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General introduction

The analysis of stochastic differential equations (SDEs) and in
particular the analysis of the law of their solutions has been a
research topic of great importance .

dXt =βtdt + σtdWt ,

X0 =x0

• Existence
• Regularity
• Estimation
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Some literature
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• Malliavin calculus: Malliavin [Mal78]

• Stochastic calculus of variation: Bouleau & Hirsch [BH86]
• Regularity:

Hayashi, Kohatsu-Higa and Yûki [HKHY13]
• Estimation:

• Global bounds & Explicit: Baños & Krühner [BK16a]
• Local bounds & Sharpest & Implicit: Qian & Xu [ZX18]
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Basic setting
Let X be a d-dimensional Itô-process such that

X (t) = x0 +

∫ t

0
β(s)ds +

∫ t

0
σ(s)dW (s), t ≥ 0

where W is an n-dimensional standard Brownian motion and
x0 ∈ Rd .

Definition
We say that the X has bounded drift while X is in some open set U ⊆ Rd if
there is a constant C > 0 such that

||β(t)||1{X(t)∈U} ≤ C

for any t ≥ 0, P-a.s.
We say that X has locally bounded drift if X has bounded drift on any
bounded open set.
We say that X has non-degenerate diffusion coefficient if σ(t)σ⊤(t) is
positive definite for any t ≥ 0.
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Intuitive dialogue

Q: Roughly thinking (which means regardless of existence and
other technical details for a moment), can we imagine the optimal
(or ideal, best, extreme) situation that maximizes the ”density”
(ρt(x , y), y ∈ U)?

A: Sort of yes!
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Doubly reflected Brownian motion

Definition (DRBM)
A stochastic process Z with continuous sample paths is a doubly
reflected Brownian motion with drift b ∈ R on a compact interval J
if for any f ∈ C2(R,R) with f ′(x) = 0 for any boundary point x ∈ J
we have

M f (t) := f (Z (t))−
∫ t

0

(
1
2

f ′′(Z (s)) + bf ′(Z (s))
)

ds, t ≥ 0.

is a martingale.

Let’s start from the simple but intuitive 1-dim case!
• DRBM Z on [0, l], 0 ≤ l
• with drift −C
• and with a simple σt = 1 for a moment
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1-dim case with constant σ

Theorem (Comparison)
Let β be a progressively measurable R-valued process with ||β(t)|| ≤ C for
any t ≥ 0. Let 0 ≤ z0 ≤ x0 and

X (t) := x0 +

∫ t

0
β(s)ds + W (t) + RX (t),

Z (t) := z0 − Ct + W (t) + RZ (t)− A(t),

where A is any continuous increasing progressively measurable process
with A(0) = 0 and RX resp. RZ are the respective upward reflection terms
at zero for X resp. Z , i.e.

RX (t) := sup

{
max{0,−(x0 +

∫ u

0
β(s)ds + W (u))} : u ∈ [0, t ]

}
,

RZ (t) := sup {max{0,−(z0 − Cu + W (u)− A(u))} : u ∈ [0, t ]} ,

then Z (t) ≤ X (t) for any t ≥ 0.
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Remark

Proof.
Inspecting path by path...

• The comparison theorem compares the absolute value
between the general case and the DRBM case.

• A good news!
The theorem above tells us DRBM concentrates the density
most. We can use DRBM to estimate the upper bound!

• Two possible direction to make it more general:
• Higher dimensional
• More flexible σ

Paul Eisenberg & Shijie Xu (Liverpool) Explicit local density bounds for Itô-processes with irregular drift 10 / 35
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d-dim case with constant σ

Lemma (d-dim)
Let X be a d-dimensional Itô-process with diffusion coefficient constant
equal to the identity matrix. Assume that the drift of X is bounded while
X is in the set Bl,∞(x) where l > 0, x ∈ Rd and we denote the
corresponding constant by C ≥ 0. Let Y1, . . . ,Yd be independent doubly
reflected Brownian motions with drift (−C) on [0, l]. Assume that
|Yj(0)| ≤ |Xj(0)− xj | for any j = 1, . . . ,d .
Then

P(∥X (t)− x∥ ≤ a) ≤ P(∥Y (t)∥ ≤ a), a ∈ (0, l].
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Veestraeten’s result for DRBM

The following result is adopted from [Vee04, p. 193, formula (13)].

