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Fluctuation of Poisson functionals

Let 1 be a Poisson point process on R? with intensity A(dx). The
fluctuation of a generic functional F is governed by some principles

» Poincaré inequality

Var[F] < /E[\DXF|2]/\(dx).

where D,F = F(n+ dx) — F(n) is the "add-one-cost”.
» Second-order Poincaré inequality

dw(F, N) < integrated moments of D

where D? = DD is the iterated add-one-cost, cf. Chatterjee
('09), Nourdin, Peccati et Reinert ('09), Last, Schulte et Peccati
('16), Schulte et Yukich ('19) ...

» The add-one-cost controls the variance, the iterated
add-one-cost gives gaussianity.
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Fluctuation of Poisson functionals

> Applications: Spatial networks, coverage processes,
tessellations etc. useful objects in telecommunication,
topological/geometrical data analysis, machine learning...

» This talk is concerned with a principle alternative to 2nd order
Poincaré. What happens if the iterated add-one-cost is not
tractable?

» We address this problem with a two-scale stabilisation theory,
which is a quantified version of the stabilisation theory of
Penrose ('01), Penrose and Yukich ('01), Penrose ('05).

» This work is along the line of Malliavin-Stein methodology for
normal approximation, combined with ideas from a
quantitative CLT for the MST by Chatterjee and Sen ("17)
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The iterated add-one-cost is not always tractable
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Figure 1: Right: MST. Left: MST after adding a point to the origin.
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» Let 7 be a Poisson process with unit intensity on R?, identified
with its support P.

» For a Poisson functional F = F() and B € B(RY), define the
add-one-cost

D«<F(B) = F((n+ dx)[e) — F(nle)

and the two-scale discrepancy

= Slég]EHDXF(B) - DXF(AX)H

» The set B represents the observation window growing to R? and
A, is a local window of x with Leb(A,) < Leb(B).

> In practice, B = B, A, = By, (x) N B with b, = o(n). In such case,
the two-scale discrepancy is denoted by .. Define also

’l// = sup IEHDX”:(Bn) - DXF(AX)”

n
x€ B(”—bn)
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Main (user friendly) result

Theorem (Lachiéze-Rey, Peccati and Y. ('20+))
Suppose that the following holds:

» there exists p > 4 and C < co such that forall n € N

sup E“DX’E(Bn)‘p] "’E“DXF(AX)V)] < £
x€eB,

» there exists ¢ > 0 such that
Var[F(B,)] > ¢ - Leb(B,) = cn?.

Then there exists c € (0,c0) such that

d/2

)1/2

N.B. The choice of b, is done by optimizing the final bound.
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Stabilization theory: where it all began

The Annals of Applied Probability
1996, Vol. 6, Ne. 2, 495-527
THE CENTRAL LIMIT THEOREM FOR WEIGHTED MINIMAL
SPANNING TREES ON RANDOM POINTS

By HARRY KESTEN AND SUNGCHUL LEE

Cornell University and National University of Singapore

Let {X;, 1 < i < oo} be i.id with uniform distribution on [0, 1]¢
and let M(X,,...,X,;a) be min{} . |e[*; T' a spanning tree on
{Xy,..., X,}}. Then we show that for « > 0,

M(X,,...,X,;a) - EM(X,,..., X;a)

(d-Za)/2d - N0, o7 4)

in distribution for some o2 ; > 0.
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» Strong stabilization: 3 a.s. finite random variable R, such that
DoF(P N Bg,) = DoF((P N Bg,) UU)

for any finite &/ C (Bg,)“.
» Weak stabilization: for any (E,) with liminf E, = R?, we have

DoF(E,,) — 50(30) ARSH
for some random variable do(00).

Theorem (Penrose and Yukich ('01))

Assume i) uniform 4th-moment condition; ii) weak stabilization at
0. Then

Var[F(B,)]

F(B,) —E[F(B,) ¢

2 2
—o0°€[0,00) and 72 = N(0,0°).

