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1. Motivation



Markov Processes on the Graph of Compositions
A composition of n ∈ N is a tuple σ = (σ1, . . . , σk ) of positive integers with
n = σ1 + · · ·+ σk .
I Keeping track of only the sizes of parts, and not their order: a partition of

an integer
I The ranked sequence of a composition: a partition of an integer

I A composition (1, 1, 1, 3, 2) ⇔ a diagram

The (directed) graph of compositions

I An edge from σ to λ, denoted by
σ ↑ λ and λ ↓ σ:
if λ can be obtained from σ by
stacking or inserting one box.
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I The graph of compositions is an example of branching graphs known in
algebraic combinatorics and representation theory.

I Other branching graphs: Young graph of partitions, Pascal triangle

I Scaling limit of Markov chains on Young graph of partitions:
Diffusion on the Kingman simplex (Borodin, Olshanski, Fulman, Pertrov)

Question 1: The scaling limit of Markov chains on the graph of compositions?



Labelled infinitely-many-neutral-alleles model with parameter θ ≥ 0
(Kimura–Crow, Watterson, Ethier–Kurtz)

I S : the space of allelic types

I Mutations occur with intensity θ/2

I The type of each mutant offspring is chosen independently according to a
probability law ν0 on S

I Basic assumption: every mutant is of a new type, i.e. ν0 is non-atomic

Characterize the evolution of the relative frequencies of types (Ethier–Kurtz)

I A process (µt , t ≥ 0) taking values on Ma
1(S), the atomic probability

measures on S

I Unique stationary distribution: Pitman–Yor distribution PY(0, θ, ν0)

I For α ∈ [0, 1) and θ > −α, Pitman–Yor distribution on Ma
1(S):∑

i≥1

AiδUi ∼ PY(α, θ, ν0)

where (Ai )i≥1 has the Poisson–Dirichlet distribution with parameter (α, θ)
on the Kingman simplex and Ui ∼ ν0, i ≥ 1, independent of each other.

I Pitman–Yor distributions are widely used in non-parametric Bayesian
analysis.

Question 2: generalize the model to a two-parameter family for α ∈ [0, 1) and
θ > −α (existence conjectured by Feng–Sun)



Continuum-Tree-Valued Diffusions
I For n ∈ N, a Markov chain on the space of rooted binary labelled trees

with n leaves:

I The law of a uniform binary tree with n leaves is the stationary
distribution of this Markov chain.

I As n→∞, a uniform binary tree with n leaves converges to a Brownian
continuum random tree.

@Kortchemski

I Question 3: As n→∞, Aldous conjectured a limiting diffusion on the
space of continuum trees, with stationary distribution given by the
Brownian continuum random tree.

I
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2. Chinese Restaurant Processes
and Interval Partition Evolutions



Up-Down Ordered Chinese Restaurant Processes

I Tables are ordered in a line.

I Fix α ∈ (0, 1) and θ1, θ2 ≥ 0. We construct a continuous-time Markov
chain.

I Arriving (up-step):
I For each occupied table, say there are m ∈ N customers, a new customer

comes to join this table at rate m − α
I At rate θ1 and θ2 respectively, a new customer enters to start a new table

at the leftmost and the rightmost positions.
I Between each pair of two neighbouring occupied tables, a new customer

enters and begins a new table there at rate α;

1−α 1−α 1−α 3−α 2−α

θ1 α α α α θ2

I This is an ordered version of a Chinese Restaurant Process with parameter
α ∈ (0, 1) and θ = θ1 + θ2 − α ≥ −α.

I Leaving (down-step): Each customer leaves at rate 1.

I When the restaurant is empty, a new customer arrives at rate θ ∨ 0.
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I At each time t ≥ 0, list the numbers of customers of occupied tables, from
left to right, by a composition of an integer.

I View the model as a Markov process on the graph of compositions:
I (1, 1, 1, 3, 2) to (1, 1, 1, 1, 3, 2) at rate θ1 + 3α
I (1, 1, 1, 3, 2) to (1, 1, 3, 2) at rate 3.

Definition
The composition-valued process is called a Poissonized up-down ordered
Chinese Restaurant Process with parameters (α, θ1, θ2), PCRP(α, θ1, θ2).



Main result

Theorem (S., Winkel)

Let α ∈ (0, 1) and θ1, θ2 ≥ 0. For every n ∈ N, let (C (n)(t), t ≥ 0) be a
sequence of PCRP(α, θ1, θ2) started from C (n)(0). Suppose that

n−1C (n)(0) −→
n→∞

γ in the space of interval partitions

Then, under the Skorokhod topology,

(n−1C (n)(2nt), t ≥ 0) −→
n→∞

(β(t), t ≥ 0) in distribution.

The limiting process (β(t), t ≥ 0) is called an (α, θ1, θ2)-self-similar
interval-partition evolution, SSIPE(α, θ1, θ2).



