Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture Pure Mathematics and Dynamical Systems at Liverpool

Lasse Rempe

Department of Mathematical Sciences, University of Liverpool

AIMS-Liverpool Joint Postgraduate Conference June 2023

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Systems Lasse Rempe

Liverpool Dynamical

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with accurate modelling of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with accurate modelling of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with accurate modelling of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with *accurate modelling* of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with *accurate modelling* of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

- Focus on establishing *general principles*, and achieving a *deeper understanding* of *fundamental phenomena*.
- Establishes *rigorous* results by mathematical proof.
- Not primarily concerned with *accurate modelling* of the physical world.
- Nonetheless, often *motivated* by "real-world" phenomena ...
- and *applicable* (usually in the long, rather than short, term).

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Pure Mathematics at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pure Mathematics research at Liverpool tends to have a strong *geometrical flavour*.

- Algebraic Geometry
- Geometry & Topology
- Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Pure Mathematics at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pure Mathematics research at Liverpool tends to have a strong *geometrical flavour*.

- Algebraic Geometry
- Geometry & Topology
- Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Pure Mathematics at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pure Mathematics research at Liverpool tends to have a strong *geometrical flavour*.

- Algebraic Geometry
- Geometry & Topology
- Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Pure Mathematics at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Pure Mathematics research at Liverpool tends to have a strong *geometrical flavour*.

- Algebraic Geometry
- Geometry & Topology
- Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems

A *Dynamical System* is a system that evolves over time, according to fixed rules.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

E.g.,

Eremenko's conjecture

A *Dynamical System* is a system that evolves over time, according to fixed rules.

Dynamical systems

• a *pendulum* or a double pendulum;

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture A *Dynamical System* is a system that evolves over time, according to fixed rules. E.g.,

- a *pendulum* or a double pendulum;
- a system of *planetary bodies* (governed by gravitational attraction);

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture A *Dynamical System* is a system that evolves over time, according to fixed rules. E.g.,

- a *pendulum* or a double pendulum;
- a system of *planetary bodies* (governed by gravitational attraction);
- one or several populations in a closed ecosystem;

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics E.g.,

Eremenko's conjecture A *Dynamical System* is a system that evolves over time, according to fixed rules.

- a *pendulum* or a double pendulum;
- a system of *planetary bodies* (governed by gravitational attraction);
- one or several populations in a closed ecosystem;
- the earth's weather;

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics E.g.,

Eremenko's conjecture A *Dynamical System* is a system that evolves over time, according to fixed rules.

- a *pendulum* or a double pendulum;
- a system of *planetary bodies* (governed by gravitational attraction);
- one or several populations in a closed ecosystem;
- the earth's weather;
- mathematical models for the stock market;

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics E.g.,

Eremenko's conjecture A *Dynamical System* is a system that evolves over time, according to fixed rules.

- a *pendulum* or a double pendulum;
- a system of *planetary bodies* (governed by gravitational attraction);
- one or several populations in a closed ecosystem;
- the earth's weather;
- mathematical models for the stock market;
- the universe.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

• Continuous time: flows / evolution rule expressed by ODEs

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

• Continuous time: flows / evolution rule expressed by ODEs

• *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

- Continuous time: flows / evolution rule expressed by ODEs
- *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.
- X: state space

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

- Continuous time: flows / evolution rule expressed by ODEs
- *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.
- X: state space
- $f: X \to X$ evolution rule

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

- Continuous time: flows / evolution rule expressed by ODEs
- *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.
- X: state space
- $f: X \to X$ evolution rule
- x_0 starting value $\rightarrow orbit$ of x_0 :

 $x_{n+1} = f(x_n)$

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

- Continuous time: flows / evolution rule expressed by ODEs
- *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.
- X: state space
- $f: X \to X$ evolution rule
- x_0 starting value $\rightarrow orbit$ of x_0 :

$$x_{n+1} = f(x_n) = \underbrace{f(\ldots f(x_0) \ldots)}_{i=1} := f^{n+1}(x_0)$$

n+1 times

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Modelling dynamical systems

- Continuous time: flows / evolution rule expressed by ODEs
- *Discrete time:* iteration of an evolution rule expressed by a self-map of the state space.
- X: state space
- $f: X \to X$ evolution rule
- x_0 starting value $\rightarrow orbit$ of x_0 :

$$x_{n+1} = f(x_n) = \underbrace{f(\dots f(x_0) \dots)}_{n+1 \text{ times}} := f^{n+1}(x_0)$$

Typical questions: What is the *long-term* behaviour of orbits? How does it change under *perturbations* of the starting value / the system?

