
 

 

      

 

 

Grant agreement no. 243964 

QWeCI 

Quantifying Weather and Climate Impacts on Health in 
Developing Countries 

 

 

Deliverable 1.1.b Report on current climate sensitivities 
of diseases and projections of future distributions 
including a mapped output on the project website 

 

 

 

 

Start date of project: 1
st
 February 2010 Duration: 42 months 

  
Lead contractor: UNILIV  
Coordinator of deliverable: UNILIV  
Evolution of deliverable   
 Due date : M38 
 Date of first draft : 8 July 2013 
 Start of review : 15 July 2013 
 Deliverable accepted : 30 July 2013 
 

 

 

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013) 

Dissemination Level  

PU Public PU 

PP Restricted to other programme participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services)  



 

Introduction to the EID2 
 
A database of all human and animal pathogens (the ENHanCEd Infectious Disease Database, EID2) has 
been completed as a part of the ENHanCE (www.liv.ac.uk/enhance) and QWeCI projects. The EID2 has 
been built using automated methodologies which extract information from the literature and from nucleotide 
sequences submitted to Genbank and other databases (accessible via the NCBI Taxonomy Database 
(http://www.ncbi.nlm.nih.gov/taxonomy) (for further details see . Pathogen entries within the EID2 are 
labelled with information on their source (i.e. host), where they are found (at the country-level) and when 
they were isolated. This information is linked to map systems and Google Earth (Figure 1), and enables us to 
study pathogens that are present in the target region for the QWeCI project, Africa. 
 

Figure 1. Example output from 
EID2 - the distribution of rabies 
virus according to the NCBI 
nucelotide database. Red 
colour indicates sequences of 
rabies virus in the NCBI 
nucleotide database from the 
appropriate country; red border, 
1-9 sequences; red fill, 10 or 
more sequences.  

  
The capability to spatially map disease or pathogen data has been built into the EID2 database at the same 
spatial resolution as fields of climate data and some host population data. Both the presence-only and 
climate/population data can be exported for each pathogen from within the EID2.  
 
The information on the presence of pathogens provided by the EID2, the climate and host population data 
were used to perform predictive presence/absence disease modelling for some of the diseases (or major 
pathogens causing diseases) studied within the QWeCI project. Modelling exercises were undertaken for 
Plasmodium falciparum, Rift Valley Fever, and the tick-borne pathogen Babesia bigemina. Two different 
types of modelling exercises were developed at different spatial scales: (1) at the country-level and (2) at a 
0.25 degree square resolution. These exercises are presented as two separate studies within this deliverable 
report.   
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Study 1. Presence/absence disease modelling at the country-level using 
population density and bioclimatic data 

 
Abstract 
The world occurrence of three diseases: Rift Valley Fever, Babesia bigemina and Plasmodium falciparum, 
was modelled at the country-level using two presence/absence algorithms: generalized linear models (GLM) 
and multivariate adaptive regression splines (MARS). Models were evaluated using a k-fold cross-validation 
procedure (k=5) in terms of their predictive skill as given by the ROC skill area metric (RSA). The 
independent contribution of the different variables was also assessed in the context of GLM modelling using 
a technique involving hierarchical partitioning in order to gain an insight into the importance of the 
climatic/human/animal factors in explaining disease occurrence. Our results indicate that no added skill was 
attained with the use of the more sophisticated MARS technique. Model skill was poor in the case of B. 
bigemina infection. Models for P. falciparum and particularly Rift Valley Fever attained moderate/good skill, 
indicating the potential usefulness of the models developed. Regarding variable importance, the results 
indicate that at the country-level, diseases can be modelled using bioclimatic variables as predictors, with 
little or no added benefit from the inclusion of host density predictors.The exploitation of the data stored in 
EID2 has enabled a straightforward development of the models presented, leaving the door opened to 
further advances in disease distribution modelling using this database.  
 
Methods 
 
Modelling algorithms 
We have tested two different algorithms for model development: generalized linear models (GLM, McCullagh 
and Nelder, 1989) and multivariate adaptive regression splines (MARS, Friedman, 1991). GLMs constitute a 
commonly used parametric method, thus constituting an adequate tool for benchmarking. MARS, in contrast, 
is a non–parametric method for regression which approximates the underlying function through a set of 
adaptive piecewise linear regressions, known as basis functions. Unlike GLMs, MARS is able to model 
nonlinearities in the data. A comparative study of these algorithms in the context of species’ distribution 
modelling is described in Bedia et al. (2011) and Bedia et al. (2013). 
Presence data for pathogens or diseases was provided from within the EID2 at the country-level for all 
countries. 
 
