k-cut Model for the Brownian Continuum Random Tree*

Minmin Wang

Stochastics Seminar, Liverpool, 12th March 2021

^{*}Based on arXiv 2007.11080

Cutting down random trees

Meir & Moon '70s

- Imagine a network T_n (rooted tree with n nodes)
- At rate 1, a uniform node is attacked.
 It is then removed from T_n along with the subtree above.
- Iterate on the remaining tree until nothing left.
- $X(T_n) = \text{total number of attacks}$

$$rac{X(\mathcal{T}_n)}{\sqrt{n}} \stackrel{(d)}{\longrightarrow} Z \sim \mathsf{Rayleigh} \ \mathsf{dist}.$$

An invariance principle

- [Janson '06] Holds more generally as T_n can be replaced by a conditioned Galton–Watson tree with finite variance.
- [Aldous '93] The above conditioned Galton–Watson tree has a scaling limit: Brownian Continuum Random Tree (CRT).
- Question: Does the previous cutting process of T_n converge to a "cutting" of the CRT, so that Z = functional of the CRT?
- Yes, according to Addario-Berry, Broutin & Holmgren '15, Bertoin & Miermont '13, Abraham & Delmas '13

Cutting down resilient random trees

Cai, Devroye, Holmgren & Skerman 2019

- Imagine a resilient network T_n (rooted tree with n nodes)
- At rate 1, a uniform node is attacked.
 It is then removed from T_n after k attacks.
- Iterate on the remaining tree until nothing left.
- $X_k(T_n)$ = total number of attacks

$$\frac{X_k(T_n)}{\sigma^{\frac{1}{k}}n^{1-\frac{1}{2k}}} \stackrel{(d)}{\longrightarrow} Z_k$$

Question: Write Z_k as a functional of the CRT?

Overview

- Continuum Random Tree
 - Cutting down Continuum Random Tree
- Scaling limit of $X_k(T_n)$

$$\sigma^2 := \sum_{\kappa} (\kappa^2 \kappa) P_{\kappa} < \omega$$

$$T_n = T$$
 cond. on # $T = n$

Some properties of CRT

by J-F. Marckert

- Tree-like: loop-free and unique geodesic.
- Of fractal dimension 2: inherited from BM.
- Countable number of branch points: In bijection with local minima of Br. exc.; each one of degree 3.
- Leaves are dense everywhere: Define μ as the pushforward of unif. measure on [0,1]. Sample $U\sim \mu$; then U is a leaf a.s.

Cutting down CRT

Alternative formulation of cutting T_n

- Write $\mu_n =$ unif. measure on vertex set of T_n .
- Launch a Poisson point proc. $\{(t_i,x_i):i\geq 1\}$ on \mathcal{T}_n with intensity $n\cdot \mu_n$.
- At time t_i , attack x_i . This attack is counted in the tally $X_k(T_n)$ iff x_i is connected to the root at t_i .
- If a vertex has been attacked k times, remove it along with the subtree above.

Extend to the CRT? Look at spanning trees.

Scaling limit of spanning trees

Let $\mathcal{R}_m^n=$ subtree of T_n spanned by m uniform vertices $V_1,\ldots,V_m.$ Rescale the edge-length of \mathcal{R}_m^n by $\frac{\sigma}{\sqrt{n}}$. Then,

$$\frac{\sigma}{\sqrt{n}}\mathcal{R}_m^n \xrightarrow{(d)} \mathcal{R}_m$$

where \mathcal{R}_m is the subtree of CRT spanned by m uniform points.

Cutting down CRT

- Rank the vertices of T_n in the order of their removal: v_1, v_2, \ldots, v_n and let $\tau_1 < \tau_2 < \cdots$ be their corresponding removal times. Note that (v_i) is a uniform permutation and (τ_i) is the order statistics of n i.i.d. Gamma(k, 1).
- Consider the sub-collection $\{(\tau_i, v_i) : v_i \in \mathcal{R}_m^n\}$. We have

$$\left(\sigma^{\frac{1}{k}} n^{-\frac{1}{2k}} \tau_i, v_i\right)_{i \geq 1} \xrightarrow{(d)} \left((k!t_i)^{\frac{1}{k}}, x_i\right)_{i \geq 1} \quad \text{in an appropriate sense,}$$

where $((t_i,x_i))_{i\geq 1}$ is a Poisson point process of unit rate on \mathcal{R}_m .

• As m increases, $\mathcal{R}_m \nearrow$ skeleton of CRT; we can then extend the previous Poisson point proc. to the CRT and use the Poisson proc. to cut it down.

Understand the scaling...

= # { vertices in
$$R_n^n$$
 } . $\mathbb{P}(\Gamma(k, 1) \leq t)$

$$\sqrt{n} \cdot t^k = O(t)$$
 \Rightarrow $t = O(n^{-\frac{1}{2k}})$

Records & Number of cuts

• The r-th attack at a vertex v is called a r-record if v is still connected to the root when the attack occurs, $1 \le r \le k$, so that

$$X_k(T_n) = \# \{1\text{-records}\} + \cdots + \# \{k\text{-records}\}.$$

We have

$$\mathbf{E}[\#\{r\text{-records}\}] = \mathcal{O}(n^{1-\frac{r}{2k}}).$$

So it suffices to look at the asymptotic of 1-records.

Asymptotic of 1**-records**

• Let $S_n(t)=$ remaining part of T_n at time t. Denote

$$a_n(t)=\#\{ ext{vertices in } \mathcal{S}_n(t) \text{ which have received no attack at time } t\}.$$

Since 1-records arrive at Exp(1), we have

$$\mathbf{E}[\#\{1\text{-records arriving in }[t,t+dt]\}\,|\,a_n(t)]=a_n(t)dt$$

A second moment argument then implies

#{1-records}
$$\sim \int_0^\infty a_n(t)dt$$
 in prob.
 $\sim \sigma^{\frac{1}{K}} \int_0^\infty \mu_n \left(S_n(n^{-\frac{1}{M}}t) \right) dt$

• Given $\#S_n(t) = n \cdot \mu_n(S_n(t))$, we have $a_n(t) \sim \text{Binom}(\#S_n(t), e^{-t})$. Then,

$$\frac{1}{n}a_n(\sigma^{\frac{1}{k}}n^{-\frac{1}{2k}}t)\sim \mu_n(S_n(n^{-\frac{1}{2k}}t))$$
 in prob.

Scaling limit of $X_k(T_n)$

- Let $\mathcal{P} = \{(t_i, x_i) : i \geq 1\}$ be a Poisson point proc. of unit rate on the skeleton of CRT. Remove x_i and the subtree above at time $(k!t_i)^{1/k}$.
- Let $\mathcal{S}(t)$ be the remaining part of the CRT at time t and define

$$Z_k = \int_0^\infty \mu igl(\mathcal{S}(t) igr) dt.$$

Theorem

As $n \to \infty$, we have

$$\left(\frac{\sigma}{\sqrt{n}}T_n, \frac{X_k(T_n)}{\sigma^{\frac{1}{k}}n^{1-\frac{1}{2k}}}\right) \xrightarrow{(d)} (\mathcal{T}, Z_k),$$

Some final remarks

- For k=1, we recover the construction in Addario-Berry, Broutin & Holmgren, Bertoin & Miermont, Abraham & Delmas.
- From the previous construction of Z_k , we deduce
 - comparison between $(Z_k)_{k\geq 1}$; in particular,

$$k \cdot (k!)^{-\frac{1}{k}} Z_k \le k + Z_1.$$

direct computations of $\mathbf{E}[Z_k^j \, | \, \mathsf{CRT}]$.

THANK YOU!