A Strategy for Network Resilience

David Hutchison Lancaster University

d.hutchison@lancaster.ac.uk

University of Liverpool, 26 June 2014

Resilience

Generally, this means the capability of people to 'bounce back' after experiencing problems [Oxford English Dictionary definition: "Power of resuming the original form after compression &c."]

Specifically, a <u>resilient system</u> is one that can continue to offer a satisfactory level of service even in the face (or in the aftermath) of the challenges it experiences

Resilience goes beyond security; it encompasses security but aims to recover from security breaches and also any other challenges that compromise the system

Resilience as a network need

- Society is increasingly reliant on the Internet and on networked systems in general ('Information Society')
- Communication networks now underpin many of society's critical infrastructures
- We need resilience, a (QoS) property of networks and systems such that they can withstand any challenge, whether from natural disasters, misconfigurations, hardware or software failures, congestion/overloads (including flash crowds), or attacks
- Network system attacks are increasing in variety and number: virus, worms, botnets, DoS, ...

It is no coincidence that every single major cloud storage provider went down last week. That's Google's cloud storage, Microsoft's cloud storage, Intel's cloud services and Amazon's (the biggest and used by a huge number of other providers from Dixons and Dropbox to Spotify). Remember these services are supposed to have a 99.999% availability yet they've all failed with one day of each other. Not a single word of explanation from any of the companies involved ...

"Future Internet Research: The EU framework" by Joao da Silva

"... as the Internet is increasingly becoming a "critical infrastructure, security and robustness of the Internet are naturally becoming issues of major concern." (ACM CCR, 2007)

acmqueue "**Resolved: the Internet Is No Place for Critical Infrastructure**" by Dan Geer | April 2, 2013

Chinese domains downed by 'largest ever' cyber-attack. DDoS attacks targeted the country's national registry. The Independent, Aug 27, 2013

Some notable past challenges

- 2001 Baltimore tunnel fire
- 2001 9/11 terrorist attacks
- 2003 Cogent peering disputes
- 2003 Northeast US blackout
- 2005 7/7 terrorist attacks
- 2005 Hurricane Katrina
- 2006 Hengchun earthquake
- 2008 Pakistan YouTube hijack
- 2008 Mideast submarine cable cuts
- 2009 H1N1 influenza pandemic
- 2010 Stuxnet worm attack

General lessons:

-Plan for vulnerabilities (threats may be predictable)

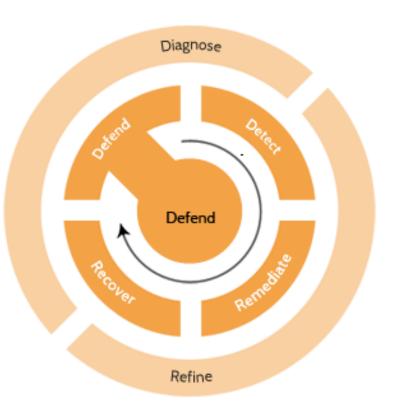
- Redundancy without diversity is not resilient

www.enisa.europa.eu

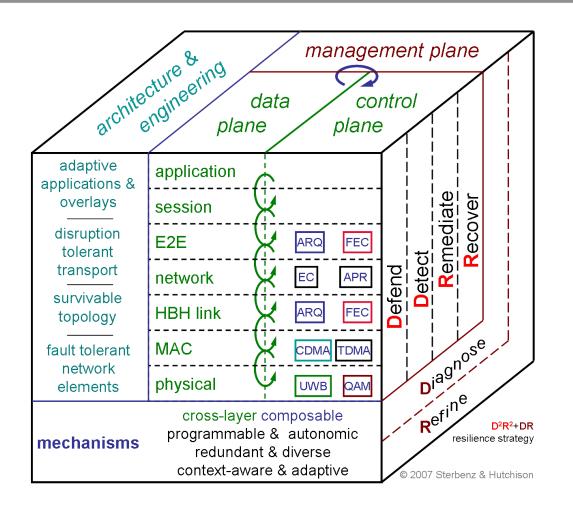
A crucial issue identified by ENISA is the lack of a standardised framework, even for the most basic resilience measurements. There are not many frameworks, none of them globally accepted.

