Neutrino Mixing Models For Non-Hermitian Quantum Mechanics

Robert Mason
robert.mason@liverpool.ac.uk

University of Liverpool
June 30, 2023

In collaboration with:
Jean Alexandre, Madeleine Dale, John Ellis \& Peter Millington 2302.11666

Project Aim

Aim: Consider the oscillation probability for a non-Hermitian quantum mechanics (QM) model of neutrinos with Dirac type mass.

Project Aim

Aim: Consider the oscillation probability for a non-Hermitian quantum mechanics (QM) model of neutrinos with Dirac type mass.

What is is a neutrino?

Problem (1930): e^{-}released in beta decay with a continuous energy spectrum. But in QM: e^{-}energy quantised.

Solution:

- Bohr Abandon conservation laws on a fundamental level - only true statistically.
- Pauli Add a new particle - only currently three fundamental particles p, e and γ.

(Abridged) History of Neutrinos

Theoretical Advances:

- Fermi (1933) : Beta decay process of neutron decaying to proton to stabilise atomic nuclei

- Electro-Weak (196X): Left-handed neutrinos are charged under electro-weak gauge group with anti-neutrinos as distinct objects

- Standard Model (197X): Three massless neutrino flavours only charged under the electro-weak interaction.

Why am I talking about neutrino mass?

If neutrinos are massless why am I talking about their mass?

Problem: Measurements of solar or atmospheric neutrinos result in too few neutrinos of the expected type and too many of the others.

Solution:

- Pontecorvo (1957): Neutrinos oscillate between types.

But this requires massive neutrinos.

Oscillation Probability Calculation 1

- Suppose we have two neutrino flavours $\left\{\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle\right\}$.
- Solar neutrinos $=$ electron-neutrino state $\left|\nu_{e}\right\rangle$
- States evolve according to equation:

$$
\begin{equation*}
|\nu(t)\rangle=e^{i \bar{H} t}|\nu(0)\rangle, \tag{1}
\end{equation*}
$$

\bar{H} is Hamiltonian operator whose e-vals are possible energy levels.

- Define mixing matrix U by

$$
\begin{equation*}
\left|\nu_{i}\right\rangle=U_{i a}^{*}\left|\nu_{a}\right\rangle \tag{2}
\end{equation*}
$$

where $i=\{e, \mu\}$ and $i=\{1,2\}$ are energy eigenstate labels.

- Such that

$$
\begin{equation*}
\left|\nu_{a}(t)\right\rangle=e^{i E_{a} t}\left|\nu_{a}(0)\right\rangle . \tag{3}
\end{equation*}
$$

$(\hbar=c=1)$

Oscillation Probability Calculation 2

- Probability calculated by

$$
\begin{equation*}
P_{k \rightarrow l}(t, 0)=\left|\left\langle\nu_{l}(t) \mid \nu_{k}(0)\right\rangle\right|^{2} \tag{4}
\end{equation*}
$$

and so expect $P_{l \rightarrow l}(t, t)=1$. Dirac inner product with conjugate basis $\langle\nu|=(|\nu\rangle)^{\dagger}$.

- Neutrinos (if massive) are extremely light \rightarrow use relativisitic approximation $\left(E_{i} \approx p+\frac{m_{i}}{2 E}, t \approx L\right)$:

$$
\left|\nu_{e}(t)\right\rangle=e^{-i E_{a} t} U_{e a}^{*}\left|\nu_{a}\right\rangle \approx\left|\nu_{e}(L)\right\rangle \approx e^{-i E_{1} t}\left[U_{e a}^{*} \exp \left(-i \frac{m_{a}^{2}-m_{1}^{2}}{2 E} L\right)\right.
$$

- Mixing probability
$P_{e \rightarrow \mu}(L) \approx \sum_{a, b}\left|U_{e a} U_{\mu a}^{*} U_{e b}^{*} U \mu b\right|^{2} \cos \left[\frac{L}{2}\left(m_{a}^{2}-m_{b}^{2}\right)-\arg \left(U_{e a} U_{\mu a}^{*} U_{e b}^{*} U \mu b\right)\right]$
- For Dirac neutrinos where U is a rotation matrix with two flavours

$$
\begin{equation*}
P_{e \rightarrow \mu}(L) \approx \sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\left|m_{1}^{2}-m_{2}^{2}\right|}{4 E} L\right) \tag{6}
\end{equation*}
$$

