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Fluctuation of Poisson functionals

Let η be a Poisson point process on Rd with intensity λ(dx). The
fluctuation of a generic functional F is governed by some principles

I Poincaré inequality

Var[F ] ≤
∫

E[|DxF |2]λ(dx).

where DxF = F (η + δx)− F (η) is the ”add-one-cost”.
I Second-order Poincaré inequality

dW(F ,N) . integrated moments of D2
x,yF

where D2 = DD is the iterated add-one-cost, cf. Chatterjee
(’09), Nourdin, Peccati et Reinert (’09), Last, Schulte et Peccati
(’16), Schulte et Yukich (’19) ...

I The add-one-cost controls the variance, the iterated
add-one-cost gives gaussianity.
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Fluctuation of Poisson functionals

I Applications: Spatial networks, coverage processes,
tessellations etc. useful objects in telecommunication,
topological/geometrical data analysis, machine learning...

I This talk is concerned with a principle alternative to 2nd order
Poincaré. What happens if the iterated add-one-cost is not
tractable?

I We address this problem with a two-scale stabilisation theory,
which is a quantified version of the stabilisation theory of
Penrose (’01), Penrose and Yukich (’01), Penrose (’05).

I This work is along the line of Malliavin-Stein methodology for
normal approximation, combined with ideas from a
quantitative CLT for the MST by Chatterjee and Sen (’17)
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The iterated add-one-cost is not always tractable

Figure 1: Right: MST. Left: MST after adding a point to the origin.
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Setting

I Let η be a Poisson process with unit intensity on Rd , identified
with its support P .

I For a Poisson functional F = F (η) and B ∈ B(Rd), define the
add-one-cost

DxF (B) = F ((η + δx)|B)− F (η|B)

and the two-scale discrepancy

ψ := sup
x∈B

E[|DxF (B)− DxF (Ax)|]

I The set B represents the observation window growing to Rd and
Ax is a local window of x with Leb(Ax)� Leb(B).

I In practice, B = Bn, Ax = Bbn(x) ∩ B with bn = o(n). In such case,
the two-scale discrepancy is denoted by ψn. Define also

ψ′n = sup
x∈B(n−bn)

E[|DxF (Bn)− DxF (Ax)|].
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Main (user friendly) result

Theorem (Lachièze-Rey, Peccati and Y. (’20+))
Suppose that the following holds:

I there exists p > 4 and C <∞ such that for all n ∈ N

sup
x∈Bn

E[|DxF (Bn)|p] + E[|DxF (Ax)|p] ≤ C p,

I there exists c > 0 such that

Var[F (Bn)] ≥ c · Leb(Bn) = cnd .

Then there exists c ∈ (0,∞) such that

1

c
dW
(F (Bn)− E[F (Bn)

Var[F (Bn)]1/2
,N(0, 1)

)
≤

ψn
1
2 (1− 4

p ) +
(

bn
n

)d/2

ψ′n
1
2 (1− 4

p ) +
(

bn
n

)1/2 .

N.B. The choice of bn is done by optimizing the final bound. 5 / 21



Stabilization theory: where it all began
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I Strong stabilization: ∃ a.s. finite random variable R0 such that

D0F (P ∩ BR0 ) = D0F ((P ∩ BR0 ) ∪ U)

for any finite U ⊂ (BR0 )c .
I Weak stabilization: for any (En) with lim inf En = Rd , we have

D0F (En)→ δ0(∞) a.s.

for some random variable δ0(∞).

Theorem (Penrose and Yukich (’01))
Assume i) uniform 4th-moment condition; ii) weak stabilization at
0. Then

Var[F (Bn)]

nd
→ σ2 ∈ [0,∞) and F (Bn)− E[F (Bn)

nd/2

L→ N(0, σ2).

If δ0(∞) is non-degenerate, then σ2 > 0.
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Relation with our bounds

I Corollary of our bound:

dW
(F (Bn)− E[F (Bn)

Var[F (Bn)]1/2
,N(0, 1)

)
≤ c
[

sup
x∈Bn

P[Rx ≥ bn]
1
2 (1− 1

p )(1− 4
p ) +

(bn
n

)d/2]
,

where Rx the radius of strong stabilization at x .
I Assume F (τxP ∩ τxB) = F (P ∩ B) and weak stabilization⇒

DxF (En)→ δx(∞) a.s.

for any (En) ↑ Rd . Therefore, the required condition

ψ′n = sup
x∈Bn−bn

E[|DxF (Bn)− δx(∞) + δx(∞)− DxF (Ax)|]→ 0

is a uniform strengthening of weak stabilization. Note however
that we do not require the existence of δ0(∞).
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Far reach of the Penrose-Yukich theory (thus ours)

Weights, subgraph counts, components counts of

I k-nearest neighbor graphs
I sphere of influence graphs
I Voronoi tessellations
I minimal spanning trees

PY: (Multivariate) Gaussian approximation holds if strong/weak
stabilisation holds for the functional of interest.

