Dynamic Resource Management for Next Generation Wireless Communications

Dr. Xu (Judy) Zhu

Department of Electrical Engineering and Electronics

The University of Liverpool

xuzhu@liv.ac.uk

Wireless Communication Resources

- Resources to be allocated across multiple users
 - Time
 - Frequency (Sub-channels)
 - Transmission Power

Challenge 1: Frequency Diversity

• Frequency-selective channel: caused by multipath

Challenge 2: Time Diversity

• Time-varying channel: caused by movement of mobile terminals

Resource Allocation Strategy

- How to allocate limited and expensive resources across a large number of users?
- Things to consider:
 - Quality of service
 - Fairness
 - Dynamic
 - Real-time processing
- Proposed solution: cross-layer design

Cross-Layer Design

- Conventional communication networks have independent layers, which is not efficient.
- Objective: to enhance the network performance by dynamic resource allocation, using the information across two or more layers.

Cross-Layer Resource Allocation

• Previous method: maximum sum capacity at PHY layer only. $\max \sum_{k} R_{k} \longleftarrow \begin{array}{c} \text{Maximum data rate of user } k \\ \text{determined at the PHY layer} \end{array}$

• Proposed method: maximum weighted sum capacity (MWSC) scheme cross PHY and MAC layers. $\max \sum_{k} W_{k} R_{k}$

Weight of user *k* determined at the MAC layer

subject to fixed total transmission power

Scheduling at the MAC Layer

- Previous scheduling methods
 - All packets for the same user are given the same weight.
 - Not efficient
 - Urgent and less urgent packets are treated with the same priority;
 - Some packets in the waiting queue may be dropped.

Packet Dependent (PD) Scheduling

- Proposed method: **packet dependent (PD)** scheduling—different packets for the same user may be assigned different weights.
- The packets with higher weights are served first--more flexible and efficient.
- The quality of user experience (QoE) is taken into account in weight calculations
 - Packet delay
 - Packet size: bigger data to serve first
 - Traffic type (voice, video, text)

Average Delay Performance

 PD scheduling achieves a much lower average delay than the previous methods.

System Throughput Performance

 The PD crosslayer design achieves a higher throughput than the previous methods.

Sub-Channel Allocation at the PHY Layer

- Optimal solution: exhaustive search is computationally prohibitive (100!≈10¹⁵⁸ possibilities for 100 users)
- Suboptimal solution: greedy algorithm with a reduced search space.
- The greedy algorithm searches across sub-channels with a given user order (e.g., [3,2,4,1]) each time.

Greedy Algorithm based Sub-Channel Allocation

- Block diagram for sub-channel allocation Channel User allocation information
 Utility User Greedy Calculation
 Ranking Algorithm
- We only select a small number (e.g., 100) of user orders. Thus, user ranking is important in reducing the search space
 - Previous work was based on single criterion ranking
 - Proposed method: multi-criteria ranking, using the mean, standard deviation etc. of a user's performance across different sub-channels

Bit Error Rate Performance of the Greedy Algorithm

- Multi-criteria ranking achieves near optimal performance
- Lower complexity compared to some single-criterion ranking algorithms (e.g., 10 times less complex than MG)

16

Relay based Wireless Network

- Higher energy efficiency
- Extension of cell coverage
- More reliable and longer lasting network connectivity
- Cost effective

Resource Allocation for Relay based Wireless Networks

- Objectives of the further work
 - Improved user quality of experience
 - Real-time processing
 - High network performance (throughput etc.)
- Methods
 - Cross-layer resource allocation
 - Positioning + resource allocation
- This is applicable to vehicular communications.

Conclusion

- Low-complexity and dynamic cross-layer resource allocation across multiple users
 - Scheduling: better quality of service than previous methods.
 - Sub-channel allocation: near-optimal performance.
- Further work
 - Relay based wireless networks