Neutrino Mass Problem

Naturalness Problem: Neutrino mass is too small

Cosmological Measurements: $\sum_{\nu} m_{\nu}<0.23 \mathrm{eV}$

Heaviest Fermion: 172 GeV , Lightest Fermion: 0.5 MeV

Questions:

- What mechanism can naturally lead to such a small mass?
- What about the neutrino leads to this small mass?

Mass terms

- System dynamics described by a functional called the Lagrangian \mathcal{L}.
- \mathcal{L} obeys all symmetries of the system.
- Classical dynamics give stationary action: $S=\int d^{4} x \mathcal{L}$
- Quantum dynamics from path integral: $Z(J)=\int D \phi \exp \left(i\left(S[\phi]+\int d^{4} x J(x) \phi(x)\right)\right.$
- Mass term is non-derivative bi-linear term in Lagrangian - skirting Higgs mechanism.

Dirac Mass

- Dirac Equation: $\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi=0$ where $\gamma^{\mu}=\left\{\left(\begin{array}{ll}\mathbf{0}_{2} & \mathbf{1}_{2} \\ \mathbf{1}_{2} & \mathbf{0}_{2}\end{array}\right),\left(\begin{array}{cc}\mathbf{0}_{2} & -\sigma_{i} \\ \sigma_{i} & \mathbf{0}_{2}\end{array}\right)\right\}$
- Two-component spinor notation: $\psi=\left[\begin{array}{c}\xi_{\alpha, 1} \\ \xi_{2}^{\dagger \dot{\alpha}}\end{array}\right]$.
- Free Dirac mass Lagrangian ($i=$ flavour index:
$\mathcal{L}_{D}=i \xi_{\dot{\alpha}, 1}^{\dagger i} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \xi_{\alpha, 1 i}+i \xi_{\dot{\alpha}, 2 i}^{\dagger} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \xi_{\alpha, 2}^{i}-m_{D}^{i j}\left(\xi_{1 i}^{\alpha} \xi_{\alpha, 2 j}+\xi_{\dot{\alpha}, 1 i}^{\dagger} \xi_{2 j}^{\dagger \dot{\alpha}}\right)$,
- Write as mass matrix: $M=\left[\begin{array}{cc}\mathbf{0}_{N} & \boldsymbol{m}_{D} \\ \boldsymbol{m}_{D}^{\dagger} & \mathbf{0}_{N}\end{array}\right]$
- All massive Fermions have Dirac mass.

Majorana Mass

- Majorana Field: $\psi=\gamma_{0} C \psi^{*}, C=$ Unitary transformation.
- Majorana spinor field: $\psi=\left[\begin{array}{c}\xi_{\alpha} \\ \xi^{\dagger \dot{\alpha}}\end{array}\right]$.
- Free Majorana field Lagrangian:

$$
\begin{equation*}
\mathcal{L}_{M}=i \xi_{\dot{\alpha}}^{\dagger} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \xi_{\alpha}-\frac{m_{M}}{2}\left(\xi^{\alpha} \xi_{\alpha}+\xi_{\dot{\alpha}}^{\dagger} \xi^{\dot{\alpha}}\right) \tag{8}
\end{equation*}
$$

- Only connects a single Weyl spinor to itself - Dirac mass connects two Weyl spinors to each other.
- Weak force is $\mathcal{C P}$ violating and only involves LH Weyl spinors \rightarrow could give a right-handed neutrino a Majorana mass term.

Seesaw Mechanism

- Give Dirac mass term a natural mass scale through Higgs-Yukawa mechanism.
- Give right-handed neutrino a Majorana mass term on the scale of some new physics $m_{M} \gg m_{D}$.
- Gives mass matrix $\left[\begin{array}{cc}0 & m_{D} \\ m_{D} & m_{M}\end{array}\right]$.
- Mass eigenvalues given potential mass measurements:

$$
\begin{equation*}
\lambda_{ \pm}=\frac{m_{M} \pm m_{M} \sqrt{1+4 \frac{m_{D}^{2}}{m_{M}}}}{2} \tag{9}
\end{equation*}
$$

and thus $\lambda_{+} \approx m_{M}$ and $\lambda_{-} \approx-\frac{m_{D}^{2}}{m_{M}}$.

