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Dealing with “BigData” in Graphs 

• We want to process graphs quickly 

– Detect basic properties 

– Analyze their structure 

 

• For large graphs, by “quickly” we often 
would mean: in time constant or sublinear in 
the size of the graph 

 



Dealing with “BigData” in Graphs 

One approach: 

• How to test basic properties of graphs 

  in the framework of property testing 

 



Fast Testing of Graph Properties 

• Does this graph have 
a clique of size 11? 

• Does it have a given 
𝐻 as its subgraph? 

• Is this graph planar? 

• Is it bipartite? 

• Is it 𝑘-colorable? 

• Does it have good 
expansion? 

• Does it have good 
clustering? from Fan Chung’s web page 



Clustering in graphs 

• What is a good 
clustering? 

from Fan Chung’s web page 



Clustering in graphs 

• Same cluster: 
points are well-
connected 

 

• Different cluster: 
points are poorly 
connected 

 
from Fan Chung’s web page 



Clustering in graphs 

• Same cluster: 
points have high 
conductance 

 

• Different cluster: 
points are 
separated by a 
cut 

 from Fan Chung’s web page 



𝑘-clustering 

Graph 𝐺 is 𝒌-clusterable if vertices of 𝐺 can be partitioned 
into at most 𝑘 sets 𝑉1, 𝑉2, … such that for each 𝑖: 

• each 𝐺[𝑉𝑖] has large conductance 

• each set 𝑉𝑖 has low outer-conductance (small cut) 



Conductance 

𝐺 has maximum degree ≤ 𝑑 

 

For every 𝑆 ⊆ 𝑉, conductance of S is defined as: 

 𝜙𝐺 𝑆 =  
𝑒(𝑆,𝑉∖𝑆)

𝑑 |𝑆|
 

 

Conductance of 𝐺: 

 𝜙𝐺 = min
𝑆⊆𝑉,|𝑆|≤|𝑉|/2

𝜙𝐺(𝑆) 
 

(minimum conductance of any possible subset of size at most 𝑉 /2) 



(𝒌, 𝝓𝒊𝒏, 𝝓𝒐𝒖𝒕)-clustering 

𝐺 is (𝒌, 𝝓𝒊𝒏, 𝝓𝒐𝒖𝒕)-clusterable if vertices of 𝐺 can be 
partitioned into 𝑉1, 𝑉2, … , 𝑉𝑠 with 𝑠 ≤ 𝑘 such that for each 𝑖: 

• each 𝐺[𝑉𝑖] has large conductance 

 𝜙 𝐺 𝑉𝑖 ≥ 𝜙𝑖𝑛 

• each set 𝑉𝑖 has low outer-conductance (small cut) 

 𝜙𝐺 𝑉𝑖 ≤ 𝜙𝑜𝑢𝑡 



(𝒌, 𝝓𝒊𝒏, 𝝓𝒐𝒖𝒕)-clustering 

Notion of (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable graphs has been 
around informally for a while; 

formally introduced by Oveis Gharan and Trevisan 2014 

 

Our goal: 

• we want to determine if 𝐺 is (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable 

• really fast 

– Recognize cluster structure in sublinear time using 
random sampling 



Framework of property testing 

• We cannot quickly give 100% precise answer 

• We need to approximate 

 

• Distinguish graphs that have specific property 
 from those that are far from having the property 

 



Property Testing definition 

 

• Given input 𝐺 
 

• If 𝐺 has the property e tester passes 
 

• If 𝐺 is 𝜀-far from any string that has the property e tester fails 
 

• error probability < 1/3 

Notion of 𝜺-far : DISTANCE to the Property 
One needs to change 𝜀 fraction of the input  to obtain  

an object satisfying the property 

Typically we think about 𝜺 

as on a small constant, say, 𝜺 = 𝟎. 𝟏 



Framework 

• Goal: 

Distinguish between the case when  

– graph 𝐺 has property P and  

– 𝐺 is far from having property P 

• one has to change at least 𝜀𝑑𝑛 edges of 𝐺 to obtain a 
graph with property 𝑃 

 

We will consider graph of degree bounded by 𝑑 



Goal 

Design a sublinear-time algorithm that will distinguish 
between two cases: 

• (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable graphs 

• graphs that are 𝜀-far from being (𝑘, 𝜙𝑖𝑛
∗ , 𝜙𝑜𝑢𝑡

∗ )-
clusterable (with 𝜙𝑖𝑛

∗  as close to 𝜙𝑖𝑛 as possible) 

 



Basic case 𝒌 = 𝟏: Testing expansion 

(𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable graphs for 𝑘 = 1: expanders 

 

 

• For graphs of bounded degree, we can distinguish 
expanders from graphs that are “far” even from poor 
expanders in 𝑂∗( 𝑛) time 

[C, Sohler ’07, Kale, Seshadhri’07, Nachmias, Shapira’08] 

•  Ω( 𝑛) time is needed 

[Goldreich, Ron’02] 

 



Basic case 𝒌 = 𝟏: Testing expansion 

• For graphs of bounded degree, we can distinguish 
expanders from graphs that are “far” even from poor 
expanders in 𝑂∗( 𝑛) time 