Presence data for pathogens 
Presence data for pathogens or diseases was provided from within the EID2 at the country-level for all 
countries. For more information see study 2 (0.25 degree square resolution modelling) and McIntyre et al. 
(2013).  
 
Explanatory variables 
In this work we considered a set of 14 bioclimatic variables commonly used in ecological modelling (see 
Table 1). The main advantage of these bioclimatic variables over other seasonal indices is that they are 
calculated and applied independently of the country’s hemisphere. In this study, we used only bioclimatic 
variables which could be calculated using mean temperature and precipitation data, as minimum and 
maximum temperatures, which allow for the calculation of other indices, were not available. In order to avoid 
redundancy, we eliminated from the analysis bioclimatic variables which yielded correlation values above 
0.90 (Spearman’s rho coefficient) in the pairwise cross-correlation matrix (Figure 1). A threshold of 0.90 is 
conservative, and was chosen in order to keep other variables that, although also highly correlated, may still 
provide some useful additional information. The final dataset of bioclimatic variables is presented in Table 1. 
 
Table 1. Summary of explanatory variables. Bioclimatic variables marked with an asterisk were eliminated 
after correlation analysis. The super-indices in the population variables indicate: 1 = used within the 
Plasmodium falciparum model, 2 = used within the Rift Valley Fever model, 3 = used within the Babesia 
bigemina model. 
 

Code  Variable definition 

Bioclimatic variables 

bio1  Mean annual temp. 

bio4  Temp. seasonality 

bio8  Mean temp. of wettest quarter 

bio9*  Mean temp. of driest quarter 

bio10*  Mean temp. of warmest quarter 



 

bio11*  Mean temp. of coldest quarter 

bio12  Annual precip. 

bio13*  Precip. of wettest month 

bio14  Precip. of driest month 

bio15  Seasonality of precip. 

bio16*  Precip. of wettest quarter 

bio17*  Precip. of driest quarter 

bio18  Precip. of warmest quarter 

bio19  Precip. of coldest quarter 

Population variables 

Human pop1;2  Human population density 

Sheep pop2  Sheep population density 

Goat pop2  Goat population density 

Catbuf pop2;3  Cattle/Buffalo population density  

 
All data were interpolated to a common regular grid of 0.25 degree square spatial resolution. The climate 
data was based on the CRUTS2.1 gridded data based on 1950-2000 climatology

1
.  

 
Host population density data 
Host population density data (see Table 1) was included for the main hosts of each of the three 
diseases/pathogens when it was available. The animal density estimates had an original resolution of 0.05 
degree, corresponding to predicted outputs for 2005

2
. The human population density was obtained from the 

gridded population of the world data set (GPWv3
3
) for 2005, with an original resolution of 0.25 degrees. 

 

 
 
Figure 1. Correlation matrix of the bioclimatic variables considered in this study. Variables with coefficients 
above 0.9 have been considered redundant (see Table 1 for details). 
 
Finally, all data were averaged at the country-level (N = 176 world countries) and standardized, prior to 
model building. 
 
Model assessment 
We performed a k-fold cross-validation of the models, with k=5 stratified randomly split subsets of 
presence/absence, each of them containing an approximately equal number of presences and absences. 
Model skill was assessed by computing the ROC curves for each model and calculating the corresponding 
RSA. We also tested the leave-one out 
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cross-validation procedure, attaining similar RSA values to those from the k-fold method. Thus, we selected 
the latter procedure, because it makes possible to provide a measure of RSA spread. 
 
Variable importance assessment 
The rationale behind the use of GLMs and MARS lies in the flexible and robust framework used to estimate 
variable importance, which allows disentanglement of the roles of bioclimatic and human/animal population 
factors in explaining disease distributions. Although non-linear techniques such as MARS may lead to 
models of improved predictive accuracy (Elith et al., 2006; Bedia et al., 2011), they may also eventually 
obscure the actual contribution of each variable due to their greater complexity. In contrast, GLMs provide a 
flexible and robust framework for assessing the statistical significance of explanatory variables and 
estimation of their importance, and a straightforward model interpretation at a low computational cost. 
 