- Regular neutrinos dominated by light mass eigenstate. Heavy eigenstate gives sterile neutrinos.

Mixing Matrix

- Measurable quantities are given by Hermitian operators e.g. $M=M^{\dagger}$
- Diagonalised by unitary transformations $\hat{M}=U^{\dagger} M U$ where $U U^{\dagger}=1$.
- $N \times N$ unitary matrix has N^{2} components, $\frac{N(N-1)}{2}$ real d.o.f and $\frac{N(N+1)}{2}$ complex phases.
- Dirac mass: Can rephase $2 N-1$ complex phases.
- Majorana mass: Can rephase N complex phases.
- $\mathbf{U}=\mathbf{V K}$, where

$$
\mathbf{V}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{10}\\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{equation*}
\mathbf{K}=\operatorname{diag}\left(1, e^{i \phi_{1}}, e^{i\left(\phi_{2}+\delta\right)}\right) \tag{11}
\end{equation*}
$$

Testing Majorana Mass

Majorana Mass: Can explain small mass and provide additional $\mathcal{C P}$ violation as well as providing a candidate for part of dark matter contribution.

How do we test this? Neutrinoless double beta decay

Sterile neutrino is its own anti-particle allowing for lepton flavour violating interactions. Bounds on similar interaction: $T_{\frac{1}{2}}^{0 \nu}\left({ }^{130} \mathrm{Te}\right)>1.5 \times 10^{25} \mathrm{yrs}$

Phys. Rev. Lett. 120 no. 13, 132501 (2018)

```
Image By JabberWok2, Public Domain,
https://commons.wikimedia.org/w/
index.php?curid= 5776495
```


Project Aim

Aim: Consider the oscillation probability for a non-Hermitian quantum mechanics (QM) model of neutrinos with Dirac type mass.

Non-Hermtian Quantum Mechanics

Some of the assumptions of QM:

- Locality $=$ Causality \Rightarrow Physical
- Lorentz invariant $=$ special relativity \Rightarrow Physical
- Hermitian operators $=$ real e-vals + unitarity \Rightarrow both individually physical
Hermiticity is sufficient but not neccessary for this.
Real e-vals exist for matrices with $\mathcal{P} \mathcal{T}$-symmetry.
Call region where e-vals are real unbroken $\mathcal{P} \mathcal{T}$-symmetric regime.
Unitarity regained using $\mathcal{C}^{\prime} \mathcal{P} \mathcal{T}$ inner product.

Why consider non-Hermitian mass?

- No mechanism for small neutrino mass is verified.
- Non-Hermitian quantum mechanics field of growing interest in other areas, e.g. optics
- Neutrino physics could provide a testbed for understanding how non-Hermtian theories work in QFT.

The Model

We have a Lagrangian

$$
\begin{equation*}
\mathcal{L}=\nu^{\dagger} \mathbf{A} \nu-g \nu_{L}^{\dagger} \gamma^{0} W_{\mu} \gamma^{\mu} e_{L}-g e_{L}^{\dagger} \gamma^{0} \gamma^{\mu} W_{\mu} \nu_{L} \tag{12}
\end{equation*}
$$

where $\mathbf{A}=\left[\begin{array}{cc}0 & m-\mu \\ (m+\mu)^{\dagger} & 0\end{array}\right]$.
Matrix diagonalised by a similarity not a unitary transformation $\hat{\mathbf{A}}=\mathbf{V}^{-1} \mathbf{A} \mathbf{V}$,

$$
V=\left[\begin{array}{cc}
\mathbf{V}_{\mathbf{A}} & \mathbf{V}_{\mathbf{B}} \tag{13}\\
\mathbf{V}_{\mathbf{C}} & \mathbf{V}_{\mathbf{D}}
\end{array}\right], V^{-1}=\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{\mathbf{A}} & \boldsymbol{\Lambda}_{\mathbf{B}} \\
\boldsymbol{\Lambda}_{\mathbf{C}} & \boldsymbol{\Lambda}_{\mathbf{D}}
\end{array}\right] .
$$