LrPY: To obtain rates, if su�ces to compute ψn (or ψ′n), or P[Rx ≥ bn].

Not always easy, here is an open problem
The optimal travelling salesman tour on Poisson points is believed
to be stabilizing (implying CLT if proved).
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Applications (in our paper)

I Online NNG (S): Mark P ∩ Bn with iid uniform [0, 1] representing
the arrival time, each point is attached to its nearest neighbour
prior to its arrival. We obtain n−c for the rate of normal
approximation of the weighted edge length.

I Boolean model (S): The number of connected components of
the Boolean model

Ou(P ∩ Bn) =
⋃

x∈P∩Bn

Su(x).

approaches normal with rate n−c in d = 2 and log(n)−c in d ≥ 3.
I Minimal spanning tree (W): The total weighted edge length of

MST approaches normal distribution with the same rate as the
percolation example. In both cases, ψ′n is bounded by the two
arm events.

I Excursion of heavy tail shot noise fields (W): The intrinsic
volumes of excursion sets Eu = {t ∈ Bn : X (t) ≥ u} of heavy tail
shot noise field X approaches normal with rate n−c .
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Component counts for the Boolean model (S)

i
-
-

-

-
-

.

it:*
Figure 2: Rx := inf{r > u : at most 1 arm in Br (x) \ Bu(x)} where 1 arm
means that the Boolean model contains a path connecting the boundary of
two boxes.
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{Rx > bn} ⊂ {at least 2 arms at distance bn}.

Phase transition of occupied and vacant regions
uc := inf{u : P[0↔∞ in Ou] > 0} ∈ (0,∞),

u∗c := sup{u : P[0↔∞ in Vu] > 0} ∈ (0,∞),

and uc = u∗c in dimension 2 by Roy (’90), uc < u∗c in dimension
d ≥ 3 by Penrose (’96), Sarkar (’97).

I Subcritical phase u < uc

P[Rx > bn] ≤ P[at least 1 arm at distance bn] ≤ e−cbn .

I Supercritical phase u > u∗c

P[Rx > bn] ≤ P[at least 1 vacant arm at distance bn] ≤ e−cbn .

I Critical phase u ∈ [uc , u
∗
c ] Two-arm event decays as b−cn in 2D

and [log(bn)]−c in d ≥ 3 by a quantitative Burton-Keane
argument of Chatterjee-Sen (’17).
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Minimal spanning tree (W)

I Minimal spanning tree over a finite point set U

MST(U) = Argmin
{∑

e∈T

|e|,T connected with V(T ) = U
}

I Functional of interest M(Bn) ∈ Rm given by

M(ϕi ; Bn) :=
∑

e∈MST(P|Bn )

ϕi (|e|), 1 ≤ i ≤ m.

I Suppose ϕ is given by ϕ(x) = ψ(x)1(x ≤ r) for some
non-decreasing function ψ and some truncation level
r ∈ (0,∞]. If (and only if) r =∞, suppose

∃k ∈ N, ψ(x) ≤ (1 + x)k and
∫ ∞

0

e−cu
d

dψ(
√
du) <∞.

I Examples: power-weighted edge length ϕ(x) = xα or empirical
process ϕ(x) = 1(x ≤ r).
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Theorem (LrPY ’20+)
Let N = N(n) be a centered Gaussian vector with the same
covariance matrix as

n−d/2M(Bn).

Then, one has that

d3(n−d/2(M(Bn)− E[M(Bn)]),N) ≤

{
cn−θ if d = 2,

c exp(−c log log(n)) if d ≥ 3,

for some 0 < θ < 1. The above bound continues to hold for the
distances d2, dc , if Cov[n−d/2M(Bn)]→ Σ∞ > 0.

I Two vertices x , y ∈ P form an edge of MST if and only if x and y

belong to di�erent component of O |x−y|
2

(P).
I In d = 2, consider (log(n))a Boolean models with random radius

and relate ψ′n to the 2-arm estimates.
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Proof of the general bound (i) Stein’s bound (’72, ’86)

I Stein’s lemma

E[f ′(N)] = E[Nf (N)].

if and only if N ∼ N(0, 1).
I Heuristic: F ≈ N if and only if

E[f ′(F )] ≈ E[Ff (F )].