DRBM
Let p be the transition density of a doubly reflected Brownian motion.
Then p is continuous in all its arguments and pl,t(x ,0) ≤ pl,t(0,0). In
particular, for all x ∈ [0, l] and t > 0 we have

pl,t(x ,0) =
2C

1 − exp(−2Cl)
+ eCx−C2t/2 2

l

∞∑
n=1

[ft,x(nπ/l)− gt,x(nπ/l)] ,

where ft,x(z) :=
z2 cos(zx)

C2+z2 exp(−tz2/2) and gt,x(z) :=
Cz sin(zx)

C2+z2 exp(−tz2/2) for
z ∈ R.
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Main result

Theorem: Existence
Let X be a d-dimensional Itô-process with constant, deterministic and
non-degenerate diffusion coefficient. Assume that X has bounded drift
while X is in some open set U ⊆ Rd . Let t > 0.
Then

ρt(x) := lim sup
ϵ→0

P(||X (t)− x || < ϵ)

vol(Bϵ,∞(0))
, x ∈ U

is locally bounded.
Moreover, ρt is a version of the density of X (t) on U , i.e.
P(X (t) ∈ A) =

∫
A ρt(x)dx for any Borel-set A ⊆ U.

In particular, if X has locally bounded drift, then X (t) has a locally
bounded version of its density.
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Main result

Corollary: Upper bound
Let X be an Itô-process where the diffusion coefficient is constant equal
to the identity matrix on Rd and assume that the drift of X is bounded by
C while X is in some open set U ⊆ Rd . We define

ρt(x) := lim sup
ϵ↘0

P(||X (t)− x || < ϵ)

vol(Bϵ,∞(0))
∈ [0,∞]

for t > 0, x ∈ Rd . Let x ∈ U and l > 0 such that Bl,∞(x) ⊆ U.
Then we have

ρt(x) ≤
d∏

j=1

(
C exp(−2Cl)

1 − exp(−2Cl)
+

ϕ(zj)√
t

+ CΦ(zj) + eCaj−C2t/2 (3 + ajC)2

ltC2

)

where aj := min{l , |Xj(0)− xj |} and zj :=
√

tC − aj/
√

t for j = 1, . . . ,d .
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Limiting case

Pushing l to ∞, we just reproduce Baños & Krühner [BK16a]’s
result:

Baños & Krühner’s result
Let X be an Itô-process where the diffusion coefficient is constant equal
to the identity matrix on Rd and assume that the drift of X is bounded by
C. We define ρt(x) := lim supϵ→0

P(|X(t)−x|<ϵ)
vol(Bϵ(0))

∈ [0,∞] for t > 0, x ∈ Rd .

ρt(x) ≤
d∏

j=1

(
ϕ(zj)√

t
+ CΦ(zj)

)
≤
(

1√
2πt

+ C
)d

where (zj)j≤d is given by zj :=
√

tC − |Xj(0)− xj |/
√

t . In particular, if d = 1,
then we have

ρt(x) ≤
ϕ(z1)√

t
+ CΦ(z1).
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Conclusion of more general cases

We generalize our result as follows:

if σ constant σ Locally Lipschitz
d = 1 ✓ ✓
d ≥ 1 ✓
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Occupation density
Occupation densities have been surveyed by D. Geman and J.
Horowitz [GH80]. Let X (t) : R+ 7→ R be a measurable function. The
occupation measure of X up to time T ≥ 0 is

µT (Γ) = m{0 ≤ s ≤ T : Xs ∈ Γ},

m being Lebesgue measure and Γ a Borel set on R. It is the amount
of time spent by X in the set Γ during [0,T ]. And we say that X has
an occupation density on [0,T ] if µT (Γ) is absolutely continuous
with respect to the Lebesgue measure. In other words, µT (Γ) could
be expressed as the sum of times spent by X at each y ∈ Γ during
[0,T ] in the following sense

µT (Γ) =

∫
y∈Γ

αT (y)dy

where αT (y) : R+ × R 7→ R. We then call αT (y) an occupation
density.
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Our problem

We want to investigate an optimal control problem for some class
of Itô process.