Lagrangian can be rewritten in mass eigenbasis

$$
\begin{equation*}
\mathcal{L}=\left(\tilde{\nu^{\dagger}}\right) \hat{\mathbf{A}} \tilde{\nu}-g\left(\tilde{\nu^{\dagger}}\right)_{L} \mathbf{V}_{\mathbf{N}}{ }^{-\mathbf{1}} \gamma^{0} W_{\mu} \gamma^{\mu} e_{L}-g e_{L}^{\dagger} \gamma^{0} \gamma^{\mu} W_{\mu} \mathbf{V}_{\mathbf{N}} \tilde{\nu}_{L} \tag{14}
\end{equation*}
$$

Only left chiral components in interaction thus $\mathbf{V}_{\mathbf{A}}$ and $\boldsymbol{\Lambda}_{\mathbf{A}}$ used in interaction.

$\mathcal{P T}$ Symmetry

One generation:

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & m-\mu \tag{15}\\
m+\mu & 0
\end{array}\right]
$$

for now assume m, μ are real. Matrix eigenvalues

$$
\begin{equation*}
\lambda_{ \pm}= \pm \sqrt{m^{2}-\mu^{2}} \tag{16}
\end{equation*}
$$

Thus our reality condition is $|m| \geq|\mu|$.
This matrix diagonalises by $\hat{\mathbf{A}} \equiv \mathbf{V}_{\mathbf{1}}{ }^{\mathbf{1}} \mathbf{A} \mathbf{V}_{\mathbf{1}}$

$$
\mathbf{V}_{\mathbf{1}}=\left[\begin{array}{cc}
a & -\frac{\operatorname{det}\left(\mathbf{V}_{\mathbf{1}}\right)}{2 a}\left(\frac{m-\mu}{m+\mu}\right)^{\frac{1}{2}} \tag{17}\\
a\left(\frac{m-\mu}{m+\mu}\right)^{\frac{1}{2}} & \frac{\operatorname{det}\left(\mathbf{V}_{\mathbf{1}}\right)}{2 a}
\end{array}\right]
$$

$\mathcal{P} \mathcal{T}$ Symmetry

Consider enforcing $\mathcal{P} \mathcal{T}$ symmetry on the mass matrix.
Fermion fields transform according to:

$$
\begin{array}{lll}
\mathcal{P}: \quad \psi(x, t) \rightarrow \gamma^{0} \psi(-x, t), & \mathcal{T}: & \psi(x, t) \rightarrow i \gamma^{1} \gamma^{3} \psi^{*}(x,-t), \\
\bar{\psi}(x, t) \rightarrow \bar{\psi}(-x, t) \gamma^{0} & & \bar{\psi}(x, t) \rightarrow i \psi^{T}(x,-t) \gamma^{1} \gamma^{3} \gamma^{0},
\end{array}
$$

$\mathbf{A} \rightarrow \mathbf{A}^{*}$
Writing mass matrix as $\mathbf{A}=\mathbb{P}_{\mathrm{L}} \otimes\left(\mathbf{m}^{\dagger}+\boldsymbol{\mu}^{\dagger}\right)+\mathbb{P}_{\mathrm{R}} \otimes(\mathbf{m}-\boldsymbol{\mu})$ and using the property $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbf{1}$:

$$
\begin{array}{lll}
\mathcal{P T}: & \bar{\psi}(x, t) \mathbf{A} \psi(x, t) \\
& \rightarrow & \mathbb{P}_{\mathrm{L}} \otimes\left(\mathbf{m}^{\dagger}+\boldsymbol{\mu}^{\dagger}\right)+\mathbb{P}_{\mathrm{R}} \otimes(\mathbf{m}-\boldsymbol{\mu})
\end{array}
$$

i.e. $\mathcal{P} \mathcal{T}$-symmetry requires $\mathbf{m}=\mathbf{m}^{\dagger}$ and $\boldsymbol{\mu}=\boldsymbol{\mu}^{\dagger}$.