The Space of Interval Partitions

L ≥ 0. We say β is an interval partition of the interval [0, L], if

I β = {(ai , bi ) ⊂ (0, L) : i ≥ 1} a collection of disjoint open intervals

I The total mass (sum of lengths) of β is ‖β‖ :=
∑

i≥1(bi − ai ) = L.

I a composition (1, 1, 1, 3, 2) of integer 8
an interval partition {(0, 1), (1, 2), (2, 3), (3, 6), (6, 8)} of [0, 8]

(1, 1, 1, 3, 2) ⇔
1 1 1 3 2

I Zero points Z of a Brownian motion on (0, 1): interval components of the
open set (0, 1) \ Z form an interval partition β of [0, 1]
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I The space I of all interval partitions is equipped with the Hausdorff metric
dH (between the endpoint sets [0, L] \ β).

I (I, dH ) is not complete but the induced topological space is Polish.
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I Scaling limits of Markov chains: on Young graph of partitions (Borodin,
Olshanski, Fulman, Pertrov); on the graph of compositions (Rivera-Lopez,
Rizzolo)

I Our method is very different from these works.

I We establish a pathwise construction of the limiting process SSIPE.
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Construction of SSIPE

I A spectrally positive Lévy process (X (s), s ≥ 0) stopped at a random time

I Mark each jump by an excursion (fr (z), z ≥ 0), whose length satisfies
inf{z > 0: fr (z) = 0} = ∆X (r) = X (r)− X (r−)

I A table is add at position r at time/level X (r−), whose size evolves
according to fr

I Skewer at level t: the sizes of ordered tables at level t form an interval
partition β(t)

t

Time/Level

r

X (r−)

X (r)

fr (t−X (r−))
β(t)

(fr (z),z≥0)

∆X (r)

A simulation: http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif
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Properties of SSIPE

Theorem (Forman, Rizzolo, S., Winkel)

For α ∈ (0, 1) and θ1, θ2 ≥ 0, let (β(t), t ≥ 0) be an SSIPE(α, θ1, θ2) starting
from γ ∈ I.

I It is a path-continuous Hunt process on (I, dH )

I (Self-similar with index 1) For c > 0, the space-time rescaled process
(cβ(t/c), t ≥ 0) is also an SSIPE(α, θ1, θ2)

I Let θ = θ1 + θ2 − α. There are three phases:
I when θ ≥ 1, it a.s. never hits ∅
I when θ ∈ (0, 1), it is reflected at ∅
I when θ ∈ [−α, 0], it is absorbed at ∅

I The total mass (‖β(t)‖, t ≥ 0) evolves according to a squared Bessel
process of “dimension 2θ”.

I For any t > 0, β(t) a.s. has the α-diversity property, i.e. the following
limit exists for each x ≥ 0:

Dα(x) := Γ(1−α) lim
h↓0

hα#{(a, b)∈β(t) : |b − a|>h, b≤x}.

Remark: when θ2 = α, we extend SSIPE to the completion of (I, dH )



De-Poissonized process and Stationary Distribution

Theorem (Forman, Rizzolo, S., Winkel)

For an SSIPE(α, θ1, θ2) (β(t), t ≥ 0), introduce a Lamperti/Shiga-type
time-change

τ(u) := inf

{
t ≥ 0:

∫ t

0

‖β(r)‖dr > u

}
, u ≥ 0.

The de-Poissonized SSIPE(α, θ1, θ2) (renormalized and time-changed)

β̄(u) := ‖β(τ(u))‖−1β(τ(u)), u ≥ 0

is a continuous Hunt process on the space of unit interval partitions, with
stationary distribution denoted by PDIP(α, θ1, θ2).



Poisson–Dirichlet Interval Partition PDIP(α, θ1, θ2)

I The ranked lengths of intervals in a PDIP(α, θ1, θ2) has the law of
Poisson–Dirichlet distribution (α, θ) on the Kingman simplex with
θ = θ1 + θ2 − α.

I Stick-breaking construction (S., Winkel)

I When θ2 = α: related to regenerative composition structures
(Gnedin–Pitman, Winkel–Pitman)

I Examples:
PDIP(1/2, 1/2, 1/2): zero points of
a Brownian bridge on [0, 1] from
zero to zero.
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PDIP(1/2, 1/2, 0): zero points of a
Brownian motion on [0, 1].
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3. Applications



Projection on the Kingman Simplex

I An SSIPE(α, θ1, θ2) is the scaling limit of certain Markov processes on the
graph of compositions

I Consider a de-Poissonized SSIPE(α, θ1, θ2) (β̄(u), u ≥ 0):
Write W (u) for the ranked interval lengths of β̄(u). Then (Forman, Pal,
Rizzolo, Winkel) prove that the process (W (u/2), u ≥ 0) is an EKP
diffusion on the Kingman simplex introduced by (Ethier–Kurtz,Petrov)

I An EKP diffusion is the scaling limit of certain Markov chains on the
graph of partitions (Ethier–Kurtz,Petrov).