We define A to be the set of progressively measurable process
(β, σ) such that for any t ≥ 0, σt ∈ [a,b], 0 < a ≤ b and |βt | ≤ kσ2

t , for
some k ≥ 0. Note that when k = 0, Itô processes reduce to
Brownian martingales with bounded diffusion coefficient away
from 0.
Let C be the class of stochastic process X such that there is
(β, σ) ∈ A with dXt = βtdt + σtdWt , where Wt is standard Brownian
motion and the starting point X0 is deterministic.
We are interested in the quantity of the supremum expected
occupation density at a given time T ≥ 0 over all possible Itô
processes X ∈ C:

G(x , y ,T ) := sup
X∈C,X0=x

E[αT (y)]
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Our problem

G(x , y ,T ) := sup
X∈C,X0=x

E[αT (y)]

where x = X0 is the starting point of X and the level set is a
singleton Γ = {y},∀y ∈ R.

However, this is a priori meaningless since the existence and
uniqueness of the occupation density is ambiguous.
Instead of using the implicit definition above, we use the following
”approximation” version of definition:

G(x , y ,T ) := sup
X∈C,X0=x

(
lim sup
N→∞

2NE

[∫ T

0
1{|Xs−y |≤ 1

N }ds

])
. (1)
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Our result

Theorem [Main Result]

Let (β, σ) ∈ A and Xt = x +
∫ t

0 βsds +
∫ t

0 σsdWs, t ≥ 0, where W is a
standard 1-dimensional Brownian motion, G is defined as above in
(1). Then

G(x , y ,T ) =

∫ T

0

(
b

a2
√

t
ϕ(v(r , t)) +

b2k
a2 Φ(v(r , t))

)
dt , x , y ∈ R,T > 0

where r := |x − y | and v(r , t) := kb
√

t − r
b
√

t
, t ≥ 0, ϕ(x) := 1√

2π
e− x2

2

and Φ(x) := 1√
2π

∫ x
−∞ e− s2

2 ds for any x ∈ R.
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Our approach in a nutshell

We prove the main theorem above by studying the exponential
stopped time case. Artificially given some special control, we
compute an explicit and sharp solution of the associated
Heath-Jarrow-Bellman (HJB) equation.

Although the control will not lead to the upper bound we got, we
prove that the upper bound is optimal via a verification method.
However, we found that the ”optimal control” is outside our
feasible set. In other words, we can always find a better control in
the class C to get a better occupation density and limiting case is
not Markovian anymore.
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The ”optimal” control

(βs, σs) :=


(−kb2,b) if Xs > y
(0,a) if Xs = y
(kb2,b) if Xs < y

(2)
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Exponentially stopped case
To solve the fixed time optimisation problem (1) here, we would
like to solve the exponentially distributed time optimisation
problem first. More precisely, replacing time T with an
independent exponential time with rate λ > 0.

We define the exponentially stopped value function by

Vλ(x , y) := sup
(β,σ)∈A,X0=x

lim sup
N→∞

2NE
[∫ ∞

0
λe−λt · 1{∣∣∣Xβ,σ

t −y
∣∣∣≤ 1

N

}dt
]
, λ > 0

(3)

We believe the HJB-equation of the optimal control problem (3) is:

−λVλ(x , y) + sup
(β,σ)∈A

{
V ′
λ(x , y)β +

1
2

V ′′
λ (x , y)σ

2
}

=0, y ̸= x (4)

sup
(β,σ)∈A

{
δy (x) +

1
2

V ′′
λ (x , y)σ

2
}

=0, y = x (5)
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Exponentially stopped case
To solve the fixed time optimisation problem (1) here, we would
like to solve the exponentially distributed time optimisation
problem first. More precisely, replacing time T with an
independent exponential time with rate λ > 0.
We define the exponentially stopped value function by

Vλ(x , y) := sup
(β,σ)∈A,X0=x

lim sup
N→∞

2NE
[∫ ∞

0
λe−λt · 1{∣∣∣Xβ,σ

t −y
∣∣∣≤ 1

N

}dt
]
, λ > 0

(3)

We believe the HJB-equation of the optimal control problem (3) is:

−λVλ(x , y) + sup
(β,σ)∈A

{
V ′
λ(x , y)β +

1
2

V ′′
λ (x , y)σ

2
}

=0, y ̸= x (4)

sup
(β,σ)∈A

{
δy (x) +

1
2

V ′′
λ (x , y)σ

2
}

=0, y = x (5)

