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The Framework
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Microfinance

• Institutions that provide in small loan amounts, and other financial services
to low-income individuals
• They are mostly established in developing countries
• Target is small low-income individuals, small-scale businesses
• Low individuals especially carry high risk of default
• Microfinance expose themselves to high risk of bankruptcy, and hence

tend to charge astronomical interest risk to counteract such risk
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Problems and objectives

• Traditional modeling of loan defaults looks at whether someone will default
at term of repayments; we focus on repayments dynamics throughout the
loan duration [1]
• Identify at the local levels factors which may have higher impact on loan

delinquency; i.e. that standard models do not take into consideration
• Minimize the number of non performing loans (NPLs) since microfinance

institution are heavily regulated by central banks in this regard - which is
directly related to reducing loan delinquency
• Estimate with an acceptable level of accuracy transition probabilities from

state i at time t − 1 to state j at time t.
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The data

• 8, 303 observation
• 1, 716 customers
• Covariates information

• Loan information : Principal, interest, duration of repayment, frequency of
repayment, group or individual, branch, type of loan, balance

• macroeconomic variables (lagged) : consumer price index, foreign exchange
rate, Bank of Ghana lending rate, inflation

• Social variables : pertaining to the Ghana’s socio-economic settings
• Demographics : Age of customer, marital status, gender
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Some insights from the data
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Our definition of delinquency

• Account i is in delinquency when the cumulative amount repaid by this
account at time t less than 82% of the cumulated agreed amount to repay
at such time t; in this situation we consider a 2 state model
• In a more dynamic setting where we do not look at cumulative repayments,

we define 2 states which define the level of delinquency of account i. Let’s
consider A(t) to be the amount account i has to repay at time t, and xi(t) to
be the amount account repaid at time t by this account, then
• Account i is in state 3 if 0 ≤ xi(t) < 0.5A(t)
• Account i is in state 2 if 0.5A(t) ≤ xi(t) ≤ 0.9A(t)
• Account i is in state 1 if xi(t) > 0.9A(t)

• We consider no absorbing state
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The fixed effect model
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Setup of the model

• Consider a portfolio of accounts i associated with the process
yi = {yi,hj(t), t ≥ 0}(h,j)∈S , S = {(h, j) , h 6= j}
• S is the set of all possible transition-types (h, j), h 6= j.
• We assume that yi,hj(t) follows a Bernoulli distribution and is defined as

yi,hj(t) =

{
1 if account i in state j at time t | account i was in state h at time t − 1,
0 if account i in state h at time t | account i was in state h at time t − 1.

• For cases where an account i makes a transition h→ j∗, j∗ /∈ {h, j}, we
assume the process is interval-censored and non-information [2, 1]
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Time-dependent transition probabilities

• We model the transition probabilities directly using the logit link function

q(f (x)) = 1/
(

1 + e−f (x)
)

• The time dependent transition probability is then given as{
P
(
yi,hj(t) = 1

)
= qi,hj(t)

P
(
yi,hj(t) = 0

)
= 1− qi,hj(t)

(1)
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Time-dependent transition probabilities (cont’d)

• More specifically, qi,ht(t) is time-dependent and is defined as

qi,hj(t) =
1

1 + exp(αhj(t) + βhj(t)TXi,hj(t))
, (2)

where
• βhj is a vector of fixed-effect coefficients to estimate,
• αhj(t) =

∑c
r=1 Br(t)ϕhj,r, where is a Br is a B-spline basis function at time t,

• ϕhj = (ϕhj,1, ..., ϕhj,c) is a vector of B-spline coefficients to estimate,
• Xi,hj(t) is a vector of possibly time-dependent covariates.
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Graphical representation 2 states recurrent model
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Log-likelihood function and estimation parameters

• To estimate the parameters γhj =
(
βhj,ϕhj

)
, we write the

transition-dependent likelihood function as a product of Bernoulli PMF’s
stratified on event times

L(γhj) =
∏

t∈I⊂N

∏
i∈Rhj(t)

qi,hj(t)yi,hj(t)
(
1− qi,hj(t)

)(1−yi,hj(t)) , (3)

where (h, j) ∈ S, and Rhj(t) is the set of accounts at risk of transition (h, j)
before time t.
• To reduce chances of numerical overflow in the estimation of γhj, we deal

with the following log-likelihood instead

l(γhj) =
∑

t∈I⊂N

∑
i∈Rhj(t)

yi,hj(t) log(qi,hj(t)) + (1− yi,hj(t)) log
(
1− qi,hj(t)

)
(4)
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Log-likelihood function and estimation parameters (cont’d)

• The vector estimate of (3) is given by

γ̂hj = argmin
γhj

(
−l(γhj)

)
. (5)

• We use the efficient Python optimization library Scipy [3] to minimize (5).
• Next, our aim is account for the effect of unobserved covariates and model

the possible dependence among account i’s repayments
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The random effects (frailties) model
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Setting up the complete data

• To model for the effects of unobserved covariates, we assume that we are
dealing with a incomplete data problem
• We consider the complete data vector (yT ,uT)T with y = (yi)i∈{1,...,n}, and

u = (ui)i∈{1,...,n} representing the vector of frailty vectors,

• ui =
(
ui,hj
)
(h,j)∈S is the frailty vector associated to customer i,

• We consider y ⊥⊥ u, ui ⊥⊥ uj for i 6= j, as well as ui,hj ⊥⊥ ui,h∗j∗ for
(h, j) 6= (h∗, j∗), so we assume the framework of shared frailties [4] among
event of type (h, j) for account i
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Complete data likelihood for account i (cont’d)

