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Swimming in non-Newtonian fluids

1. Pseudomonas 

aeruginosa progressing 
through the mucus-filled 
respiratory system.

2. Helicobacter pylori moving through the mucus 

layer covering the stomach.

Image/video credits: (1) Tsang et al. Eur. Respir. J. 2003, (2) Dr. Nina Salama, (3) Gallagher et al. Hum. Reprod. 2019.

3. Human spermatozoa 

progressing through a 
cervical mucus analogue. 1μm



Defining the fluid-structure problem

Hyakutake, Sato & Sugita. J. Biomech. 2019.
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Shear-dependent viscosity

Viscoelastic

Newtonian

−∇𝑝+ 𝛁 ⋅ 𝝉 = 𝟎

𝛁 ⋅ 𝒖 = 0

Re =
𝜌𝑈𝐿

𝜇
→ 0, steady, 

incompressible

𝝉 = 2𝜇𝑫(𝒖)

𝝉 + 𝜆1𝝉 = 2𝜇0 𝑫(𝒖) + 𝜆2𝑫(𝒖)

𝝉 = 2𝜇( ሶ𝛾)𝑫(𝒖)



𝛁 ⋅ 2𝜇 ሶ𝛾(𝒖) 𝑫(𝒖) − ∇𝑝 + 𝑭 = 𝟎

𝛁 ⋅ 𝒖 = 0

𝒖 = 𝟎

in Ω

in Ω

on 𝜕Ω

The hybrid approach to non-linear swimming

The boundary value problem 
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The hybrid approach to non-linear swimming

The boundary value problem Fluid flow around a swimmer varies rapidly

𝒖 = 𝑼+ 𝒖𝑠

𝑝 = 𝑃 + 𝑝𝑠

The hybrid method

Newtonian 
‘approximation’

Non-Newtonian 
‘correction’



Newtonian flow approximation

If 𝑭 = 𝒇𝛿 𝒙 − 𝒚 ,

𝒖𝑠 = 𝑆𝑖𝑗 𝒙, 𝒚 𝒇𝑗 =
1

8𝜋𝜇𝑁

𝛿𝑖𝑗

𝑟
+
𝑟𝑖𝑟𝑗

𝑟3
𝑓𝑗,

𝑝𝑠 = 𝑃𝑗 𝒙, 𝒚 𝒇𝑗 =
1

4𝜋

𝑟𝑗

𝑟3
𝑓𝑗,

where 𝑟𝑖 = 𝑥𝑖 − 𝑦𝑖 , 𝑟 = 𝒙 − 𝒚 .

(when 𝜇 ሶ𝛾 ≔ 𝜇𝑁)

The hybrid approach to non-linear swimming: example
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The boundary value problem 



𝒖𝑠 𝑼

𝒖

𝑛 = 0.5, 𝜆 = 1, 𝜇0 = 1, 𝜇∞ = 0.5
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The boundary value problem 



De = 𝜆𝜔

𝜇 ሶ𝛾 = 1 + 𝛽0 − 1 1+ De ሶ𝛾 2
𝑛−1
2

𝛽0 =
𝜇0
𝜇∞

The effect of shear-thinning rheology on sperm propulsion

𝑛 = 0.5, 𝜆 = 1, 𝜇0 = 1, 𝜇∞ = 0.5



The effect of shear-thinning rheology on sperm propulsion



Vasudevan. J. Microbiol. Exp. 2014.

E. Lauga. Annu. Rev. Fluid Mech. 2016.

Bacterial locomotion and biofilm formation in non-Newtonian fluids

𝒖 = 𝑼+ 𝒖𝑠

𝑝 = 𝑃 + 𝑝𝑠

Alter: bacterium model 
with rigid flagellum

Alter: viscoelastic + 
shear-thinning effects



The bacterium model

𝒆𝑏
(1)

= 𝒆𝑓
(1)

𝒆𝑏
(2)

𝒆𝑏
(3)

𝒆
𝑓

(2)

𝒆
𝒇

(𝟏)

𝜙

2𝑎(1)
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𝐿

Motion is driven through a prescribed relative rotation 
rate between the body and flagellum

𝜔 =
𝑑𝜙

𝑑𝑡
.

The surface velocity of points on the body and 
flagellum are described by

𝑢 𝒀 = 𝑽 + 𝛀𝑏 × 𝒀 −𝑿0 ,

𝑢 𝑿 = 𝑽 + 𝛀𝑏 + 𝛀𝑚 × 𝑿− 𝑿0 .

(𝛀𝑚 = 𝜔, 0,0 𝑇)

E. Lauga. Annu. Rev. Fluid Mech. 2016.



The bacterium model



Couette-Poiseuille flow of a Giesekus fluid

𝝉 +
𝛼𝜆

𝜂
𝝉 ⋅ 𝝉 + 𝜆𝝉 = 2𝜂𝑫

Giesekus model

The parameters 𝜆 and 𝜂 are the fluid 
relaxation time and viscosity respectively. 
The parameter 0 < 𝛼 < 1 is the 
dimensionless mobility. 
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The parameters 𝜆 and 𝜂 are the fluid 
relaxation time and viscosity respectively. 
The parameter 0 < 𝛼 < 1 is the 
dimensionless mobility. 

A. Raisi. Rheol. Acta. 2008.



Extracting the 'physical’ flow solution



Comparing the analytical and numerical solutions



Conclusions & future work
Conclusions

• Using a hybrid computational approach, we can efficiently simulate 
sperm in shear-thinning fluids. A similar technique will allow for the 
study of bacteria in fluids that exhibit both shear-thinning and 
viscoelastic properties. 

• For sperm cells, shear-thinning rheology tends to hinder propulsion 
compared to swimming in a Newtonian fluid.  This is likely due to 
flagellar shape changes emerging from fluid-flagellum interactions.

• Even for simple flow problems, obtaining the flow profile of viscoelastic 
fluids can be difficult. For the Couette-Poiseuille flow of a Giesekus 
fluid, multiple analytic solutions exist, although our analysis determines 
that only one solution is physical.

Future work

• To fully implement the hybrid method for the case of modelling bacteria 
in shear-thinning viscoelastic fluids (and near solid boundaries).

• To explore the effect of non-Newtonian fluids on bacterial locomotion 
and biofilm development.



Thanks for listening! 

Questions?


