written as μXY.  he dotted arrows represent interactions 
between the human and mosquito stages of the parasite. The model is formalized by a set of 
14 equations described in full detail in Laneri, Rodó et al (submitted). The approach used to 
model vector dynamics was through a delayed equation for the force of infection μS1E t  at 
time t when an infected mosquito bites a human, taking into account that the transmission 
from human to mosquito occurred at a previous time s. Therefore, we modelled the duration 
of parasite life cycle inside mosquito and vector survival as a gamma distribution. 

 

The preliminary ODE system constructed for the Dielmo dataset, was then adjusted in the 
framework of VIC3 environment at IC3 and the MIF POMP iterative approach used to estimate 
and cross-validate the parameters of the model. 

 

Model validation 

The model is capable of reasonably capturing both the seasonal dynamics in this malaria 
endemic regime and the different shifts in mean malaria states after the changes produced by 
the drug treatment periods. The model behaves properly and successfully reproduces the 
population dynamics of malaria in two pilot villages (Dielmo and Ndiop, Figure 2). When 
rainfall (R) was incorporated as an extrinsic driver the resulting models notably gained in 
skill with regard to simulations without R as a covariate. Similarly, the different drug 
treatments implemented in the region were properly integrated in the simulations, in their 
corresponding intervals. Seasonal cycles of malaria in the two villages were successfully 
reproduced also, with the incorporation of temperature anomalies. Runs were also 
successfully validated for recent out-of-fit data.  

 

Future work 

Next work to be conducted will center on trying to understand the systematic bias in the 
variability at both maxima and minima malaria cases, as well as trying to perform skilful 
predictions with VIC3 at seasonal to decadal timescales. These simulations will be then 
compared with persistence projections arising from observations themselves. We will also 
consider the potential addition of other extrinsic drivers in the search for longer lead times 
for prediction. The model will be tested for other regions in Africa, where malaria conditions 
are similar to those in the fringe semi-desert areas of Senegal. 
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Figure 2. Resulting fittings from VIC3 to malaria time series in a) Ndiop and b) Dielmo, with 
rainfall as a covariate. Drug treatment intervals were also integrated in the simulations. 

 

 



87/57 

General Conclusion 

 
This report summarizes the various modelling efforts carried out by the various QWeCI 
partners to model malaria and RVF risk for different regions in Africa. During the QWeCI 
project new models have been developed and validated and the modelling effort and the on-
going collaborations built within QWeCI will continue beyond the scope of the project. 
Amongst the significant modelling contributions we can cite: 
 

 [A] Improved parameter settings for the standard version of the LMM and validation 
with observations and other malaria endemicity estimates 

 [B] New parameter settings of the LMM (LMM2010), simulations driven by Regional 
Climate Change projections to estimate the impact of climate on malaria transmission 
in the future 

 [C] The development and validation of the VECTRI malaria model 
 [D] The development and validation of a statistical malaria model for Malawi which 

includes the effects of climate and socio-economic parameters (poverty...) 
 [E] Statistical forecasting model of RVF vectors for northern Senegal that might be 

used as an early warning system 
 [F] A pilot integrated multi-agent system for RVF in Senegal. This corroborates findings 

from other WP/ published studies 
 [G] A mixed RVF statistical model for Kenya that should be tested over West Africa in a 

near future 
 [H] Investigation of the impact of climate on malaria in the Limpopo province of South 

Africa before developing an early warning system prototype. Prototype of a high 
spatial resolution malaria model using a climate envelope based approach and satellite 
estimates (not shown in the current report but currently in progress). 

 [I] Development of a stochastic differential equation model capable of simulating 
malaria dynamics in Senegal (work in progress; partial report included here). 

 
 


