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Dealing with “BigData” in Graphs

e We want to process graphs quickly
— Detect basic properties
— Analyze their structure

e For large graphs, by “quickly” we often
would mean: in time constant or sublinear in
the size of the graph



Dealing with “BigData” in Graphs

One approach:
e How to test basic properties of graphs
in the framework of property testing



Fast Testing of Graph Properties

e Does this graph have
a clique of size 11?

e Doesithave a given
H as its subgraph?

e Is this graph planar?

e Isitbipartite?

e Isitk-colorable?

e Does ithave good
expansion?

e Doesithave good

from Fan Chung’s web page clustering?




Clustering in graphs

What is a good
clustering?

from Fan Chung’s web page




Clustering in graphs

e Same cluster:
points are well-
connected

e Different cluster:
points are poorly
connected

from Fan Chung’s web page




Clustering in graphs

from Fan Chung’s web page

Same cluster:
points have high
conductance

Different cluster:
points are
separated by a
cut



k-clustering

Graph G is k-clusterable if vertices of ¢ can be partitioned
into at most k sets V3, V5, ... such that for each i:

e each G|V;] has large conductance
e each setl/; has low outer-conductance (small cut)



Conductance

( has maximum degree < d

For every S € I/, conductance of S is defined as:

_e(SV\S)
ba(s) = <0

Conductance of G:

¢ = __ min  Ps(S)

scv,|s|g|v]/2

(minimum conductance of any possible subset of size at most |V |/2)



(k, ® iy, Pous)-clustering

G is (k, @i, @oue)-clusterable if vertices of G can be
partitioned into V;, V>, ..., V; with s < k such that for each i:

e each G|V;] has large conductance

¢(G [Vi]) = (,bin

e each set V; has low outer-conductance (small cut)

¢G (Vi) = ¢out



(k, ® iy, Pous)-clustering

Notion of (k, ¢;,,, ®,4+)-Clusterable graphs has been
around informally for a while;

formally introduced by Oveis Gharan and Trevisan 2014

Our goal:
e we want to determine if G is (k, @;,,, @yt )-Clusterable
e really fast

- Recognize cluster structure in sublinear time using
random sampling



Framework of property testing

e We cannot quickly give 100% precise answer
e We need to approximate

e Distinguish graphs that have specific property
from those that are far from having the property



Property Testing definition

Given input G
If G has the property = tester passes
If G is e-far from any string that has the property © tester fails

error probability <1/3

Notion of &-far : DISTANCE to the Property
One needs to change ¢ fraction of the input to obtain
an object satisfying the property

Typically we think about &
as on a small constant, say, € = 0.1



Framework

e Goal:
Distinguish between the case when
— graph G has property P and
- G is far from having property P

e one has to change at least edn edges of G to obtain a
graph with property P

We will consider graph of degree bounded by d



Goal

Design a sublinear-time algorithm that will distinguish
between two cases:

e (k,®in, Pour)-clusterable graphs

e graphs that are e-far from being (k, ¢;.,, $ .1 )-
clusterable (with ¢, as close to ¢;, as possible)



Basic case k = 1: Testing expansion

(k, ®in, Pout)-Clusterable graphs for k = 1: expanders

e For graphs of bounded degree, we can distinguish
expanders from graphs that are “far” even from poor
expanders in 0*(1/n) time

|C, Sohler 07, Kale, Seshadhri’07, Nachmias, Shapira’08]
e ((+/n) time is needed
|Goldreich, Ron’02]



Basic case k = 1: Testing expansion

e For graphs of bounded degree, we can distinguish
expanders from graphs that are “far” even from poor
expanders in 0*(1/n) time

|C, Sohler '07, Kale, Seshadhri’07, Nachmias, Shapira’08]

e We are using basic properties of expanders: random walk of
logarithmic length will mix (= will reach a random vertex)

e Similar to testing uniformity of a distribution



Testing expansion

/Choose 0O(1/¢) nodes at random
For each chosen node run O (y/n) random walks of length O (logn)
Count the number of collisions at the end-nodes
If the number of collisions is too large then Reject

Accept
\ P

\

/

Idea:
e If G is an expander then end-nodes are random nodes

=  we can estimate number of collisions well

e If G is far from expander then we will have many more
collisions

- (requires non-trivial arguments)



Basic case k = 1: Testing expansion

e For graphs of bounded degree, we can distinguish
expanders from graphs that are “far” even from poor
expanders in 0*(1/n) time

|C, Sohler 07, Kale, Seshadhri’07, Nachmias, Shapira’08]

e We can distinguish between a graph G that is an 4-
expander and any graph that is e-far from any cA? /d-

expander in time 0*(n%3%9 f(¢))



Testing expansion and clustering

Can we apply similar approach to test (k, ¢, Doyt)-
clusterability for k > 1?

e We don’t know which vertex sets form expanders
e We don't know sizes of subgraphs-expanders

- If we knew, we could try to test distributions of endpoints of
random walks ...

e How to test small cuts?
e We don’t know how to test distributions in o(n?/3) time!

