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Pure Mathematics

“Pure” Mathematics studies the intrinsic properties of abstract structures and
concepts – e.g. number or space.

Focus on establishing general principles, and achieving a deeper
understanding of fundamental phenomena.
Establishes rigorous results by mathematical proof.
Not primarily concerned with accurate modelling of the physical world.
Nonetheless, often motivated by “real-world” phenomena . . .
and applicable (usually in the long, rather than short, term).
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Pure Mathematics at Liverpool

Pure Mathematics research at Liverpool tends to have a strong geometrical
flavour.

The research interests of this group are grouped into three areas:

Algebraic Geometry
Geometry & Topology
Dynamical Systems
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Dynamical systems

A Dynamical System is a system that evolves over time, according to fixed
rules.

E.g.,

a pendulum or a double pendulum;
a system of planetary bodies (governed by gravitational attraction);
one or several populations in a closed ecosystem;
the earth’s weather;
mathematical models for the stock market;
the universe.
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Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs

Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space
f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn)

= f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.

X : state space
f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn)

= f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space

f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn)

= f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space
f : X → X evolution rule

x0 starting value⇝ orbit of x0:

xn+1 = f (xn)

= f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space
f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn)

= f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space
f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn) = f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Modelling dynamical systems

Continuous time: flows / evolution rule expressed by ODEs
Discrete time: iteration of an evolution rule expressed by a self-map of the
state space.
X : state space
f : X → X evolution rule
x0 starting value⇝ orbit of x0:

xn+1 = f (xn) = f (. . . f (x0) . . . )︸ ︷︷ ︸
n+1 times

..= f n+1(x0)

Typical questions: What is the long-term behaviour of orbits? How does it
change under perturbations of the starting value / the system?



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Simple models for population dynamics

fλ : [0,1] → [0,1]; x 7→ λx(1 − x) (λ ∈ [1,4].)
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Simple models for population dynamics

fλ : [0,∞) → [0,∞); x 7→ λxe−x (λ ≥ 1)
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Dynamical systems

Regular behaviour: long-term behaviour of orbits stable under
perturbations.

Unstable / chaotic behaviour: long-term behaviour of orbits unstable under
arbitrarily small perturbations.

Key observation: Even simple rules may lead to chaotic behaviour.
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Bifurcations in population models

λx(1 − x)
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Dynamical systems at Liverpool

Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
Postdocs: Reinke, Ferreira.
PhD students: Brown, Münch.

(Pure) dynamical systems research at Liverpool tends to study
low-dimensional dynamics:

Ergodic theory and number theory (Nair).
Topological dynamics; surface homeomorphisms (Hall)
One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);
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Holomorphic dynamics
Iteration of a function of one complex variable.

f : C → C analytic.

f (z) = λz(1 − z)
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Holomorphic dynamics
Iteration of a function of one complex variable.

f : C → C analytic.

f (z) = z exp(−z)
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Holomorphic dynamics
Iteration of a function of one complex variable.

f : C → C analytic.

f (z) = z2 + c
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Transcendental dynamics

f : C → C transcendental (not polynomial).

First studied by Fatou in 1926.
Among the examples Fatou studied was the map

z 7→ sin(z)
2

.

Observation (Fatou, 1926): There is a collection of infinitely many curves
on which orbits tend to infinity.
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Curves in the escaping set

f0(z) = sin(z)/2
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The basin of 0

f0(z) = sin(z)/2
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Eremenko’s conjecture

Eremenko’s conjecture (1989): Every connected component of the escaping
set

I(f ) ..= {z ∈ C : f n(z) → ∞

of an analytic function f : C → C is unbounded.

Central problem in transcendental dynamics.
Rippon–Stallard 2011: I(f ) ∪ {∞} is connected.
Rottenfußer-Rückert-R.-Schleicher 2011: There exists f such that I(f )
contains no curve.
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Rippon–Stallard 2011: I(f ) ∪ {∞} is connected.
Rottenfußer-Rückert-R.-Schleicher 2011: There exists f such that I(f )
contains no curve.



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Eremenko’s conjecture

Eremenko’s conjecture (1989): Every connected component of the escaping
set

I(f ) ..= {z ∈ C : f n(z) → ∞

of an analytic function f : C → C is unbounded.

Central problem in transcendental dynamics.
Rippon–Stallard 2011: I(f ) ∪ {∞} is connected.
Rottenfußer-Rückert-R.-Schleicher 2011: There exists f such that I(f )
contains no curve.



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Eremenko’s conjecture

Eremenko’s conjecture (1989): Every connected component of the escaping
set

I(f ) ..= {z ∈ C : f n(z) → ∞

of an analytic function f : C → C is unbounded.

Central problem in transcendental dynamics.
Rippon–Stallard 2011: I(f ) ∪ {∞} is connected.
Rottenfußer-Rückert-R.-Schleicher 2011: There exists f such that I(f )
contains no curve.



Liverpool
Dynamical
Systems

Lasse Rempe

Pure
Mathematics

Dynamical
systems

DS at
Liverpool

Holomorphic
dynamics

Eremenko’s
conjecture

Resolution of Eremenko’s conjecture

Theorem (Martí-Pete, R., Waterman, 2022)
There exists a transcendental entire function such that {0} is a connected
component of I(f ).

The proof uses tools of classical complex function theory (approximation
theory).
Gives a general procedure for constructing entire functions with interesting
properties.
This method resolves a number of other long-standing open problems.
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Thank you!
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