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Simple models for population dynamics

 $f_{\lambda}\colon [0,1]\to [0,1]; \quad x\mapsto \lambda x(1-x) \qquad (\lambda\in [1,4].)$

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Simple models for population dynamics

 $f_{\lambda} \colon [0,\infty) \to [0,\infty); \quad x \mapsto \lambda x e^{-x} \qquad (\lambda \ge 1)$

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems

• *Regular* behaviour: long-term behaviour of orbits *stable* under perturbations.

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

- *Regular* behaviour: long-term behaviour of orbits *stable* under perturbations.
- Unstable / chaotic behaviour: long-term behaviour of orbits unstable under arbitrarily small perturbations.

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems

- *Regular* behaviour: long-term behaviour of orbits *stable* under perturbations.
- Unstable / chaotic behaviour: long-term behaviour of orbits unstable under arbitrarily small perturbations.

Key observation: Even simple rules may lead to chaotic behaviour.

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphi dynamics

Eremenko's conjecture

Bifurcations in population models

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Bifurcations in population models

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.

- *Postdocs*: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ の000

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ の000

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Dynamical systems at Liverpool

▲□▶▲□▶▲□▶▲□▶ □ の000

- Permanent group members: Hall, Martí-Pete, Meyer, Nair, Rempe.
- Postdocs: Reinke, Ferreira.
- PhD students: Brown, Münch.

- Ergodic theory and number theory (Nair).
- Topological dynamics; surface homeomorphisms (Hall)
- One-dimensional holomorphic dynamics (Martí-Pete, Meyer, Rempe);

Holomorphic dynamics

Systems Lasse Rempe

Liverpool Dynamical

Pure Mathematic:

Dynamica systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Iteration of a function of one complex variable.

 $f \colon \mathbb{C} \to \mathbb{C}$ analytic.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Iteration of a function of *one complex variable*.

 $f \colon \mathbb{C} \to \mathbb{C}$ analytic.

Holomorphic dynamics

 $f(z) = z \exp(-z)$

Holomorphic dynamics

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Iteration of a function of one complex variable.

 $f \colon \mathbb{C} \to \mathbb{C}$ analytic.

 $f(z)=z^2+c$

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Transcendental dynamics

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental (not polynomial).

• First studied by *Fatou* in 1926.

• Among the examples Fatou studied was the map

$$z\mapsto rac{\sin(z)}{2}.$$

• *Observation* (Fatou, 1926): There is a collection of *infinitely many curves* on which orbits *tend to infinity*.

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Transcendental dynamics

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental (not polynomial).

- First studied by Fatou in 1926.
- Among the examples Fatou studied was the map

$$z\mapsto rac{\sin(z)}{2}.$$

• *Observation* (Fatou, 1926): There is a collection of *infinitely many curves* on which orbits *tend to infinity*.

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Transcendental dynamics

$f \colon \mathbb{C} \to \mathbb{C}$ transcendental (not polynomial).

- First studied by *Fatou* in 1926.
- Among the examples Fatou studied was the map

$$z\mapsto rac{\sin(z)}{2}.$$

• *Observation* (Fatou, 1926): There is a collection of *infinitely many curves* on which orbits *tend to infinity*.

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Curves in the escaping set

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

 $f_0(z) = \sin(z)/2$

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Curves in the escaping set

 $f_0(z) = \sin(z)/2$

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Curves in the escaping set

 $f_0(z) = \sin(z)/2$

<□> <圖> < E> < E> E のQ@

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Curves in the escaping set

 $f_0(z) = \sin(z)/2$

Lasse Rempe

Pure Mathemati

Dynamica systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

The basin of 0

 $f_0(z) = \sin(z)/2$

<ロ> <0</p>

Systems Lasse Rempe

Liverpool Dynamical

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

 $f_0(z) = \sin(z)/2$

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

 $f_0(z) = \sin(z)/2$

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

 $f_0(z) = \sin(z)/2$

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

 $f_0(z) = \sin(z)/2$

Dynamical Systems Lasse Rempe

Liverpool

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

 $f_0(z) = \sin(z)/2$

Dynamical Systems Lasse Rempe

Liverpool

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

 $f_0(z) = \sin(z)/2$

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

 $f_0(z) = \sin(z)/2$

Liverpool Dynamical Systems

Lasse Rempe

Pure Mathematic

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Eremenko's conjecture (1989): Every connected component of the escaping set

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

of an analytic function $f \colon \mathbb{C} \to \mathbb{C}$ is *unbounded*.