ResiliNets project (Kansas, Lancaster): to establish a strategy for network resilience

First, investigated the relationship between resilience and other previously-researched areas:


- Disciplines related to tolerance of faults and challenges
 - Fault Tolerance
 - <u>Survivability</u>
 - Disruption Tolerance
 - Traffic Tolerance
- Trustworthiness disciplines with quantifiable properties
 - <u>Dependability</u>
 - <u>Security</u>
 - Performability

ResiliNets "formula" and strategy


"D²R²+DR" → Resilience

Real-time Control Loop Defend Detect Remediate Recover System Enhancement Diagnose Refine

Resilience cube model

The ResumeNet project (2008-2011): to evaluate the D²R²+DR resilience strategy

ETH Zürich (ETHZ) – coordinator	Switzerland
Lancaster University (ULanc)*	United Kingdom
Technical University Münich (TUM)	Germany
France Telecom (FT)	France
NEC Europe Ltd (NEC)	United Kingdom
Universität Passau (UP)	Germany
Technical University Delft (TUDelft)	Netherlands
Uppsala Universitet (UU)	Sweden
Université de Liège (ULg)	Belgium

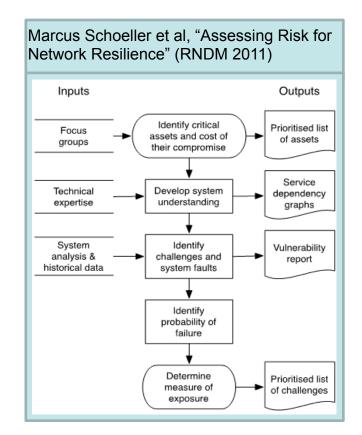
* Also: the Universities of Kansas (USA) and Sydney (Australia)

Approach: three conceptual levels

Framework

- Architecture
- Information flow
- Metrics
- Challenge classification

Mechanisms and algorithms


- Network resilience (redundancy, diversity in routing, transport, incentives for collaboration, challenge detection)
- Service resilience (overlays/P2P, virtualization, challenge detection, machine learning)
- Validation by experimentation in testbeds and with simulation
 - {network, service, challenge, resilience mechanism}
 - Realistic models, traffic and system behavior traces

The ResumeNet framework was experimentally evaluated in Future Internet scenarios: wireless mesh networks; cloud-based networks; a multimedia service provisioning context; and an Internet of Things environment

De-constructing D²R²+DR (1)

- Defend: static, and dynamic
- Initially:
 - System analysis
 - Risk assessment
 - Prioritise the assets
 - Build defensive walls
 - E.g. redundant links, nodes
- Runtime:
 - Make adjustments as appropriate
 - E.g. adjust firewall rules, resources

De-constructing D²R²+DR (2)

- Detect
- Implies a monitoring system
 - Instrument the network!
 - cf. the Knowledge Plane?
 - Aim to observe normal behaviour
 - Then look for anomalies / intrusions
- Employ suitable ADTs / IDSs
 - Classify the detected anomalies
 - Attempt a root cause analysis?

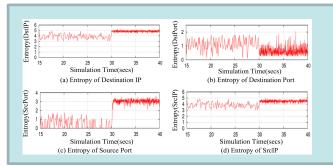
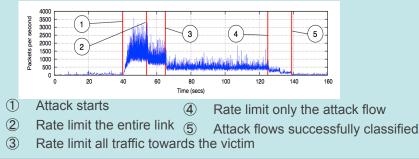
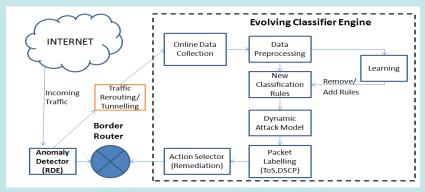


Fig. 5: Entropy changes with the Slammer Worm

From: "PReSET: A Toolset for the Evaluation of Network Resilience Strategies", by Alberto Schaeffer-Filho et al (*IM 2013*)

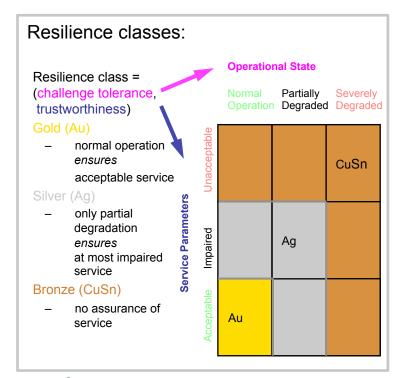
A Knowledge Plane for the Internet David D. Clark et al, *SIGCOMM'03*