If 5o(00) is non-degenerate, then o2 > 0.
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Relation with our bounds

» Corollary of our bound:

F(Bn) - IE:[F(Bn)
N(0,1
dw( Var[F(Bn)]1/2 9 (07 ))
1 1 4 b d/2
< > p 1:1=3)1-3) =0
_C[:éJBE)"P[RX_bn] +(n) }’

where R, the radius of strong stabilization at x.
> Assume F(7P N 7B) = F(P N B) and weak stabilization =

DyF(E,) — 0x(o0) a.s.
for any (E,) T RY. Therefore, the required condition

Yl = sup E[DyF(B,) — 0x(c0) + dx(00) — DxF(Ax)|]— O
X€EBn—b,
is a uniform strengthening of weak stabilization. Note however
that we do not require the existence of dp(o0).
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Far reach of the Penrose-Yukich theory (thus ours)

Weights, subgraph counts, components counts of

> k-nearest neighbor graphs
» sphere of influence graphs
» Voronoi tessellations

» minimal spanning trees

PY: (Multivariate) Gaussian approximation holds if strong/weak
stabilisation holds for the functional of interest.

LrPY: To obtain rates, if suffices to compute v, (or +/%), or P[R, > b,].

Not always easy, here is an open problem o )
The optimal travelling salesman tour on Poisson points is believed

to be stabilizing (implying CLT if proved).
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Applications (in our paper)

» Online NNG (S): Mark P N B, with iid uniform [0, 1] representing
the arrival time, each point is attached to its nearest neighbour
prior to its arrival. We obtain n—< for the rate of normal
approximation of the weighted edge length.

» Boolean model (S): The number of connected components of
the Boolean model

0,(PNB) = [J Sul
x€PNB,
approaches normal with rate n=¢in d = 2 and log(n)~€in d > 3.

» Minimal spanning tree (W): The total weighted edge length of
MST approaches normal distribution with the same rate as the
percolation example. In both cases, v, is bounded by the two
arm events.

» Excursion of heavy tail shot noise fields (W): The intrinsic
volumes of excursion sets E, = {t € B, : X(t) > u} of heavy tail
shot noise field X approaches normal with rate n—<.
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Component counts for the Boolean model

Figure 2: R, := inf{r > u : at most 1arm in B,(x) \ B.(x)} where 1arm
means that the Boolean model contains a path connecting the boundary of
two boxes.




’ {R, > b,} C {at least 2 arms at distance b,}. ‘

Phase transition of occupied and vacant regions
uc := inf{u: P[0 > 0o in O,] > 0} € (0, ),
u? :=sup{u: P[0 +> oo in V,] > 0} € (0, c0),

and v, = u? in dimension 2 by Roy ('90), u. < v in dimension
d > 3 by Penrose ('96), Sarkar ('97).

» Subcritical phase v < v,

P[R. > b,] < P[at least 1 arm at distance b,] < e~ .

» Supercritical phase v > u?

P[R, > b,] < P[at least 1 vacant arm at distance b,] < e~ .

» Critical phase v € [uc, uf] Two-arm event decays as b, © in 2D
and [log(b,)]~¢ in d > 3 by a quantitative Burton-Keane
argument of Chatterjee-Sen ('17).
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» Minimal spanning tree over a finite point set &/
MST(U) = Argmin{ 3" le|, T connected with V(T) = u}
ecT
» Functional of interest M(B,) € R™ given by

M(iiBn) = > willel), 1<i<m
eEMST(Pls,)

> Suppose ¢ is given by ¢(x) = ¢(x)1(x < r) for some
non-decreasing function 1) and some truncation level
r € (0,c]. If (and only if) r = oo, suppose

JkeN, (x) < (1+x)*and / e~ dyy(Vdu) < oco.
0
> Examples: power-weighted edge length ¢(x) = x“ or empirical

process ¢(x) = 1(x < r).
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Theorem (LrPY '20+)

Let N = N(n) be a centered Gaussian vector with the same
covariance matrix as

n~92M(B,).

Then, one has that

cn—? if d =2,

n—d/2 L)) — D), <
d3(n~?/*(M(B,,) — E[M(B,)]),N) < {Cexp(c|og|og(,,)) ifd >3,

for some 0 < # < 1. The above bound continues to hold for the
distances d, d, if Cov[n=9/2M(B,)] = Lo > 0.

» Two vertices x,y € P form an edge of MST if and only if x and y
belong to different component of O ., (P).