†Paul Eisenberg, ⋆ Julia Eisenberg, ∗Stefan Ankirchner & ‡Shijie Xu (Liverpool)A sharp upper bound for the expected occupation density of Itô processes with bounded irregular drift and diffusion coefficients24 / 35
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Exponentially stopped case

Lemma

The solution for Equation (4) & (5) provided control as (2) is as
follows:

Qλ(x , y) =
1(

−k +
√

k2 + 2λ
b2

)
a2

e
(

k−
√

k2+ 2λ
b2

)
|x−y |

, λ > 0, x , y ∈ R

Theorem
For the optimal control problem (3), Qλ(x , y) = Vλ(x , y) for any
x , y ∈ R.

Proof.
Proof by verification.
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Inverse Laplace transform

Vλ(r) =
∫ ∞

0
λe−λT HT (r)dT

λL[H·(r)](λ) = Vλ(r) =
1(

−k +
√

k2 + 2λ
b2

)
a2

e
(

k−
√

k2+ 2λ
b2

)
|x−y |

Theorem
The inverse Laplace transform of Vλ is

HT (r) =
∫ T

0

(
b

a2
√

t
ϕ(v(r , t)) +

b2k
a2 Φ(v(r , t))

)
dt , T > 0, t ≥ 0

where v(r , t) := kb
√

t − r
b
√

t
, ϕ(x) := 1√

2π
e− x2

2 and

Φ(x) := 1√
2π

∫ x
−∞ e− s2

2 ds.
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Convexity of H on r

Lemma
For any r > 0 and T ≥ 0, we have

∂HT (r)
∂r

=

∫ T

0

1
a2
√

2πt3
e
−
(

r√
2b2 t

−k
√

b2 t
2

)2 (
− r

b

)
dt (6)

∂2HT (r)
∂r2 =

∫ T

0

1
a2b

√
2πt3

e
−
(

r√
2b2 t

−k
√

b2 t
2

)2 (
r2

b2t
− kr − 1

)
dt (7)

∂HT (r)
∂r

≤0

0 ≤∂2HT (r)
∂r2

and we also have for any r > 0 and T > 0

lim
r→0

∂HT (r)
∂r

= − 1
a2 . (8)
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HJB of the original optimal control problem

We believe the HJB-equation of the original optimal control
problem (1):

−∂G(x , t)
∂t

+ sup
(β,σ)∈A

{
∂G(x , t)

∂x
β +

1
2
∂2G(x , t)

∂x2 σ2
}

=0, x ̸= y (9)

sup
(β,σ)∈A

{
δy (x) +

1
2
∂2G(x , t)

∂x2 σ2
}

=0, y = x (10)

G(x ,0) =0, ∀x ∈ R (11)

Lemma

H solves the Hamilton-Jacobi-Bellman equation (9), (10) and (11)
provided control as (2).
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Proof by verification

Theorem: Main
For the optimal control problem (1), HT (x − y) = G(x , y ,T ) for any
T ≥ 0 and x , y ∈ R.

Hint of proof.
Fix M ∈ N and we construct a control via choosing

σM(x) := a + (b − a)gM(|x |)

where gM ∈ C(R+, [0,1]) such that

gM(x) =

{
0 if x ∈ [0, 1

M ],

1 if x ∈ [ 2
M ,∞],

The control is now specified as:

βt := −kσ2
M(Xt)sign(Xt)dt , σt := σM(Xt), t ≥ 0.
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Literature review

In the literature, some authors have studied some special cases
with respect to maximizing the occupation time.

J. McNamara [McN83] gave an estimation for Brownian martingale
with unbounded level set.
S. Ankirchner, C. Blanchet-Scalliet and M. Jeanblanc [ABSJ17]
studied the exponential Brownian case.
S. Ankirchner and J. Wendt [AW21] provided an upper bound for
the expected occupation time in an interval for Brownian motion
with bounded and non-zero diffusion coefficient.
J. Eisenberg and P. Eisenberg [EK] provided deterministic explicit
upper bounds for the expected (discounted) occupation of a
process whose drift is in a bounded interval. Their paper also
reveals how the result can be applied in dividend payments.
Similar techniche has been used in D. Banos and P. Kruhner
[BK16b], see Lemma 3.4 and Propsition 3.5.
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Thanks for your attention!
Any questions?
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