Mass eigenvalues

Define: $\mathbf{m}_{-}=(\mathbf{m}-\boldsymbol{\mu})$ and $\mathbf{m}_{+}=(\mathbf{m}+\boldsymbol{\mu})$, noting $\mathbf{m}_{ \pm}=\mathbf{m}_{ \pm}^{\dagger}$. Want to find mass matrix eigenvalues

$$
\operatorname{det}\left(\mathbf{A}-\lambda 1_{2 N}\right)=\operatorname{det}\left[\begin{array}{cc}
-\lambda 1_{N} & \mathbf{m}_{-}= \tag{18}\\
\mathbf{m}_{+} & -\lambda 1_{N}
\end{array}\right]=0
$$

Determinant of block matrix found using

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}-\lambda 1_{2 N}\right)=\operatorname{det}\left(-\lambda 1_{N}\right) \operatorname{det}\left(-\lambda 1_{N}-\mathbf{m}_{-}\left(-\lambda 1_{N}\right)^{-\mathbf{1}} \mathbf{m}_{+}\right) . \tag{19}
\end{equation*}
$$

Which results in a matrix $\mathbf{M}^{\mathbf{2}}=\mathbf{m}_{-} \mathbf{m}_{+}$obeying $\operatorname{det}\left(\mathbf{M}^{\mathbf{2}}-\lambda^{2} 1_{N}\right)=0$. Each mass eigenvalue will come in a pair with same magnitude and opposite sign

$$
\hat{\mathbf{A}}=\left[\begin{array}{cc}
\lambda & \mathbf{0}_{\mathbf{N}} \tag{20}\\
\mathbf{0}_{\mathbf{N}} & -\lambda
\end{array}\right]
$$

Unbroken $\mathcal{P} \mathcal{T}$-phase

Consider the reality conditions on our matrix, from characteristic equation

$$
\begin{equation*}
\lambda^{2}=\frac{\operatorname{tr}\left(\mathbf{M}^{\mathbf{2}}\right)}{2} \pm \sqrt{\frac{\operatorname{tr}\left(\mathbf{M}^{\mathbf{2}}\right)^{2}}{4}-\operatorname{det}\left(\mathbf{M}^{\mathbf{2}}\right)} \tag{21}
\end{equation*}
$$

Therefore we have two conditions, which can be written as either:
(1)

$$
\begin{equation*}
0<\operatorname{det}\left(\mathbf{M}^{\mathbf{2}}\right)<\frac{1}{4} \operatorname{tr}\left(\mathbf{M}^{\mathbf{2}}\right)^{2} \tag{22}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\operatorname{tr}\left(\mathbf{M}^{\mathbf{4}}\right)<\left(\operatorname{tr}\left(\mathbf{M}^{\mathbf{2}}\right)\right)^{2}<2 \operatorname{tr}\left(\mathbf{M}^{\mathbf{4}}\right) \tag{23}
\end{equation*}
$$

Since $\mathbf{m}_{ \pm}$are Hermitian $\operatorname{det}\left(\mathbf{M}^{\mathbf{2}}\right)$ and $\operatorname{tr}\left(\left(\mathbf{M}^{\mathbf{2}}\right)^{n}\right)$ are real.

Other bases

Consider diagonalising \mathbf{m}_{-}with similarity transformation U through Ω - similarity transformations do not change e-vals

$$
\boldsymbol{\Omega}=\left[\begin{array}{cc}
\mathbf{U} & \mathbf{0}_{\mathbf{N}} \tag{24}\\
\mathbf{0}_{\mathbf{N}} & \mathbf{U}
\end{array}\right]
$$

then can write

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{0}_{\mathbf{N}} & \hat{\mathbf{m}}_{-} \tag{25}\\
\mathbf{U}_{+}{ }^{\dagger} \hat{\mathbf{m}}_{+} \mathbf{U}_{+} & \mathbf{0}_{\mathbf{N}}
\end{array}\right],
$$