A Related Population-Genetic Model

t

Time

r

X (r−)

X (r)

fr (t−X (r−))
β(t)

(fr (z),z≥0)

∆X (r)

µ(t)

(Forman, Rizzolo, S., Winkel)

I A Lévy process marked by a pair (fr ,Ur ): an excursion fr and an
independent allelic type Ur ∼ ν0 (colour).

I Statistic of alleles: a measure-valued process (µ(t), t ≥ 0) associated with
an SSIPE (β(t), t ≥ 0).

I The de-Poissonized process has a stationary distribution: the Pitman–Yor
distribution PY(α, θ, ν0) with α ∈ (0, 1) and θ = θ1 + θ2 − α ≥ −α.

I This generalizes the labelled infinitely-many-neutral-alleles model (α = 0)
by (Ethier–Kurtz).



Continuum-Tree-Valued Diffusions

I ρ ∈ (1, 2], ρ-stable continuum random tree [Aldous, Duquesne, LeGall]

I ρ = 2: Brownian Continuum-random tree

I Question: construct a continuum-tree-valued diffusion which is stationary
under the law of the ρ-stable continuum random tree?

I In the Brownian case ρ = 2: Aldous’s conjectured diffusion
(Forman–Pal–Rizzolo–Winkel, Löhr–Mytnik–Winter)

I Idea: using the de-Poissonized SSIPE with stationary distribution PDIP

(S.–Winkel in progress)

Further questions:

I Ford’s tree growth model (Ford)

I Alpha-gamma model (Chen–Ford–Winkel)

I Continuum fragmentation trees (Haas, Miermont, Pitman, Winkel)

,



PDIPs in Continuum Random Trees
I A ρ-stable tree is a metric space equipped with a mass measure of total

mass 1.
With α = 1− 1/ρ:

masses of spinal bushes (Mi )i≥1

distances to the root (`i )i≥1

law⇐⇒
β = {Ui , i ≥ 1} ∼ PDIP(α, α, α),
α-diversity (Dα(inf Ui ), i ≥ 1).

root

Mi

`i

Mi

0 1

a uniform leaf

Figure: (coarse) spinal decomposition of a 1.5-stable tree @ Kortchemski

I Difficulty in the non-Brownian case: branch point with infinite degree
(S., Winkel): nested SSIPE



Scaling limit of Nested PCRP

Nested PCRP: clusters of tables

I Clusters: PCRP(ᾱ, θ̄1, θ̄2)

I Tables in each cluster: PCRP(α, θ1, θ2)

I Consistency: θ := θ1 + θ2 − α = −ᾱ < 0

I Nested Chinese restaurant processes are widely applied in non-parametric
Bayesian analysis.

I S., Winkel: the scaling limit of nested PCRP is nested SSIPE.

I Applications to multifurcating trees: bushes of subtrees

I Key ingredient: SSIPE(α, θ1, θ2) excursion away from ∅ with θ < 0
(though ∅ is an absorbing state!)



SSIPE excursions

Theorem (S., Winkel)

Let (C(t), t ≥ 0) be a PCRP(α, θ1, θ2) starting from the composition of 1 and
suppose that θ := θ1 + θ2 − α < 1. Denote the law of the process
(n−1C(2nt), t ≥ 0) by P(n). Then the following convergence holds vaguely:

n1−θ · P(n) −→
n→∞

Λ.

The limit Λ is a sigma-finite measure on the space of continuous
interval-partition excursions away from ∅.
Comments:

I When θ > 0, an SSIPE(α, θ1, θ2) is reflected at ∅ and Λ is the Itô measure.

I When θ ≤ 0, an SSIPE(α, θ1, θ2) is absorbed at ∅, but our description of
Λ still makes sense of an SSIPE(α, θ1, θ2) excursion measure.



Ideas of the proof

I In a Chinese restaurant process, a new table has one customer initially,
and this table is removed when all customers of this table have left.

I the number of customers at a single table evolves according to a
birth-death process X , started from 1 and absorbed at zero, with birth
rate Pi→i+1 = i − α and death rate Pi→i−1 = i .

Lemma
Denote the law of the process ( 1

n
X (2nt), t ≥ 0) by π(n). The following

convergence holds vaguely:

2αn1+α · π(n) −→
n→∞

µ.

The limit µ is a σ-finite measure of the space
of positive continuous excursions: excursion
measure of (−2α)-dimensional squared Bessel
process (Pitman–Yor)

I Define the lifetime of a positive excursion f by
ζ(f ) := sup{s ≥ 0: f (s) > 0}. Then µ(ζ(f ) ∈ ·) coincides with the Lévy
measure of scaffolding stable (1 + α) precess.

I Under µ(· | ζ(f ) = x), the excursion is a (−2α)-dimensional squared
Bessel process of length x .



Summery

I We have constructed a three-parameter family of interval-partition
diffusions

I Scaling limit of Markov chains on the graph of compositions

I Generalized labelled infinitely-many-neutral-alleles model

I Future work: continuum-tree-valued process with stationary distribution

root
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