[C, Sohler ’07, Kale, Seshadhri’07, Nachmias, Shapira’08] 

 

• We are using basic properties of expanders: random walk of 
logarithmic length will mix (= will reach a random vertex) 

• Similar to testing uniformity of a distribution 



Testing expansion 

Idea: 

• If 𝐺 is an expander then end-nodes are random nodes 

  e we can estimate number of collisions well 

• If 𝐺 is far from expander then we will have many more 
collisions 

– (requires non-trivial arguments) 

Choose 𝑂(1/𝜀) nodes at random 
For each chosen node run 𝑂( 𝑛) random walks of length 𝑂(log 𝑛) 

Count the number of collisions at the end-nodes 
If the number of collisions is too large then Reject 

Accept 



Basic case 𝒌 = 𝟏: Testing expansion 

• For graphs of bounded degree, we can distinguish 
expanders from graphs that are “far” even from poor 
expanders in 𝑂∗( 𝑛) time 

[C, Sohler ’07, Kale, Seshadhri’07, Nachmias, Shapira’08] 

 

• We can distinguish between a graph 𝐺 that is an 𝜆-
expander and any graph that is 𝜀-far from any 𝑐𝜆2/𝑑-

expander in time 𝑂∗(𝑛0.5+𝛿  𝑓 𝜖 ) 



Testing expansion and clustering 

Can we apply similar approach to test (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-
clusterability for 𝑘 > 1? 

 

• We don’t know which vertex sets form expanders 

• We don’t know sizes of subgraphs-expanders  

– If we knew, we could try to test distributions of endpoints of 
random walks … 

• How to test small cuts? 

• We don’t know how to test distributions in 𝑜(𝑛2/3) time! 

– We know this only for uniform distributions – but since we 
don’t know which vertices are in each set, we won’t get it … 



Testing expansion and clustering 

Can we apply similar approach to test (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-
clusterability for 𝑘 > 1? 

 

Still, we will following the following key intuitions: 

• Randomly sample a constant number of points 𝑆 

• Points in 𝑆 will define a “skeleton” of ≤ 𝑘 clusters 

• If two points will have same distribution of end-points of 
random walks of logarithmic length  are in same cluster 

• If two points are separated by a cut then they will have 
different distribution of end-points of random walks 



Testing (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clustering 

• We would like to have the following algorithm: 

Sample set 𝑆 of 𝑠 random vertices 
For any 𝑣 ∈ 𝑆 

• 𝐷𝑣 =distributions of endpoints of random walk of length ℓ 
starting at 𝑣 

For each pair 𝑢, 𝑣 ∈ 𝑆: 
• if distributions 𝐷𝑢, 𝐷𝑣 are close then 
 add edge (𝑢, 𝑣) to “cluster graph” 𝐻 on vertex set 𝑆 

If H is a union of at most k cliques then Accept 
Else Reject 

• Too slow (testing if distribution are closed needs Ω(𝑛2/3) time) 

• How to analyze it ? 

• We understand random walks in expanders, but we need to understand them also on the 
rest of the graph 



Testing (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clustering 

Sample set 𝑆 of 𝑠 random vertices 
For any 𝑣 ∈ 𝑆 

• 𝐹𝑣 = multiset of endpoints of 𝑟 random walks of length ℓ starting at 𝑣 
• 𝑍𝑣 = number of pairwise self-collisions in 𝐹𝑣 

If there is 𝑣 ∈ 𝑆 with 𝑍𝑣 > 𝜎 then abort and Reject 
For each pair 𝑢, 𝑣 ∈ 𝑆: 

• If ℓ2-distribution-test (𝐹𝑢, 𝐹𝑣) accepts that distributions of 𝐹𝑢 and 𝐹𝑣 
are close then add edge (𝑢, 𝑣) to “cluster graph” 𝐻 

If H is a union of at most k cliques then Accept 
Else Reject 

𝜎 = 𝑂(𝑘6 ln 𝑘/𝜀 6 𝜀−8) 

𝑟 = 𝑂(𝑘2 ln 𝑘/𝜀 5/2 𝑛𝜀−3) 

ℓ = 𝑂(𝑘4 log 𝑛 𝜙𝑖𝑛
−2) 

𝑠 = 𝑂(𝑘 ln 𝑘 + 1 𝜀−2) 



Key theorem 

• The algorithm accepts every (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable 
graph (of maximum degree ≤ 𝑑) with probability 
≥ 2/3. 

 

• The algorithm rejects every graph 𝐺 (of maximum 
degree ≤ 𝑑) that is 𝜀-far from being (𝑘, 𝜙𝑖𝑛

∗ , 𝜙𝑜𝑢𝑡
∗ )-

clusterable with probability ≥ 2/3, assuming that 
𝜙𝑖𝑛

∗ ≤ 𝑐 𝜙𝑖𝑛
2 𝜀4/ log 𝑛. 