In order to estimate variable importance in the context of logistic regression modelling, we have applied a 
method of hierarchical partitioning, by which the independent effect of each variable is calculated by 
comparing the fit of all models containing a particular variable to the fit of all nested models lacking that 
variable (Chevan and Sutherland, 1991). For instance, for variable X1, its importance, I, would be calculated 
as follows: 
 
 

 
 
where Xh is any subset of i predictors from which X1 is excluded. As a result, the variance shared by two or 
more correlated predictors can be partitioned into the variance attributed to each predictor. This method 
provides a robust assessment of variable importance and has been shown to outperform other methods 
used for variable importance estimation in the context of regression analysis, after the removal of spurious 
variables (Murray and Conner, 2009). 
 
All the analyses were conducted in the R language and environment for statistical computing (R 
Development Core Team, 2012). The hierarchical partitioning work was undertaken using the R package 
hier.part (Walsh and Mac Nally, 2013). For the MARS models, we used the implementation of the algorithm 
included in the R package earth (Milborrow, 2013). 
 
Results 
Both modelling methods (GLM and MARS) yielded similar results in terms of RSA (Table 2). Thus, we 
selected generalized linear models (GLMs) as the preferred technique to use. The inclusion of the 
population-related variables in the dataset of predictors (denoted as popclim in Table 2) provided marginal or 
null increments of RSA in the models, revealing the dominance of climatic factors in modelling disease 
occurrence at the country-level. The predicted probability world maps at the country level of the climatic GLM 
models are presented in Figure 2, considering the two diseases attaining an acceptable model performance 
(i.e. Rift Valley Fever and P. falciparum). 
 
Table 2. ROC skill area (RSA) of the 5–fold cross–validation models (mean  sigma). 
 

 GLM MARS 
 popclim clim popclim clim 

Babesia bigemina  0.60_0.14 0.57_0.13 0.61_0.22 0.65_0.16 
Plasmodium falciparum 0.76_0.03 0.76_0.04 0.76_0.09 0.77_0.06 
Rift Valley Fever 0.83_0.03 0.87_0.03 0.83_0.11 0.69_0.09 

 
The importance of bioclimatic variables was confirmed by the relative importance of some bioclimatic 
variables compared to population-related ones (Figure 3). In the case of B. bigemina, the most important 
variables were bio14 (precipitation of driest month) and bio4 (temperature seasonality). Although the 
cattle/buffalo population density variable was relatively important in terms of its mean, the spread among the 
5-fold dataset was very large, and therefore its effect must be considered marginal. In addition, the model of 
B. bigemina attained a very low RSA, and therefore none of the variables were critical in explaining its 
occurrence at the country-level. 



 

 

 
 
Figure 2: Predicted probability maps of the GLM occurrence models for Rift Valley Fever (RSA = 0.83) and 
Plasmodium falciparum (RSA = 0.76) at the world country level. Results correspond to the climate-only 
models. Note that the colour legend has been designed in order to aid in the comparison with the spatial 
distribution of Plasmodium falciparum malaria endemicity in 2010 presented in Gething et al. (2011) (see 
also Figure 4). 
 
In the case of P. falciparum, the most important variable was bio4 (temperature seasonality), with sizeable 
contributions of bio1 (mean annual temperature), bio15 (seasonality of precipitation) and bio8 (mean 
temperature of wettest quarter), the latter with a larger multi-model spread. Again, human population density 
made a marginal contribution to total explained variance, and did not improve model skill. 
 



 

The most important variables in the Rift Valley Fever model were bio14 (precipitation of driest month) and 
bio15 (seasonality of precipitation), although with a larger spread than bio1 and bio8; these variables were 
also relatively important. The human and animal population variables all made a small contribution to total 
explained variance. 
 

 
Figure 3. Relative importance of each explanatory variable for each of the disease models. The importance 
is expressed as a percentage of the total explained variance, considering the independent effect of each 
variable according to the hierarchical partitioning approach (see Section 1.4). Points correspond to the mean 
of the 5-fold models and the vertical bars to the standard deviation. See Table 1 for variable code definition. 
 
The comparison of our results of P. falciparum with the endemicity map for the year 2010 published by 
Gething et al. (2011) reveals a good agreement between the areas where the disease is present and the 
predicted probabilities of occurrence at the country level. In fact, after data aggregation by countries (N=77), 
only 6 countries (7.8%) where the disease is reported are given low suitability values by the model (i.e., 
below the probability threshold for positive case classification), and these correspond to low endemicity 
values below 10% (Figure 4). 
 



