

Herring **Beam Trawl**

MEFEPO Final symposium 3-4 October 2011, Brussels

North Sea herring fishery

North Sea herring stock

• ICES NS herring stock assessment (1960-2010)

NS herring management

EU/Norway management plan

Key element:

fishing mortality set separately for adult and juvenile herring

- \rightarrow **TAC** for the human consumption fishery (adult)
- → by-catch ceiling for the industrial fishery (juveniles)

Specific management tools

- Minimum landing size for human consumption herring
- separate sub-TAC for the "Downs" spawning component
- Closed areas for both herring and/or sprat fisheries to protect either spawning or juveniles

Herring/ sprat Closures

Specific management tools

- Minimum landing size for human consumption herring
- separate sub-TAC for the "Downs" spawning component
- Closed areas for both herring and/or sprat fisheries to protect either spawning or juveniles

 And a few more, plus some general tools, not specific to herring fisheries

- A. Simplify: remove sub-TAC for the southern North Sea.
- B. Simplify: remove seasonal local fishing closures
- C. Maintain sub-stock structure (phenotypic diversity).
- D. Greater conservation Introduce MPAs
- E. Protect sensitive habitats close all spawning beds to active anthropogenic impact. (MSP action)
- F. Prey for predators
- G. Fish down to allow cod to recover bio-manipulation approach, high risk
- H. No change in the current management approach

The evaluation matrix

C		້ິດ) Ø2		Con	32	^	
\$j	mme	∧̂₀	A FIOOF	\}_c		nunin	ñoor .	
diy			n In		. Sz		، ^۲ ۰۵	5
	Siz	N. Sh	ି ବ୍ୟୁ	Orig	<i>n</i> gy	UIII Y	OIL	STIZ.
	1	2	3	4	5	C .		
A. Remove Southern NS Sub-T/							0.	-
	1	2	3	4	23		7	8
B. Remove Seasonal Closures				n	U -	1.0	S.	
	1	2	N.					8
C. Maintain Sub-Stock Structur	A	B		1			6	
	0	Z	° c e	10		10	U S	8 7)
D. Marine Protected Areas			1 0-		-10		-	
	1	U .	3	4	N Y	б	6.	8
E. Protect Spawning Habitats			65	V			3.	
	1	2 7		4	hO)		1	8
F. Prey for Predators					1.2			
	1		U	4		6	7	8
G. Fish Down for Cod								
	1	2	3	4	5	6	7	8
H. BAU								

- The matrix can visually highlight trade-offs.
- A means for discussing management scenarios/ strategies with stakeholders in a transparent way
- Combine matrix with tools to communicate uncertainties (quantitative as well as qualitative)
- Bias, if evaluation considers only "measurable" indicators
- → More holistic approach: not rely on only a few measurable indicators but take into account all possible criteria related to a descriptor.
- Value of expert judgement versus model results?

Current management plan

ICES evaluation:

- "The management plan appears to operate well in relation to the first two objectives ..."
- Consistency with the Precautionary Approach
- A rational exploitation pattern

- ... but not in relation to achieving
 - Stable yield
 - High yield

current EU/Norway management plan

- Fished below F at MSY
- biomass should increase \rightarrow hence efficiency as well
- Biodiversity: effects of phenotypic diversity and substock structure unknown
- current management plan does not include any social objectives (e.g. employment)

- Management objective: provision of prey for predators
 - Size of herring populations required to maintain ecosystem services?
- The scenario considers the management of the fishery such that the herring biomass increases to such an extent that it can be considered a sufficiently abundant prey source for predators

→ most likely overriding impact: reduction in fishing effort

Strategy F: Prey for predators

- Positive effect for commercial fish, biodiversity and foodweb structure
- Herring fisheries have second claim, after predators
- Food security:
 - Herring: cheaper, larger quantities
 - Cod: higher priced, less abundant

Strategy E: protect spawning habitats

Management strategy E. Protect sensitive habitats – close all spawning beds to active anthropogenic impact.

- → maintain the potential diversity of spawning habitats, thus providing increased resilience of the herring stock to environmental or fishing induced pressures
- \rightarrow re-population of abandoned spawning areas

NB:

a "marine spatial planning management action" that would have an impact on the herring fisheries.

Strategy E: protect spawning habitats

Crucial: Where else are the other activities going to take place?

- → spatial changes
- → redistribution of activities

positive ecological and economic effects, IF activity displacement does not negatively affect herring biology.