 

• Running time is 𝑛 𝜙𝑖𝑛
−2 𝑘𝜀−1 log 𝑛 𝑂(1) 



Key properties (completeness) 

• 𝒑𝑢
𝑡 - vertex distribution of a random walk of length 𝑡 starting at 𝑢 



Key properties (completeness) 

• Convergence within  

  a cluster 

How will the distribution of endpoints 
differ (for clusterable graphs)? 

For most of starting vertices 𝑢, 𝑣: 

𝒑𝑢
𝑡 − 𝒑𝑣

𝑡
2
2 ≤

1

4𝑛
 

 



Key properties (completeness) 

• Convergence outside  

  a cluster 

How will the distribution of endpoints 
differ? 

For most of starting vertices 𝑢, 𝑣: 

𝒑𝑢
𝑡 − 𝒑𝑣

𝑡
2
2 ≥

1

𝑛
 

 



Key properties (completeness) 

• Bound for distribution 

    for clusterable graphs 

Can the distribution vector of 
endpoints have big values? 

For most of starting vertices 𝑢: 

𝒑𝑢
𝑡

2
2 ≤

𝑐𝑘

𝑛
 

 



Key properties (completeness) 

• 𝒑𝑢
𝑡 - vertex distribution of a random walk of length 𝑡 starting at 𝑢 

• If 𝐺 is (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable then for any 𝐶 ⊆ 𝑉 with 𝐶 ≥ 𝛽|𝑉| and 
𝜙 𝐺 𝐶 ≥ 𝜙𝑖𝑛 there is 𝐶∗ ⊆ 𝐶 with 𝐶∗ ≥ (1 − 𝛼)|𝐶| such that for 
large enough 𝑡 and 𝜙𝑜𝑢𝑡 ≤ 𝑐𝜙𝑖𝑛/ log2 𝑛, for any 𝑢, 𝑣 ∈ 𝐶∗: 

𝒑𝑢
𝑡 − 𝒑𝑣

𝑡
2
2 ≤

1

4𝑛
 

• For “short enough” 𝑡, for any disjoint sets 𝑆, 𝑇 ⊆ 𝑉 with 𝜙𝐺 𝑆 , 𝜙𝐺 𝑇 ≤
𝜓, there exist 𝑆∗ ⊆ 𝑆, 𝑇∗ ⊆ 𝑇, 𝑆∗ ≥ (1 − 𝛼)|𝑆|, 𝑇∗ ≥ (1 − 𝛼)|𝑇| such 
that for any 𝑢 ∈ 𝑆∗, 𝑣 ∈ 𝑇∗ 

𝒑𝑢
𝑡 − 𝒑𝑣

𝑡
2
2 ≥

1

𝑛
 

• If 𝐺 is (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable then there is 𝑉∗ ⊆ 𝑉 with 𝑉∗ ≥
1 − 𝛼 |𝑉| such that for large enough 𝑡, for any 𝑢 ∈ 𝑉∗: 

𝒑𝑢
𝑡

2
2 ≤

2𝑘

𝛼𝑛
 



Key properties (completeness) 

 

With these properties: 

• If 𝐺 is clusterable then the cluster graph 𝐻 will consist of at 
most 𝑘 disjoint subgraphs, each forming a clique 



Key properties (soudness) 

• If 𝐺 is 𝜀-far from (𝑘, 𝜙𝑖𝑛
∗ , 𝜙𝑜𝑢𝑡

∗ )-clusterable with 𝜙𝑖𝑛
∗ ≤ 𝑐 𝜀 

then there are 𝑘 + 1 disjoint subsets 𝑉1, 𝑉2, … , 𝑉𝑘+1 of 𝑉 
such that for each 𝑖: 

                        𝑉𝑖 ≥ 𝑐𝜀2|𝑉|/𝑘 and 𝜙𝐺 𝑉𝑖
≤ 𝑐𝜙𝑖𝑛

∗ 𝜀−2 

 

With this property, if 𝐺 is 𝜀-far from clusterable then the 
cluster graph 𝐻 will have more than k components 



Key theorem 

• The algorithm accepts every (𝑘, 𝜙𝑖𝑛, 𝜙𝑜𝑢𝑡)-clusterable 
graph (of maximum degree ≤ 𝑑) with probability 
≥ 2/3. 

 

• The algorithm rejects every graph 𝐺 (of maximum 
degree ≤ 𝑑) that is 𝜀-far from being (𝑘, 𝜙𝑖𝑛

∗ , 𝜙𝑜𝑢𝑡
∗ )-

clusterable with probability ≥ 2/3, assuming that 
𝜙𝑖𝑛

∗ ≤ 𝑐 𝜙𝑖𝑛
2 𝜀4/ log 𝑛. 

 

• Running time is 𝑛 𝜙𝑖𝑛
−2 𝑘𝜀−1 log 𝑛 𝑂(1) 



Extensions 

Since 𝑘-clustering is related to some properties of 𝑘 
smallest eigenvalues of the relevant Laplacian matrix: 

• We can recognize graphs with a (large enough) gap 
between the kth and k+1st smallest eigenvalue. 



Conclusions 

Clustering (or clusterability) can be tested fast 

• by comparing distributions of random walks  

• drawing conclusions from the distributions 

 

Tools: 

• Random sampling 

• Random walks 

• Spectral analysis 