 

 
 
Figure 4: Endemicity levels averaged by countries where Plasmodium falciparum has been reported 
(Gething et al., 2011), versus predicted probabilities for the same countries (N = 77) according to the 
bioclimatic GLM model. The probability threshold for case classification is indicated by the horizontal line. 
The wrongly classified countries are indicated by the labelled red points. 
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Study 2. Presence/absence modelling at a 0.25 degree square resolution 
using an expectation-maximisation algorithm technique applied to 
generalised additive modelling.  
 
Introduction 
The presence or absence of pathogens was modelled at a 0.25 degree square resolution using an 
expectation-maximisation (EM) algorithm technique (see Ward et al., 2009) which was applied to generalised 
additive modelling (GAM) with a binomial logistic error distribution. Presence was modelled for three 
pathogens with different extents of presence across the African continent. Plasmodium falciparum was 
examined as a pathogen with a very widespread distribution, Rift Valley Fever has a spatially-limited 
distribution, and Babesia bigemina has a localised distribution. 
 
Methods 
 
Presence data for pathogens 
Presence data for pathogens or diseases was provided from within the ENHanCEd Infectious Disease 
Database (EID2) at the country-level for all countries on the African continent. 
 
Within the EID2, specific information on pathogens occurring within a country (an ‘organism-country 
interaction’) was mined from meta-data held within the NCBI Nucleotide database (National Center for 
Biotechnology Information, 2012b); such information was treated as a ‘gold standard’ within the database. 
The data-mining was undertaken by searching the meta-data for entries describing pathogen infection 
occurring in a specific country. The last update from the nucleotide database was undertaken in December 
2011. A further source of information came from automated searches of the PubMed database (National 
Center for Biotechnology Information, 2012c) and the NCBI MeSH library (National Center for Biotechnology 
Information, 2012a); when the name of an organism and the (minor subject) MeSH term for a country co-
occurred within a certain number of publications, an assumption was made about the occurrence of that 
organism within that country. For further information see (McIntyre et al., 2013). 
 
Explanatory variables 
The same set of 14 bioclimatic variables was used for this modelling as for the MARS and GLM country-level 
modelling exercise (please see Study 1 and Table 1). Only bioclimatic variables which could be calculated 
using mean temperature and precipitation data were used. All data were interpolated to a common regular 
grid of 0.25 degree square spatial resolution. The climate data was based on the CRUTS2.1 gridded data 
over the time-period 1950-2000

4
.  

 
Table 1. Summary of explanatory variables. Bioclimatic variables marked with an asterisk were eliminated 
after correlation analysis. The super-indices in the population variables indicate: 1 = used within the 
Plasmodium falciparum model, 2 = used within the Rift Valley Fever model, 3 = used within the Babesia 
bigemina model. 
 

Code  Variable definition 

Bioclimatic variables 

bio1  Mean annual temp. 

bio4  Temp. seasonality 

bio8  Mean temp. of wettest quarter 

bio9*  Mean temp. of driest quarter 

bio10*  Mean temp. of warmest quarter 
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bio11*  Mean temp. of coldest quarter 

bio12  Annual precip. 

bio13*  Precip. of wettest month 

bio14  Precip. of driest month 

bio15  Seasonality of precip. 

bio16*  Precip. of wettest quarter 

bio17*  Precip. of driest quarter 

bio18  Precip. of warmest quarter 

bio19  Precip. of coldest quarter 

Population variables 

Human pop1;2  Human population density 

Sheep pop2  Sheep population density 

Goat pop2  Goat population density 

Catbuf pop2;3  Cattle/Buffalo population density  

 
 
Host population density data 
Host population density data was included for the main hosts of each of the three diseases/pathogens when 
it was available (see Table 1). The animal density estimates had an original resolution of 0.05 degree, 
corresponding to predicted outputs for 2005

5
. The human population density was obtained from the gridded 

population of the world data set (GPWv3
6
) for 2005, with an original resolution of 0.25 degrees. 

 
The EM algorithm in GAM modelling 
Code to run the EM algorithm technique applied to generalised additive modelling (EM-GAM) with a logistic 
error distribution was written for use within the R statistical package. This code uses pathogen presence, 
climate and host population density data exported from the EID2 to predict the presence or absence of 
pathogens given the climate and host density explanatory variables, according to different prior probabilities 
(Pi) of the likelihood of a detected absence of a pathogen (when it has not been recorded in the EID2) 
actually being a presence.  