where U_{+}is mixing matrix between \mathbf{m}_{-}and \mathbf{m}_{+}bases.
Writing the eigenvalues of \mathbf{m}_{-}and \mathbf{m}_{+}as m_{-i} and m_{+i} respectively, then

$$
\begin{gather*}
\operatorname{tr}\left(\mathbf{M}^{\mathbf{2}}\right)=m_{-1} m_{+1}+m_{-2} m_{+2}-\left(m_{-1}-m_{-2}\right)\left(m_{+1}-m_{+2}\right) \mathrm{s}_{+}^{2} \tag{26}\\
\operatorname{det}\left(\mathbf{M}^{\mathbf{2}}\right)=m_{-1} m_{-2} m_{+1} m_{+2} \tag{27}
\end{gather*}
$$

Note that the complex phases have dropped outathe constraint.

Non-Hermitian Mass Matrix

Using form of $\hat{\mathbf{A}}$ and block structure of mixing matrix

$$
\left[\begin{array}{ll}
\mathbf{V}_{\mathbf{A}} & \mathbf{V}_{\mathbf{B}} \tag{28}\\
\mathbf{V}_{\mathbf{C}} & \mathbf{V}_{\mathbf{D}}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\lambda} & \mathbf{0}_{\mathbf{N}} \\
\mathbf{0}_{\mathbf{N}} & -\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0}_{\mathbf{N}} & \mathbf{m}_{-} \\
\mathbf{m}_{+} & \mathbf{0}_{\mathbf{N}}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{V}_{\mathbf{A}} & \mathbf{V}_{\mathbf{B}} \\
\mathbf{V}_{\mathbf{C}} & \mathbf{V}_{\mathbf{D}}
\end{array}\right]
$$

we find that the full mixing matrix must have the form

$$
\mathbf{V}_{\mathbf{N}}=\left[\begin{array}{cc}
\mathbf{V}_{\mathbf{A}} & \alpha \mathbf{V}_{\mathbf{A}} \tag{29}\\
\gamma\left(\mathbf{V}_{\mathbf{A}}{ }^{-\mathbf{1}}\right)^{\dagger} & -\alpha \gamma\left(\mathbf{V}_{\mathbf{A}}{ }^{-\mathbf{1}}\right)^{\dagger}
\end{array}\right] .
$$

with inverse

$$
\mathbf{V}_{\mathbf{N}}{ }^{-\mathbf{1}}=\left[\begin{array}{cc}
\boldsymbol{\Lambda}_{\mathbf{A}} & \boldsymbol{\Lambda}_{\mathbf{B}} \tag{30}\\
\boldsymbol{\Lambda}_{\mathbf{C}} & \boldsymbol{\Lambda}_{\mathbf{D}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} \mathbf{V}_{\mathbf{A}}^{-\mathbf{1}} & \frac{1}{2 \gamma} \mathbf{V}_{\mathbf{A}}{ }^{\dagger} \\
\frac{1}{2 \alpha} \mathbf{V}_{\mathbf{A}}^{-\mathbf{1}} & -\frac{1}{2 \alpha \gamma} \mathbf{V}_{\mathbf{A}}
\end{array}\right]
$$

Interaction Mixing Matrix

For the interaction we are particularly interested in $\mathbf{V}_{\mathbf{A}}$ where $\mathbf{V}_{\mathbf{A}} \boldsymbol{\lambda}=\boldsymbol{M}^{2} \mathbf{V}_{\mathbf{A}}$. For the two-flavour case, defining