» In d = 2, consider (log(n))? Boolean models with random radius
and relate ¢/, to the 2-arm estimates.
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Proof of the general bound (i) Stein’s bound ('72, '86)

» Stein’s lemma
E[f'(N)] = E[Nf(N)].
if and only if N ~ N(0,1).
» Heuristic: F ~ N if and only if
E[f'(F)] ~ E[Ff(F)].
> Stein’s equation
f'(x) = xf(x) = h(x) — E[h(N)]

with h € Lip,. Evaluate the expectation wrt Po F~1, then take
sup over h gives

dw(F,N):= sup |Eh(F)— Eh(N)]
hELip,

- e <1 [E[Fg(F)] — Elg"(AII-

15/ 21



Proof of the general bound (ii) Integration by parts (‘o5 on-

wards)

» For F = F(B) with E[F] = 0, E[F?] = 1, we integrate by parts
E[Fg(F)]:E[/BDx(g(F))(_DXrlF)dx}
~E|g/(F) / D,F (~D,L7'F)dx]

where L~ involves thinning and (independent) superposition.

» Proof of IBP by (birth and death) semigroup interpolation: in 1
dimension, (Q, F,P) = (Np, Po(1)),

P.f(k) = E[f(Bin(k,e™ ") +Po(l — e~ "))]
and
Lf(k) =1(f(k+1) — f(k)) — k(f(k) — f(k — 1)).

satisfying —E[fLg] = E[DfDg] with Df (k) = f(k + 1) — f(k).
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» Thus, interpolation and —E[FLG] = E[{DF, DG)] gives
E[Fg(F)] = E[(PoF — P F)g(F)]

—— [ BlwP PP
:/OOOE[/BDX(g(F))DXPthX}dt
~ B[ [ D.(e(F) (DL P

(o)
—L_l ::/ Ptdt
0

» Combining Stein’s bound, integration by parts, and
Cauchy-Schwarz

by setting

1/2
dw(F, N) < Var{/ DXF(—DXL—IF)dx}
B

. . 1/2
= ( / | CovlDFDLTHF, D,FD, L Fldxdy)
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Proof of the general bound (iii) two-scale stabilization

» When x and y are close i.e. A,NA, # (), bound the covariance by
E[|DxL~F(B)|P]<E[|D«F(B)I*] < C,
yielding a term (2)9/2,

» When they are far aparti.e. A, NA, = ), we replace everything
by its local version

Cov[DyF(A)D<L™*F(Ay), D,F(A,)D, L F(A,)] (1)
with 4 error terms like
Cov[(D<F(B) — DyF(A))DyL™*F, D, FD,L~*F]. (2)

» By independence of Poisson points over non-overlapping
regions, (1) = 0, we bound (2) by

E[|D«F(B) — Dy F(A)||D«L~*FD,FD,L~*F]|].
» Applying Holder’s inequality and bounding the moments

E[|DxL71F(A,)|P] < E[|D«F(Ax)|P] < C leads to the two-scale

discrepancy 1, ending the proof.
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Two-scale bounds of the type

(wa)t=d) 1 ()"

n

holds for

» Kolmogorov distance

di(F,N) =sup|P[F < x] = P[N < x]|,
xER

» probability metrics for multivariate normal approximation,
including smooth ones d,, d; (generalizing dy), and the
non-smooth convex distance (generalizing dx)

d-(F,Ng) = sup |P[F € E] — P[Ns € E]|

E convex

possibly subject to stronger moment conditions (p > 6).
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Behind the scenes: a new Kolmogorov bound

Theorem (LrPY '20+)
Let F = (F — E[F])/o.

Var[F] + IE[|V r[F] — (DF, —DL71F)]|]

di (ﬁ N) < ‘1 .
2 -1
+ SE[8(DF|DL )],
where § is the Kabanov-Skorohod integral.

» Starting point of the two-scale bound in dk.

» Two redundant terms in Schulte ("16) and Eichelsbacher and
Thale ("14) are removed.

» A good place to start if the 4th-moment assumption is not
verified.
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» Our theorem gives almost optimal rates log(n)°n~—9/2 in the case
of exponential stabilization P[R(x) > t] < ce 't

» The second-order Poincaré estimates of Last, Peccati and
Schulte ('16), Lachiéze-Rey, Schulte and Yukich (*19) and
Schulte and Yukich (19) is concerned with

2
P[Dx,yF # O],

yielding Berry-Esseen bounds n—9/2 for exponential
stabilization.

» The upshot of our theorem is that we do not require knowledge
on the iterated add-one-cost operators, which can be very hard
to access quantitatively for not necessarily exponentially
stabilizing functionals such as critical percolation models.
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Thanks!