Using this technique, it is difficult to decide what value of Pi to use within the modelling exercise. In the 
modelling undertaken, multiple runs of models were initially used to test different (a) numbers of iterations 
and (b) Pi values incorporated within the EM-GAM technique, in order to see if it was possible to maximize 
the log likelihood value of the model and therefore to ascertain (a) the minimum number of iterations needed 
to allow each model to converge properly, and also (b) to try and see if an ideal (in which the log-likelihood 
value was maximized) prior probability of a detected absence actually being a presence could be predicted 
without prior knowledge. The minimum Pi values tested for each pathogen studied included: Pi = 0.1, 0.4, 
0.5, 0.7, 0.9, 0.95, 0.98 and 0.99.  

Adjusting for the surveillance of pathogens within the EM-GAM technique 
The results of these exercises suggested that the logistic regression models converged after a certain 
number of iterations, but also that the prior probability of a pathogen absence actually being detected as a 
presence could not be predicted without some kind of (Bayesian) prior knowledge of the distribution of the 
pathogen, as previously suggested by Ward et al. (2009). An improved approach was therefore tested in 
which location-specific priors (Pi) would be estimated using a combined assessment of the surveillance effort 
for a pathogen in different countries and of the general surveillance of all pathogens in one country relative to 
other countries (Equation 1), utilising information on pathogen surveillance from the EID2 database  and 
Figure 1):  
 

Pi = (N1 / Nt) * (1 – D1 / Dt)                   (1) 
 

Where N1 is the number of African countries in which a certain pathogen is present, Nt is the total number of 
African countries, D1 is the number of pathogen species detected in a certain African country, and Dt is the 
total number of pathogen species found in all African countries. 
 

(a)  (b)  (c)  
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Figure 1. Surveillance effort for pathogens in African countries for (a) Plasmodium falciparum, (b) Rift Valley 
Fever, and (c) Babesia bigemina, calculated utilising information on pathogen surveillance provided by the 
EID2 database.  
 
Multiple EM-GAM models were thereafter developed for P. falciparum, Rift Valley Fever and B. bigemina 
which incorporated the different bioclimatic and host density variables specified in Table 1, using different 
values of Pi (Pi = 0.0, 0.25, 0.50, 0.75, surveillance adjusted Pi value) to illustrate the impact of assumptions 
about pathogen presence given reported absence. The final model included all variables which significantly 
affected the variance of the model. Statistical significance was determined by a P-value of less than 0.05. 
Prior weights were assigned to the models for Rift Valley Fever and B. bigemina. A quasi-binomial family 
was used within the models for P. falciparum because the dispersion parameters were unknown. All models 
which used the surveillance adjusted Pi value utilised a quasi-binomial family. Likelihood estimates are not 
available for quasi-binomial models. 

Results 

The use of different numbers of iterations within EM-GAM modelling 
EM-GAM models including several simple climate terms were run for P. falciparum and Rift Valley Fever with 
different numbers of iterative procedures, from a single step model, to a model with 20 iterations. The model 
fit (measured by a higher log-likelihood value) converged as the number of iterations used within the model 
reached 20 (Figures 2a and b).      

The use of different Pi values in EM-GAM modelling 
When a series of Pi values were examined within the same EM-GAM models (including several simple 
climate terms), model fit increased as Pi approached 1 (where the pathogen is present in all regions) but did 
not peak at any point, suggesting that Pi can not be estimated using the data (Figures 2a and b), as 
previously suggested by Ward et al. (2009).      

 

(a) Plasmodium falciparum  



 

 
(b) Rift valley Fever 

 
Figure 2. Log likelihood values for logistic regression models of (a) Plasmodium falciparum and (b) Rift 
Valley Fever which incorporated an expectation-maximisation algorithm technique applied to generalised 
additive modelling to predict presence or absence according to different prior probabilities (Pi) of the 
likelihood of a detected absence of a pathogen (when it has not been recorded in the EID2) actually being a 
presence. Values are depicted for models which examined different numbers of iterations and Pi values, to 
maximise the log likelihood value of the model. The model fit (measured by log-likelihood) converged as the 
number of iterations used within the model reached 20. In addition, model fit increased as Pi approached 1 
(where the pathogen is present in all regions) but did not peak at any point, suggesting that Pi can not be 
estimated using the data, as previously suggested by Ward et al. (2009).   
 
