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Social Networks

Facebook,

Hyves,

LinkedIn,

Nasza Klasa,

. . .
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But also . . .

An area with links to

sociology (spread of patterns of social behaviour)

economics (effects of advertising, emergence of ‘bubbles’ in financial
markets, . . .),

epidemiology (epidemics),

computer science (complexity analysis),

mathematics (graph theory).
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Example

(From D. Easley and J. Kleinberg, 2010).

Collaboration of mathematicians centered on Paul Erdős.
Drawing by Ron Graham.
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The model

Social network ([Apt, Markakis ’11, ’14])

Weighted directed graph: G = (V ,→,w), where
V : a finite set of agents,
wij ∈ (0, 1]: weight of the edge i → j .

Products: A finite set of products P.

Product assignment: P : V → 2P \ {∅};
assigns to each agent a non-empty set of products.

Threshold function: θ(i , t) ∈ (0, 1], for each agent i and product
t ∈ P(i).

Neighbours of node i : {j ∈ V | j → i}.

Source nodes: Agents with no neighbours.
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,

◮ if i ∈ source(S), pi (s) =

{

0 if si = t0

c if si ∈ P(i)
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The associated strategic game
Interaction between agents: Each agent i can adopt a product from the
set P(i) or choose not to adopt any product (t0).

Social network games

Players: Agents in the network.

Strategies: Set of strategies for player i is P(i) ∪ {t0}.

Payoff: Fix c > 0.
Given a joint strategy s and an agent i ,

◮ if i ∈ source(S), pi (s) =

{

0 if si = t0

c if si ∈ P(i)

◮ if i 6∈ source(S), pi (s) =






0 if si = t0
∑

j∈N t
i (s)

wji − θ(i , t) if si = t, for some t ∈ P(i)

N t
i (s): the set of neighbours of i who adopted in s the product t.

P
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Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Krzysztof R. Apt Social Network Games



Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c
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Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c

p1(s) = 0.4 − 0.3 = 0.1
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Example

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

P = {•, •, •}

Payoff:

p4(s) = p5(s) = p6(s) = c

p1(s) = 0.4 − 0.3 = 0.1

p2(s) = 0.5 − 0.3 = 0.2

p3(s) = 0.4 − 0.3 = 0.1
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Social network games

Properties

Graphical game: The payoff for each player depends only on the
choices made by his neighbours.

Join the crowd property: The payoff of each player weakly increases if
more players choose the same strategy.
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Does Nash equilibrium always exist?

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.
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Does Nash equilibrium always exist?

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.
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Does Nash equilibrium always exist?

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

(•, •, •)

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.
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Does Nash equilibrium always exist?

4

{•}

1 {•, •}

3{•, •} 2 {•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Threshold is 0.3 for all the players.

Best response dynamics

(•, •, •) (•, •, •) (•, •, •)

(•, •, •)(•, •, •)(•, •, •)

Observation: No player has the
incentive to choose t0.

Source nodes can ensure a
payoff of c > 0.

Each player on the cycle can
ensure a payoff of at least 0.1.

Reason: Players keep switching
between the products.
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Nash equilibrium

Question: Given a social network S , what is the complexity of deciding
whether G (S) has a Nash equilibrium?
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Nash equilibrium

Question: Given a social network S , what is the complexity of deciding
whether G (S) has a Nash equilibrium?

Answer: NP-complete.
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Nash equilibrium

Question: Given a social network S , what is the complexity of deciding
whether G (S) has a Nash equilibrium?

Answer: NP-complete.

The PARTITION problem

Input: n positive rational numbers (a1, . . . , an) such that
∑

i ai = 1.

Question: Is there a set S ⊆ {1, 2, . . . , n} such that

∑

i∈S

ai =
∑

i 6∈S

ai =
1

2
.
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Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).



Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).

4{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

4′ {•′}

1′ {•′, •′}

3′
{•′, •′}

2′
{•′, •′}

6′

{•′}

5′

{•′}

0.5

0.5

0.5

0.4

0.4 0.4
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Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).

i1

{•, •′}

i2

{•, •′}

· · · in

{•, •′}

4{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

4′ {•′}

1′ {•′, •′}

3′
{•′, •′}

2′
{•′, •′}

6′

{•′}

5′

{•′}

0.5

0.5

0.5

0.4

0.4 0.4
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Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).

a1

a1

i1

{•, •′}

i2

{•, •′}

· · · in

{•, •′}

4{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

4′ {•′}

1′ {•′, •′}

3′
{•′, •′}

2′
{•′, •′}

6′

{•′}

5′

{•′}

0.5

0.5

0.5

0.4

0.4 0.4
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Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).

a1

a1

a2
a2

i1

{•, •′}

i2

{•, •′}

· · · in

{•, •′}

4{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

4′ {•′}

1′ {•′, •′}

3′
{•′, •′}

2′
{•′, •′}

6′

{•′}

5′

{•′}

0.5

0.5

0.5

0.4

0.4 0.4
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Hardness
Reduction: Given an instance of the PARTITION problem
P = (a1, . . . , an), construct a network S(P) such that there is a solution
to P iff there is a Nash equilibrium in S(P).