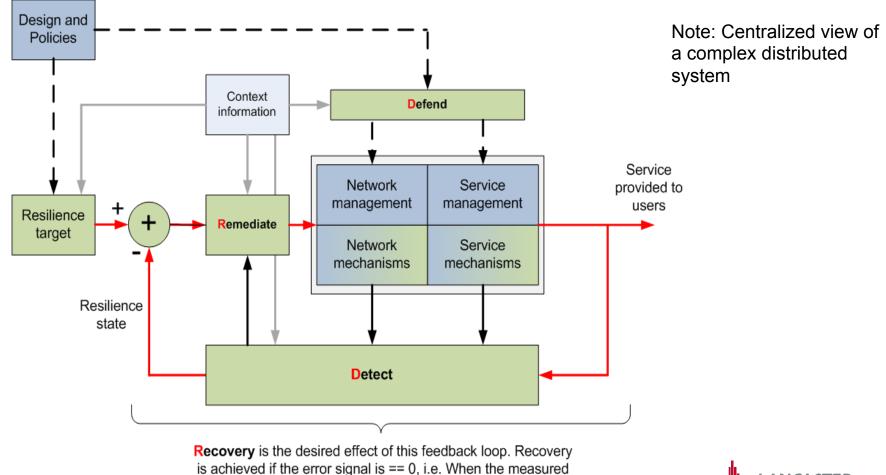

"To learn about and alter its environment, the knowledge plane must access, and manage, what the cognitive community calls *sensors and actuators. Sensors are entities that produce observations. Actuators* are entities that change behavior (e.g., change routing tables or bring links up or down). So, for instance, a knowledge application that sought to operate a network according to certain policies might use sensors to collect observations on the network, use assertions to determine if the network's behavior complies with policy, and, if necessary, use actuators to change the network's behavior."


De-constructing D²R²+DR (3)

- Remediate
 - Rely on symptoms, or root cause
 - Typically use traffic engineering
 - Get as much context as possible
- Recover
 - Get back to normal behaviour if possible
 - Use policies for high-level guidance
- Diagnose & Refine
 - Learning phase
 - Human in the loop

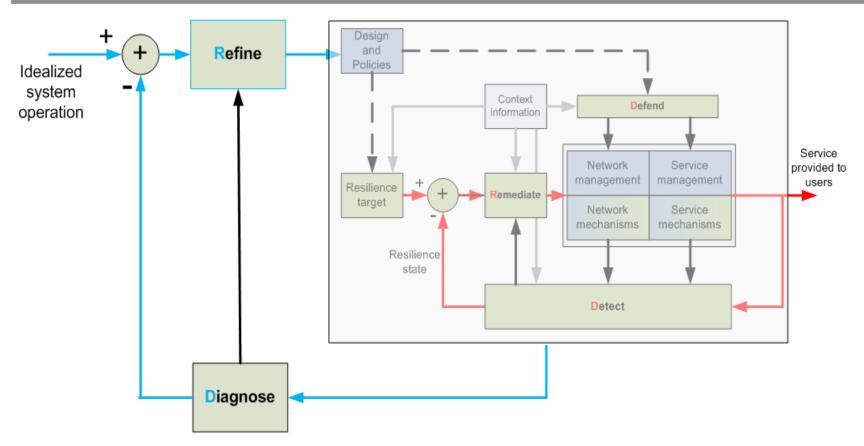
Alberto Schaeffer-Filho et al, "Policy-based DDoS remediation" [see also DRCN 2011]


Azman Ali et al, "Evolving Classifier utilizing eClass0 and eCluster (ALS algorithms)"


Resilience as a network metric

- We need to know how to specify resilience and how to measure it – i.e. the science and the engineering
- For computer networks, we should specify and measure resilience at the topology and the service levels
- Topology resilience: typically, structural diversity
- Service resilience: for example, a combination of availability and reliability
- Overall R [0,1]: a combination of individual metrics, maybe simplified as a set of 'resilience classes'