$$
\begin{align*}
& \mathbf{V}_{\mathbf{A}} \equiv\left[\begin{array}{cc}
\left|V_{A 11}\right| \mathrm{e}^{i a_{11}} & V_{A 12} \\
V_{A 21} & \left|V_{A 22}\right| \mathrm{e}^{i a_{22}}
\end{array}\right] \quad \text { and } \quad \mathbf{M}^{2} \equiv\left[\begin{array}{ll}
M_{11}^{2} & M_{12}^{2} \\
M_{21}^{2} & M_{22}^{2}
\end{array}\right] \tag{31}\\
& M_{11}^{2}=\operatorname{sgn}\left(M_{11}^{2}\right)\left|M_{11}^{2}\right|, \quad M_{12}^{2}=\operatorname{sgn}\left(M_{12}^{2}\right)\left|M_{12}^{2}\right| \mathrm{e}^{-i\left(\phi_{+1}-\phi_{+2}\right)}, \\
& M_{22}^{2}=\operatorname{sgn}\left(M_{22}^{2}\right)\left|M_{22}^{2}\right|, \quad M_{21}^{2}=\operatorname{sgn}\left(M_{21}^{2}\right)\left|M_{21}^{2}\right| \mathrm{e}^{i\left(\phi_{+1}-\phi_{+2}\right)}, \tag{32}
\end{align*}
$$

Resulting in mixing matrx

$$
\mathbf{V}_{\mathbf{A}}=\left[\begin{array}{cc}
\left|V_{A 11}\right| \mathrm{e}^{i a_{11}} & \operatorname{sgn}\left(V_{A 12}\right)\left|V_{A 12}\right| \mathrm{e}^{i\left(a_{22}-\left(\phi_{1}-\phi_{2}\right)\right)} \\
\operatorname{sgn}\left(V_{A 21}\right)\left|V_{A 21}\right| \mathrm{e}^{i\left(a_{11}+\phi_{1}-\phi_{2}\right)} & \left|V_{A 22}\right| \mathrm{e}^{i a_{22}} \tag{33}
\end{array}\right]
$$

Rephasing

Unbroken $\mathcal{P} \mathcal{T}$ symmetry gave no additional constraints on complex phases \Rightarrow phases can be arbitrarily rephased as in the Dirac mass case In general we have the flavour structure

$$
\left(\begin{array}{cc}
e^{-i \phi_{e 1}} & 0 \tag{34}\\
0 & e^{-i \phi_{e 2}}
\end{array}\right)\left(\begin{array}{ll}
\left|V_{11}\right| e^{i \phi_{11}} & \left|V_{12}\right| e^{i \phi_{12}} \\
\left|V_{21}\right| e^{i \phi_{21}} & \left|V_{22}\right| e^{i \phi_{22}}
\end{array}\right)\left(\begin{array}{cc}
e^{i \phi_{\nu 1}} & 0 \\
0 & e^{i \phi_{\nu 2}}
\end{array}\right) .
$$

We can eliminate three out of four complex phases from the mixing matrix by taking

$$
\begin{equation*}
\phi_{e 1}=\phi_{11}+\phi_{\nu 1}, \quad \phi_{e 2}=\phi_{22}+\phi_{\nu 2}, \quad \phi_{\nu 1}-\phi_{\nu 2}=\phi_{22}-\phi_{21} \tag{35a}
\end{equation*}
$$

leading to

$$
\left(\begin{array}{cc}
\left|V_{11}\right| & \left|V_{12}\right| e^{i \phi} \tag{36}\\
\left|V_{21}\right| & \left|V_{22}\right|
\end{array}\right)
$$

where

$$
\begin{equation*}
\phi=\phi_{12}+\phi_{21}-\phi_{11}-\phi_{22}=0 \text { in our case.. } \tag{37}
\end{equation*}
$$

What about oscillation probability?

Problem: Simple calculations of oscillation probability are leading to unphysical probabilities.

Solution: Use complementary bases to span eigenspace.

Scalar Model 1

Define flavour kets

$$
\begin{equation*}
\mathcal{L}=\partial_{\alpha} \tilde{\Phi}^{\dagger} \partial^{\alpha} \Phi-\tilde{\Phi}^{\dagger} M^{2} \Phi \tag{38}
\end{equation*}
$$

where $\Phi=\left[\begin{array}{l}\phi_{1} \\ \phi_{2}\end{array}\right]$ with ϕ_{1} a scalar and ϕ_{2} a pseudo-scalar.
We then have $\mathcal{P} \mathcal{T}$-symmetric mass matrix

$$
M^{2}=\left[\begin{array}{cc}
m_{1}^{2} & \mu^{2} \tag{39}\\
-\mu^{2} & m_{2}^{2}
\end{array}\right] \neq\left(M^{2}\right)^{\dagger}
$$