Final EM-GAM models run using different Pi values 
All the bioclimatic variables (see Table 2) were statistically significant (P<0.001) and were included within the 
final EM-GAM models for P. falciparum, Rift Valley Fever and B. bigemina (Table 2 and Figure 3). The 
models for Rift Valley Fever and B. bigemina with the highest log-likelihood value used no iterative process 
(Pi=0.0) for locations where the pathogen was absent (Table 3). The predicted presence for models which 
used the surveillance adjusted Pi value were visually (in most cases), the ones in which the presence looked 
most similar to the Pi=0.0 models (Table 3 and Figure 3).  
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Table 2. Summary of the bioclimatic variables used within the final generalised additive models predicting 
the presence or absence of Plasmodium falciparum, Rift Valley Fever and Babesia bigemina. The super-
indices in the population variables indicate: 1 = used within the P. falciparum model, 2 = used within the Rift 
Valley Fever model, 3 = used within the B. bigemina model. 
   

Code  Variable definition 

Bioclimatic variables 

bio1  Mean annual temp. 

bio4  Temp. seasonality 

bio8  Mean temp. of wettest quarter 

bio12  Annual precip. 

bio14  Precip. of driest month 

bio15  Seasonality of precip. 

bio18  Precip. of warmest quarter 

bio19  Precip. of coldest quarter 

Population variables  
Human pop1;2  Human population density 

Sheep pop2  Sheep population density 

Goat pop2  Goat population density 

Catbuf pop2;3  Cattle/Buffalo population density  

 

Table 3. Summary of the descriptive statistics for generalised additive models incorporating an expectation-
maximisation algorithm technique to predict the presence or absence of Plasmodium falciparum, Rift Valley 
Fever and Babesia bigemina according to different prior probabilities (Pi) of the likelihood of a detected 
absence of the pathogen actually being a presence. 
 

Descriptive statistics for final models  

 Pi=0.0 

model 

Pi=0.25 

model 

Pi=0.50 

model 

Pi=0.75 

model 

Surveillance 

adjusted Pi 

value 

       

Plasmodium falciparum       

Log-likelihood value N/A N/A N/A N/A N/A 

Adjusted R-squared value 64.0% 63.5% 62.2% 60.9% 58.8% 

       

Rift Valley Fever       

Log-likelihood value -17741889 -9843718 -5724748 -2618860 N/A 

Adjusted R-squared value 40.3% 38.3% 36.6% 35.3% 37.8% 

       

Babesia bigemina       

Log-likelihood value -8830516 -4907646 -2838955 -1324010 N/A 

Adjusted R-squared value 49.2% 42.2% 38.8% 36.4% 44.7% 

       

 

Figure 3(a) (b) (c) 

   
(d) (e) (f) 



 

   
(g) (h) (i) 

   
(j) (k) (l) 
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Figure 3. Presence of predicted pathogens using logistic regression modelling which incorporates an 
expectation-maximisation algorithm technique to predict presence according to different prior probabilities of 
the likelihood of a detected absence of a pathogen (when it has not been recorded in the EID2) actually 
being a presence. Figures 3a, 3d, 3g, 3j, 3m depict the predicted presence of Plasmodium falciparum, 
Figures 3b, 3e, 3h, 3k, 3n depict the predicted presence of Rift Valley Fever, and Figures 3c, 3f, 3i, 3l, 3o 
depict the predicted presence of Babesia bigemina, according to a prior probability (Pi) that a detected 
absence of the pathogen from within the EID2 database presence data is actually a presence with probability 
values of Pi=0.0 (Figures 3a-c), Pi=0.25 (Figures 3d-f), Pi=0.50 (Figures 3g-i), Pi=0.75 (Figures 3j-l) and 
surveillance adjusted Pi value (Figures 3m-o).         

Discussion 

The results of the EM-GAM modelling exercises suggest that the presence of pathogens can be predicted 
using this technique, however prior knowledge of the probability of reported absences of pathogens actually 
being presences would be useful in order to decide the best Pi values to incorporate into the model; the 
value of Pi cannot be estimated using the data, as previously suggested by Ward et al. (2009). Although our 
results show that models without any adjustments for the absence of a pathogen actually being a presence 
(Pi=0.0) had the highest log-likelihood values and were potentially therefore the best models, such 



 

adjustments should be included as differences in surveillance and therefore reporting undoubtedly occur, as 
we have illustrated. It is worth noting that the predicted results of the models including surveillance adjusted 
Pi values which accounted for this issue differed little from the output of Pi=0.0 models. We therefore 
suggest that such an adjustment should be utilised as the best Pi estimate for EM-GAM modelling. 

Future work should include testing for the accuracy of the outputs of EM-GAM modelling exercises such as 
these, by comparing outputs with test data for diseases/pathogens; either from previous modelling exercise 
outputs describing the presence of pathogens, or real-world data.    
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