I Stein’s equation

f ′(x)− xf (x) = h(x)− E[h(N)]

with h ∈ Lip1. Evaluate the expectation wrt P ◦ F−1, then take
sup over h gives

dW(F ,N) := sup
h∈Lip1

|Eh(F )− Eh(N)|

≤ sup
‖g ′‖,‖g ′′‖≤1

|E[Fg(F )]− E[g ′(F )]|.
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Proof of the general bound (ii) Integration by parts (’05 on-
wards)

I For F = F (B) with E[F ] = 0,E[F 2] = 1, we integrate by parts

E[Fg(F )]= E
[ ∫

B
Dx(g(F )) (−DxL

−1F )dx
]

≈ E
[
g ′(F )

∫
B
DxF (−DxL

−1F )dx
]

where L−1 involves thinning and (independent) superposition.
I Proof of IBP by (birth and death) semigroup interpolation: in 1

dimension, (Ω,F ,P) = (N0,Po(1)),

Pt f (k) = E[f (Bin(k , e−t) + Po(1− e−t))]

and

Lf (k) = 1(f (k + 1)− f (k))− k(f (k)− f (k − 1)).

satisfying −E[fLg ] = E[DfDg ] with Df (k) = f (k + 1)− f (k).
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I Thus, interpolation and −E[FLG ] = E[〈DF ,DG 〉] gives

E[Fg(F )] = E[(P0F − P∞F )g(F )]

= −
∫ ∞

0

E[(LPtF )g(F )]dt

=

∫ ∞
0

E
[ ∫

B

Dx(g(F ))DxPtFdx
]
dt

= E
[ ∫

B
Dx(g(F )) (−DxL

−1F )dx
]

by setting

−L−1 :=

∫ ∞
0

Ptdt

I Combining Stein’s bound, integration by parts, and
Cauchy-Schwarz

dW(F ,N) . Var
[ ∫

B
DxF (−DxL

−1F )dx
]1/2

=
(∫∫

B2

Cov[DxFDxL
−1F ,DyFDyL

−1F ]dxdy
)1/2

.
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Proof of the general bound (iii) two-scale stabilization

I When x and y are close i.e. Ax ∩ Ay 6= ∅, bound the covariance by

E[|DxL
−1F (B)|p]≤E[|DxF (B)|p] ≤ C ,

yielding a term ( bn
n )d/2.

I When they are far apart i.e. Ax ∩ Ay = ∅, we replace everything
by its local version

Cov[DxF (Ax)DxL
−1F (Ax),DyF (Ay )DyL

−1F (Ay )] (1)

with 4 error terms like

Cov[(DxF (B)− DxF (Ax))DxL
−1F ,DyFDyL

−1F ]. (2)

I By independence of Poisson points over non-overlapping
regions, (1) = 0, we bound (2) by

E[|DxF (B)− DxF (Ax)||DxL
−1FDyFDyL

−1F |].

I Applying Hölder’s inequality and bounding the moments
E[|DxL

−1F (Ax)|p] ≤ E[|DxF (Ax)|p] ≤ C leads to the two-scale
discrepancy ψn, ending the proof.
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Extensions

Two-scale bounds of the type

(ψn)
1
2 (1− 4

p ) +
(bn
n

)d/2

holds for

I Kolmogorov distance

dK(F ,N) = sup
x∈R
|P[F ≤ x ]− P[N ≤ x ]|,

I probability metrics for multivariate normal approximation,
including smooth ones d2, d3 (generalizing dW), and the
non-smooth convex distance (generalizing dK)

dc(F,NΣ) = sup
E convex

|P[F ∈ E]− P[NΣ ∈ E]|

possibly subject to stronger moment conditions (p > 6).
19 / 21



Behind the scenes: a new Kolmogorov bound

Theorem (LrPY ’20+)

Let F̂ = (F − E[F ])/σ.

dK
(
F̂ ,N

)
≤
∣∣∣∣1− Var[F ]

σ2

∣∣∣∣+
1

σ2
E
[
|Var[F ]− 〈DF ,−DL−1F 〉|

]
+

2

σ2
E[|δ(DF |DL−1F |)|],

where δ is the Kabanov-Skorohod integral.

I Starting point of the two-scale bound in dK.
I Two redundant terms in Schulte (’16) and Eichelsbacher and

Thäle (’14) are removed.
I A good place to start if the 4th-moment assumption is not

verified.
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Final remarks

I Our theorem gives almost optimal rates log(n)cn−d/2 in the case
of exponential stabilization P[R(x) > t] ≤ ce−c

′t .
I The second-order Poincaré estimates of Last, Peccati and

Schulte (’16), Lachièze-Rey, Schulte and Yukich (’19) and
Schulte and Yukich (’19) is concerned with

P[D2
x,yF 6= 0],

yielding Berry-Esseen bounds n−d/2 for exponential
stabilization.

I The upshot of our theorem is that we do not require knowledge
on the iterated add-one-cost operators, which can be very hard
to access quantitatively for not necessarily exponentially
stabilizing functionals such as critical percolation models.

21 / 21



Thanks!
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