with eigenvalues

$$
\begin{equation*}
m_{ \pm}^{2}=\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right) \pm \frac{1}{2} \sqrt{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}-4 \mu^{4}} \tag{40}
\end{equation*}
$$

and energy eigenvectors

$$
\mathbf{e}_{+}=N\left[\begin{array}{c}
\eta \tag{41a}\\
-1+\sqrt{1-\eta^{2}}
\end{array}\right], \mathbf{e}_{-}=N\left[\begin{array}{c}
-1+\sqrt{1-\eta^{2}} \\
\eta
\end{array}\right] .
$$

Scalar Model 2

We find flavour kets

$$
\begin{align*}
\left|\phi_{1, \vec{p}}(x)\right\rangle & =\cosh (\theta) \xi_{+, \vec{p}}(x) \mathbf{e}_{+}+\sinh (\theta) \xi_{-, \vec{p}}(x) \mathbf{e}_{-}, \tag{42a}\\
\left|\phi_{2, \vec{p}}(x)\right\rangle & =\cosh (\theta) \xi_{-, \vec{p}}(x) \mathbf{e}_{-}+\sinh (\theta) \xi_{+, \vec{p}}(x) \mathbf{e}_{+}, \tag{42b}
\end{align*}
$$

where $\theta=\frac{1}{2} \operatorname{arctanh}(\eta), \eta=\frac{2 \mu^{2}}{\left|m_{1}^{2}-m_{2}^{2}\right|}$.
$\mathcal{C}^{\prime \mathcal{} \mathcal{T}}$ conjugate states are given by $\left\langle\tilde{\phi}_{i}(t)\right|$ for the flavour states and \mathbf{e}^{\S} for the energy states, we have

$$
\begin{equation*}
\mathbf{e}_{ \pm}^{\S} \mathbf{e}_{ \pm}=1, \quad \mathbf{e}_{ \pm}^{\S} \mathbf{e}_{\mp}=0 \tag{43}
\end{equation*}
$$

but

$$
\left\langle\phi_{i}^{\mathcal{C}^{\prime} \mathcal{P} \mathcal{T}}(t) \mid \phi_{j}(t)\right\rangle= \begin{cases}\cosh (2 \theta), & i=j \tag{44}\\ \sinh (2 \theta), & i \neq j\end{cases}
$$

Scalar Model 3

Hamiltonian is \mathcal{C}^{\prime} symmetric \Rightarrow could span the space with either $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ or $\left\{\left|\phi_{1}^{\mathcal{C}^{\prime}}\right\rangle,\left|\phi_{2}\right\rangle\right\}$.
We find

$$
\begin{align*}
& \left\langle\phi_{1}^{\mathcal{C}^{\prime} \mathcal{P} \mathcal{T}}(t) \mid \phi_{1}(t)\right\rangle=1, \quad\left\langle\phi_{2}^{\mathcal{P} \mathcal{T}}(t) \mid \phi_{2}^{\mathcal{C}^{\prime}}(t)\right\rangle=1, \tag{45a}\\
& \left\langle\phi_{1}^{\mathcal{C}^{\prime} \mathcal{P} \mathcal{T}}(t) \mid \phi_{2}^{\mathcal{C}^{\prime}}(t)\right\rangle=0, \quad\left\langle\phi_{2}^{\mathcal{P} \mathcal{T}}(t) \mid \phi_{1}(t)\right\rangle=0, \tag{45b}
\end{align*}
$$

which results in probabilities

$$
\begin{align*}
& \mathbb{P}_{1(2) \rightarrow 1(2)}\left(t, t_{0}\right)=1-\eta^{2} \sin ^{2}[\Delta \omega \Delta t / 2] \tag{46a}\\
& \mathbb{P}_{1(2) \rightarrow 2(1)}\left(t, t_{0}\right)=\eta^{2} \sin ^{2}[\Delta \omega \Delta t / 2] \tag{46b}
\end{align*}
$$

where $\Delta \omega=\omega_{1}-\omega_{2}$ and $\Delta t=t-t_{0}$.

Thank You for Your Attention!