θ(4) = θ(4′) = 1
2 .

a1

a1

a2
a2

an

an

i1

{•, •′}

i2

{•, •′}

· · · in

{•, •′}

4{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

4′ {•′}

1′ {•′, •′}

3′
{•′, •′}

2′
{•′, •′}

6′

{•′}

5′

{•′}

0.5

0.5

0.5

0.4

0.4 0.4
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Nash equilibrium

Recall the network with no Nash equilibrium:

4

{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Theorem. If there are at most two products, then a Nash equilibrium
always exists and can be computed in polynomial time.

Krzysztof R. Apt Social Network Games



Nash equilibrium

4

{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Properties of the underlying graph:
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Nash equilibrium

4

{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Properties of the underlying graph:

Contains a cycle.
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Nash equilibrium

4

{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Properties of the underlying graph:

Contains a cycle.

Contains source nodes.
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Nash equilibrium

4

{•}

1 {•, •}

3
{•, •}

2

{•, •}

6

{•}

5

{•}

0.5

0.5

0.5

0.4

0.4 0.4

Properties of the underlying graph:

Contains a cycle.

Contains source nodes.

Question: Does Nash equilibrium always exist in social networks when the
underlying graph

is acyclic?

has no source nodes?

Krzysztof R. Apt Social Network Games



Non-trivial Nash equilibria

A Nash equilibrium s is non-trivial if there is at least one player i such
that si 6= t0.

Theorem. In a DAG, a non-trivial Nash equilibrium always exists.

Theorem. Assume the graph has no source nodes. There is an
algorithm with a running time O(|P| · n3) that determines whether a
non-trivial Nash equilibrium exists.
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Finite Improvement Property

Fix a game.

Profitable deviation: a pair (s, s ′) such that s ′ = (s ′i , s−i) for some s ′i
and pi(s

′) > pi (s).

Improvement path: a maximal sequence of profitable deviations.

A game has the FIP if all improvement paths are finite.
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Summary of results

arbitrary DAG simple cycle no source
graphs nodes

NE NP-complete always exists always exists always exists

Non-trivial NE NP-complete always exists O(|P| · n) O(|P| · n3)

Determined NE NP-complete NP-complete O(|P| · n) NP-complete
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Summary of results

arbitrary DAG simple cycle no source
graphs nodes

NE NP-complete always exists always exists always exists

Non-trivial NE NP-complete always exists O(|P| · n) O(|P| · n3)

Determined NE NP-complete NP-complete O(|P| · n) NP-complete

FIP co-NP-hard yes ? co-NP-hard

FBRP co-NP-hard yes O(|P| · n) co-NP-hard

Uniform FIP co-NP-hard yes yes co-NP-hard

Weakly acyclic co-NP-hard yes yes co-NP-hard
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Summary of results

arbitrary DAG simple cycle no source
graphs nodes

NE NP-complete always exists always exists always exists

Non-trivial NE NP-complete always exists O(|P| · n) O(|P| · n3)

Determined NE NP-complete NP-complete O(|P| · n) NP-complete

FIP co-NP-hard yes ? co-NP-hard

FBRP co-NP-hard yes O(|P| · n) co-NP-hard

Uniform FIP co-NP-hard yes yes co-NP-hard

Weakly acyclic co-NP-hard yes yes co-NP-hard

FBRP: all improvement paths, in which only best responses are used, are finite.

Uniform FIP: all improvement paths that respect a scheduler are finite.

Weakly acyclic: from every joint strategy there is a finite improvement path that
starts at it.
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Paradox of Choice (B. Schwartz, 2005)

[Gut Feelings, G. Gigerenzer, 2008]

The more options one has, the more possibilities for experiencing conflict
arise, and the more difficult it becomes to compare the options. There is a
point where more options, products, and choices hurt both seller and
consumer.
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Paradox 1

Adding a product to a social network can trigger a sequence of changes
that will lead the agents from one Nash equilibrium to a new one that is
worse for everybody.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•}

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•}

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is a Nash equilibrium. The payoff to each player is 0.1 − θ > 0.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.

Krzysztof R. Apt Social Network Games



Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.

Krzysztof R. Apt Social Network Games



Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is not a Nash equilibrium.
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Example

1{•} 2 {•, •}

3{•, •} 4 {•} •

5{•, •} 6 {•}

0.1

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.1

0.2

Cost θ is constant, 0 < θ < 0.1.

This is a Nash equilibrium. The payoff to each player is 0.
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Paradox 2

Removing a product from a social network can result in a sequence of
changes that will lead the agents from one Nash equilibrium to a new one
that is better for everybody.
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Example

1

{•}

2{•} 3

{•, •}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

Note Each node has two incoming edges.
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Example

1

{•}

2{•} 3

{•, •}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is a Nash equilibrium. The payoff to each player is w − θ.
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Example

1

{•}

2{•} 3

{•}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is not a legal joint strategy.
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Example

1

{•}

2{•} 3

{•}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is not a Nash equilibrium.
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Example

1

{•}

2{•} 3

{•}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is not a Nash equilibrium.
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Example

1

{•}

2{•} 3

{•}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is not a Nash equilibrium.
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Example

1

{•}

2{•} 3

{•}

4 {•, •}

w

w

w w

ww

w

w

Cost θ is product independent.

The weight of each edge is w , where w > θ.

This is a Nash equilibrium. The payoff to each player is 2w − θ.
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Final remarks

Needed: Identify other conditions that guarantee that these paradoxes
cannot arise.

Open problem:
Does a social network exist that exhibits paradox 1 for every triggered
sequence of changes?

Alternative approach:
Obligatory product selection (no t0).
In this setup the above problem has an affirmative answer.
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