• We write the time dependent transition probability as

qi,hj(t) =
1

1 + exp
(
αhj(t) + βhj(t)TXi,hj(t) + ui,hj

) , (6)

where all similar terms are defined as in the fixed effects model.
• The new vector of parameters to estimate is ξhj =

(
ϕhj,βhj, φhj

)
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Complete data likelihood for account i (cont’d)

• The contribution to the joint transition-dependent likelihood from an
account i at time t can be written as

Li = L(yi,hj(t),ui,hj)(ξhj) = gui,hj(ξhj)
∏

t∈I⊂N
i∈Rhj(t)

Lyi,hj(t)|ui,hj(ξhj) (7)

where L(yi,hj(t)|ui,hj)(ξhj) is the pmf of the Bernoulli with p = qi,hj(t) and gui is
the univariate Gaussian density

gui(φhj) = gui(ξhj) =

exp

(
−1

2
u2

i,hj
φhj

)
√
(2πφhj)

. (8)
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Complete data likelihood for account i when dim(ui) > 1
(cont’d)

• The contribution to the joint transition-dependent likelihood from an
account i at time t can be written as

Li = L(yi,ui)(ξ) = gui(ξ)
∏

(h,j)∈S

∏
t∈I⊂N

i∈Rhj(t)

Lyi,hj(t)|ui,hj(ξhj) (9)

where L(yi,hj|ui,hj)(ξhj) is defined as before and gui is the multivariate
Gaussian density with diagonal covariance matrix.
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The complete data likelihood

• The contribution of each account to the final transition-depend
log-likelihood can be expressed as

l(ξhj) =
∑

i

log(Li(ξhj)) (10)
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Estimation of parameters

• ξhj is estimated by integrating out the effects u from (10), i.e.

EU|ξhj

[
l
(
ξhj | y,u

)]
=

∫
Rn

l
(
ξhj | y,u

)
gU|ξhj

(φn×n)du (11)

where n is the number of accounts, φn×n is a diagonal covariance matrix,
and gU|ξhj

is the multivariate Gaussian conditional density on ξhj.
• (11) is not available in closed form, so we need quadrature techniques [3]

or Monte Carlo techniques [5].
• ξ̂hj can then be estimated by minimizing

argmin
ξhj

(−EU|ξhj

[
l
(
ξhj | y,u

)]
), (12)
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Goodness of fit
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Aggregated deviance residuals

• Since predictions are made monthly and are dependent on the risk set
Rhj(t), we aggregate the deviance residuals accordingly and define he
deviance residual at time t as

Dhj(t) = sign(Ohj(t)− Ehj(t))
(

2
(

Ohj(t) log
(

Ohj(t)
Ehj(t)

)
+ (Nhj(t)− Ohj(t)) log

(
Nhj(t)− Ohj(t)
Nhj(t)− Ehj(t)

)))0.5

where Ohj(t) and Ehj(t) =
∑

i∈Rhj(t) q̂i,hj(t) are the total number of observed transitions and
total predicted number of transitions from state h at time t − 1 to state j at time t
respectively.
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Goodness of fit of fixed-effects model (cont’d)
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Statistical significance of parameters in fixed-effects
model
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p-values computed based on 2, 000 resamples of training data

Covariates (1, 2) p-value (1, 2)

Main branch 0.0
Age 0.0
Lagged CPI 0.0
Lagged FX 0.0
Lagged OI 0.009018
Long vacation 0.0
Eid 0.259519
Gender 0.145291
Group 0.0
Monthly 0.01002
Married 0.001002
Interest rate 0.0
Cub. Spline coef. 1 0.0
Cub. Spline coef. 2 0.403808
Cub. Spline coef. 3 0.0

Covariates (2, 1) p-value (2, 1)

Main branch 0.828657
Age 0.002004
Lagged CPI 0.674349
Lagged FX 0.0
Lagged OI 0.019038
Long vacation 0.599198
Eid 0.0
Gender 0.213427
Group 0.343687
Monthly 0.002004
Married 0.189379
Interest rate 0.001002
Cub. Spline coef. 1 0.0
Cub. Spline coef. 2 0.003006
Cub. Spline coef. 3 0.0
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Predictions
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Accuracy of predictions for fixed effect model

• For accuracy we rely on the cumulative matrix

P(t1, t2) =
t2∏

t=t1+1

P(t) (13)

• The model yields on average an accuracy of 60% or more
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Impact of the frailties on understanding customers
behaviour
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Effect of frailties on an account i

Covariates Estimate

Main branch 0.352360
Age 1.651142
Lagged CPI -6.569061
Lagged FX -1.704136
Lagged OI 3.873440
Long vacation 3.838679
Eid 2.336820
Gender 0.818518
Group 0.653378
Monthly 0.848854
Married -0.159340
interest rate 1.238705
Cub. Spline coef. 1 0.167450
Cub. Spline coef. 2 0.011688
Cub. Spline coef. 3 0.887709
φ12 0.223239
φ21 0.04790632



What’s next?

• Model the effects of time-dependent frailties on delinquency
• Model the optimal interest rates the company should assign to customer i

at loan disbursement
• Estimate the probability of default of loan groups under dependency

settings
• Application of our models to company data to set up and manage their

loan portfolio over a period of time as case study.
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Thank you
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