— We know this only for uniform distributions - but since we
don’t know which vertices are in each set, we won’t get it ...



Testing expansion and clustering

Can we apply similar approach to test (k, ¢, Doyt)-
clusterability for k > 1?

Still, we will following the following key intuitions:
 Randomly sample a constant number of points S
e Points in S will define a “skeleton” of < k clusters

e If two points will have same distribution of end-points of
random walks of logarithmic length =» are in same cluster

e [ftwo points are separated by a cut then they will have
different distribution of end-points of random walks



Testing (k, @i, @ oyt )-clustering

e We would like to have the following algorithm:

@mple set S of s random vertices \

Foranyv € S
* D, =distributions of endpoints of random walk of length £
starting at v
For each pairu,v € §:
* if distributions D, D,, are close then
add edge (u, v) to “cluster graph” H on vertex set S
If H is a union of at most k cliques then Accept

\Els.e Reject /

Too slow (testing if distribution are closed needs Q(n?/3) time)

How to analyze it ?

We understand random walks in expanders, but we need to understand them also on the
rest of the graph



Testing (k, @i, @ oyt )-clustering

@mple set § of s random vertices \

Foranyv € S
* FE, = multiset of endpoints of r random walks of length £ starting at v
* Z, = number of pairwise self-collisions in F,
If there is v € S with Z,, > o then abort and Reject
For each pairu,v € S:
* If £,-distribution-test (F,, F,) accepts that distributions of F, and E,
are close then add edge (u, v) to “cluster graph” H

If H is a union of at most k cliques then Accept
\{Ise Reject /
s=0(klIn(k +1) &%) r = 0(k%(Ink/e)%/%\ne3)

2 = 0(k*logn ¢;2) o = 0(k®In(k/e)®e7®)



Key theorem

e The algorithm accepts every (k, ¢y, b, )-Clusterable
graph (of maximum degree < d) with probability
> 2/3.

e The algorithm rejects every graph G (of maximum
degree < d) that is e-far from being (k, ¢;,,, Pout)-
clusterable with probability = 2/3, assuming that

bin < ¢ pie*/logn.

e Running time is yn ¢5%(ke™ logn)?™)



Key properties (completeness)

o pl-vertex distribution of a random walk of length t starting at u



Key properties (completeness)

e Convergence within
a cluster

&

\

How will the distribution of endpoints
differ (for clusterable graphs)?

For most of starting vertices u, v:

Ipt — pollz < —

[

e




Key properties (completeness)

How will the distribution of endpoints
differ?

For most of starting vertices u, v:

e Convergence outside
a cluster

t _ Lt 12 >
”pu pv”Z ~n

[V

—




Key properties (completeness)

Can the distribution vector of

e Bound for distribution endpoints have big values?

For most of starting vertices u:
for able graphs 5 ck

2
||p13||2 = 7

\




Key properties (completeness)

p’ - vertex distribution of a random walk of length t starting at u

If G is (k, @iy, Doyt )-clusterable then for any C € V with |C| = B|V| and
d(G[C]) = ¢y, thereis C* € C with |C*| = (1 — a)|C| such that for
large enough t and ¢,y < cP;,/log? n, forany u, v € C*:

1

%, — PLII5 < i

For “short enough” t, for any disjoint sets S,T € V with ¢ (S), ¢ (T) <
Y, thereexist S* € S, T* T, |S*| = (1 — a)|S|,|T*| = (1 — a)|T| such
thatforanyu e S, veT"

1

t _ aat 2>_
P, — pyll2 =

If G is (k, pin, Pout)-clusterable then thereis V* € V with |V*| >

(1 — a)|V| such that for large enough t, forany u € V*:

2k
L2 <
Ipill3 < —



Key properties (completeness)

With these properties:

e If G is clusterable then the cluster graph H will consist of at
most k disjoint subgraphs, each forming a clique




Key properties (soudness)

e If G is e-far from (k, ¢;,,, P, )-Clusterable with ¢/, < c ¢
then there are k + 1 disjoint subsets V;,V,, ..., Vi1 of V
such that for each i:

Vil = c£?|V|/k and gy < cipe

With this property, if G is e-far from clusterable then the
cluster graph H will have more than k components



Key theorem

e The algorithm accepts every (k, ¢y, b, )-Clusterable
graph (of maximum degree < d) with probability
> 2/3.

e The algorithm rejects every graph G (of maximum
degree < d) that is e-far from being (k, ¢;,,, Pout)-
clusterable with probability = 2/3, assuming that

bin < ¢ pie*/logn.

e Running time is yn ¢5%(ke™ logn)?™)



Extensions

Since k-clustering is related to some properties of k
smallest eigenvalues of the relevant Laplacian matrix:

e We can recognize graphs with a (large enough) gap
between the k™ and k+1st smallest eigenvalue.



Conclusions

Clustering (or clusterability) can be tested fast
e by comparing distributions of random walks
e drawing conclusions from the distributions

Tools:

e Random sampling
e Random walks

e Spectral analysis