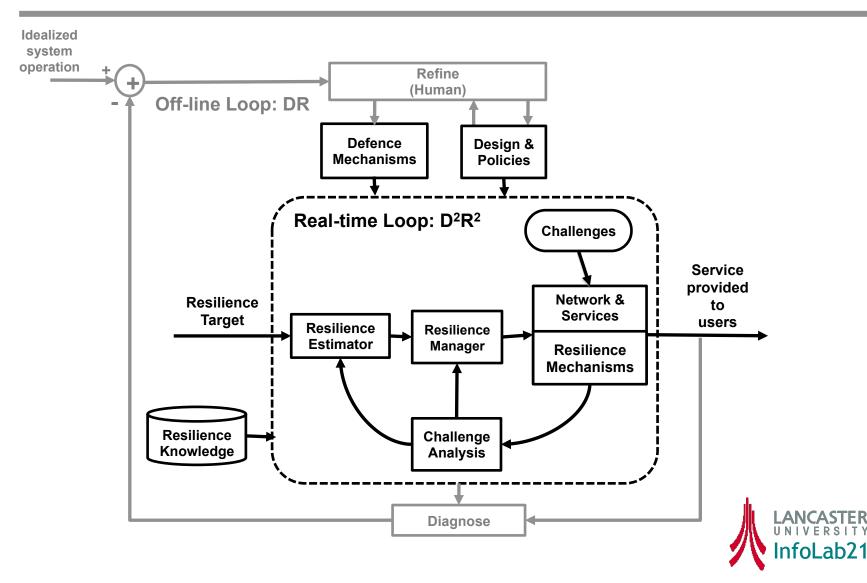
ResumeNet architectural model: D²R²


ANCAS

nfoLab2′

resilience state is equal to the reference set by the policies

14

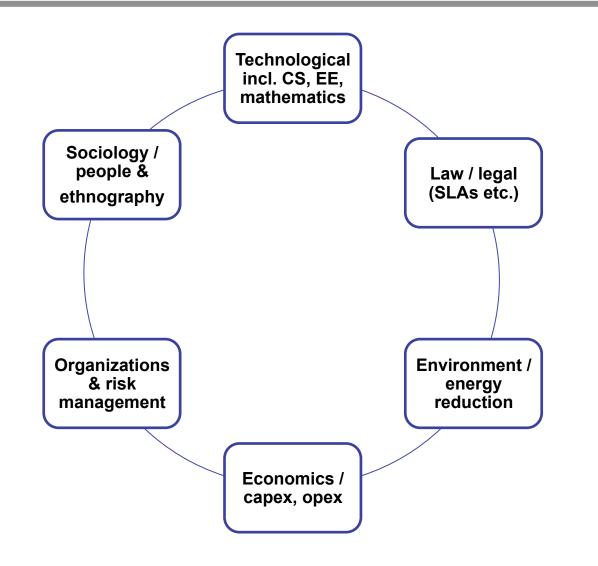

System enhancement: +DR

- Outer feedback loop
- long-term, slow reaction
- Driven by politics or market forces
- ¹⁵ humans in the loop : re-design, policy change

System implementation view

What we have learned (1)

- Our D²R²+DR framework is a good basis for resilience research, even though we have not fully investigated the outer loop
- Choosing the right metrics is key to appropriate specifications, measurements, and mechanisms selection to achieve resilience
- Several aspects of resilience remain to be further investigated, including the feasibility of autonomous operation (no human in the (inner) loop ...)
- Additional resilience themes have been identified, and should be studied, including resilience classes and situational awareness / projection



What we have learned (2)

- Many organizations still need to be persuaded to make them better appreciate the importance of resilience (and security)
- The relationship between resilience and security needs to be further elaborated, e.g. in the network management area
- We should generalize from communication networks to Critical Infrastructure Protection, including utilities and industrial control systems
- Several disciplinary 'dimensions' need to be involved in the development of resilient future networks and systems ...

Dimensions/disciplines of resilience

Further resilience research topics

- Cloud networks and systems
 - Cloud security architecture/management
 - Assessing malware in virtualized systems
 - Risk assessment/management for cloud systems
 - Anomaly detection/remediation methods for cloud
 - Policies/legal approaches/SLAs for specifying/assuring resilience
- Industrial control systems (ICS) and SCADA
 - Hybrid risk assessment for utility networks/systems
 - Ethnography: people and usage aspects
 - Risk management: organizational aspects
 - Security/resilience metrics for ICS/SCADA
 - Functional assurance of ICS/SCADA systems
- Recent/new areas of research
 - Exploring context and situational awareness
 - Botnets/bots detection and remediation in real time
 - Socio-technical approaches to security and resilience
 - Inter-dependent networks; cascading failures problem
 - NFV (Network Functions Virtualization) resilience/security

Projects, references

- ResiliNets (<u>https://wiki.ittc.ku.edu/resilinets/Main_Page</u>)
- ResumeNet (<u>http://www.resumenet.eu/</u>)
- ENISA (<u>http://www.enisa.europa.eu/</u>)
- J.P.G. Sterbenz, D. Hutchison, E.G. Cetinkaya, A. Jabbar, J.P. Rohrer, M. Schöller, and P. Smith, "Resilience and survivability in communication networks: strategies, principles, and survey of disciplines", Computer Networks, Special Issue on Resilient and Survivable Networks, Vol. 54, No. 8, June 2010, pp. 1245-1265
- P. Smith, D. Hutchison, J.P.G. Sterbenz, M. Schöller, A. Fessi, M. Karaliopoulos, C. Lac, and B. Plattner, "Network resilience: a systematic approach", IEEE Communications Magazine, Vol. 49, No. 7, 2011, pp. 88-97
- IU-ATC; EINS; SECCRIT; HyRIM; TOUCAN; TI3-SAII

Security and resilience: officially important!

The White House, Office of the Press Secretary, October 31, 2013

Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013

"We must continue to strengthen our resilience to threats from all hazards including terrorism and natural disasters, as well as cyber attacks. We must ensure that the Federal Government works with all critical infrastructure partners, including owners and operators, to share information effectively while jointly collaborating before, during, and after an incident. This includes working with infrastructure sectors to harden their assets against extreme weather and other impacts of climate change."

"I, BARACK OBAMA, President of the United States of America, ..., do hereby proclaim November 2013 as Critical Infrastructure Security and Resilience Month."