- Central problem in transcendental dynamics.
- Rippon–Stallard 2011: $I(f) \cup \{\infty\}$ is *connected*.
- Rottenfußer-Rückert-R.-Schleicher 2011: There exists *f* such that *l*(*f*) *contains no curve*.

Eremenko's conjecture

▲□▶▲□▶▲□▶▲□▶ □ の000

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Eremenko's conjecture

▲□▶▲□▶▲□▶▲□▶ □ の000

Eremenko's conjecture (1989): Every *connected component* of the *escaping set*

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

of an analytic function $f \colon \mathbb{C} \to \mathbb{C}$ is *unbounded*.

- Central problem in transcendental dynamics.
- Rippon–Stallard 2011: $I(f) \cup \{\infty\}$ is *connected*.
- Rottenfußer-Rückert-R.-Schleicher 2011: There exists *f* such that *l*(*f*) *contains no curve*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Eremenko's conjecture

▲□▶▲□▶▲□▶▲□▶ □ の000

Eremenko's conjecture (1989): Every *connected component* of the *escaping set*

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

of an analytic function $f \colon \mathbb{C} \to \mathbb{C}$ is *unbounded*.

- Central problem in transcendental dynamics.
- Rippon–Stallard 2011: $I(f) \cup \{\infty\}$ is *connected*.
- Rottenfußer-Rückert-R.-Schleicher 2011: There exists *f* such that *l*(*f*) *contains no curve*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Eremenko's conjecture

▲□▶▲□▶▲□▶▲□▶ □ の000

Eremenko's conjecture (1989): Every *connected component* of the *escaping set*

$$I(f) := \{z \in \mathbb{C} \colon f^n(z) \to \infty\}$$

of an analytic function $f \colon \mathbb{C} \to \mathbb{C}$ is *unbounded*.

- Central problem in transcendental dynamics.
- Rippon–Stallard 2011: $I(f) \cup \{\infty\}$ is *connected*.
- Rottenfußer-Rückert-R.-Schleicher 2011: There exists *f* such that *l*(*f*) *contains no curve*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Resolution of Eremenko's conjecture

Theorem (Martí-Pete, R., Waterman, 2022)

There exists a transcendental entire function such that $\{0\}$ is a connected component of I(f).

- The proof uses tools of classical complex function theory (approximation theory).
- Gives a general procedure for constructing entire functions with *interesting properties*.

▲□▶▲□▶▲□▶▲□▶ □ の000

• This method resolves a number of other *long-standing open problems*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Resolution of Eremenko's conjecture

Theorem (Martí-Pete, R., Waterman, 2022)

There exists a transcendental entire function such that $\{0\}$ is a connected component of I(f).

- The proof uses tools of classical complex function theory (approximation theory).
- Gives a general procedure for constructing entire functions with *interesting properties*.

▲□▶▲□▶▲□▶▲□▶ □ の000

• This method resolves a number of other *long-standing open problems*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Resolution of Eremenko's conjecture

Theorem (Martí-Pete, R., Waterman, 2022)

There exists a transcendental entire function such that $\{0\}$ is a connected component of I(f).

- The proof uses tools of classical complex function theory (approximation theory).
- Gives a general procedure for constructing entire functions with *interesting properties*.

▲□▶▲□▶▲□▶▲□▶ □ の000

• This method resolves a number of other *long-standing open problems*.

Lasse Rempe

Pure Mathematics

Dynamical systems

DS at Liverpool

Holomorphic dynamics

Eremenko's conjecture

Resolution of Eremenko's conjecture

Theorem (Martí-Pete, R., Waterman, 2022)

There exists a transcendental entire function such that $\{0\}$ is a connected component of I(f).

- The proof uses tools of classical complex function theory (approximation theory).
- Gives a general procedure for constructing entire functions with *interesting properties*.
- This method resolves a number of other *long-standing open problems*.

Lasse Rempe

Pure Mathemati

Dynamical systems

DS at Liverpoo

Holomorphic dynamics

Eremenko's conjecture

Resolution of Eremenko's conjecture

・ロト・西ト・ヨト・日・ シック

Thank you!

Dynamical Systems Lasse Rempe

Liverpool

Pure Mathematic

Dynamica systems

DS at Liverpoo

Holomorphi dynamics

Eremenko's conjecture

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ○ ○ ○