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What is drying process ?

Defintion

Drying is a mass transfer process consisting of the removal of water or another
solvent by evaporation from a solid, semi-solid or liquid.




Drying applications

The drying process can help lower costs of transportatlon and storage by removing
unnecessary liquid volume in a material. It is used in :

@ Food science and vegetables

@ Industry (e.g., drying wood)

@ Pharmacy (e.g., drying vaccines)
@ Agriculture (e.g., grain drying)




Grain Drying Process!

Grain drying is the process of drying grain to prevent spoilage during storage.
It can be modeled by a couple (or not) between :

© The heat transfer equation
© The mass transfer equation.




Numerical methods

The grain drying process is numerically solved using the following approach :

© Finite difference method ;
@ Finite element method ;

© Volume element method;




Disadvantages

However these methods present some disadvantages :

© Meshing almost impossible for complex study areas;
© Discretization too difficult for high dimensional PDEs;
© Stability study;

@ Consistency study;

Q ..




Towards Scientific Machine Learning (SciML) !

© SciML is multidisciplinary and draws on expertise from applied and
computational mathematics, computer science, and physical laws.

@ It is a data-driven scientific discovery method that relies on machine learning
and scientific computing tools.

© PINNSs is one example.




Benefits

© Use of a deep neural network ;

@ Collection of a large amount of data (Big Data);
© Regularity of the approaching solution;;

@ Automatic differentiation (e.g., Backpropagation)
© Free mesh




Thinking about the project !

This project relies on/involves :

@ agricultural research engineering (e.g., Grain drying process),
@ and applied mathematics problem (e.g., PDEs).




Research question

Research question

The main research question of this thesis is the following :

How can we approach the grain drying problem, together with associated storage,
with scientific machine learning (SciML), in particular PINNs? J
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Underlying abstract grain drying process

To develop such a novel PINNs-based model for grain drying, it is necessary to
have a fundamental understanding of :

@ Type of grain (e.g, peanut, maize, rice, soya beans, coffee);
@ Grain's geometry (e.g, cylindrical);

@ Drying method (e.g, solar drying, hot-air drying) ;

@ Type of storage (e.g., Deep-bed Dryer);

@ Heat and Mass transfert equations between grain and air;
Q@ Parameters affecting drying process.




Research Objectives

The main research objectives of this thesis are listed below :

@ Choose of a grain which should be relevant in Africa (Modeling).
@ Implement PINNs for this problem.

© Convergence analysis for PINNs.

@ Real world application




Contribution

© Motivation : No PINNS-based grain drying
© Contribution to future research in drying applications

© Comprehensive theoretical and computational investigations of PINNs




Initial Research Project (Mathematical model)

Below is the system of semilinear parabolic equations to describe the grain drying
process :
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Initial Research Project (Variables)

where :

T, is the air temperature,

Tg is the grain temperature,

W is the air humidity,

M is the grain moisture content,

« is the grain surface,

h; are heat transfer coefficients,

Cpg and Cp, are the specific heat of grain and air,
pg and p, are the specific mass of grain and air,
¢ is the porosity,

V, is the air velocity,

w(Tg) is the biological heat,
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Dy, and Dy, are diffusivities.




Initial Research Project (Initial conditions)

The system (1) is equipped with the following initial conditions :

and boundary conditions :



Initial Research Project (Boundary conditions)
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Problem Description

Problem :

We consider the Boundary Initial Value Problem (BIVP) : Find the unknown
function u = [T,, Tg, W, M] such that the systems (1) — (3) are satisfied.

The main aim is to approximate the classical solution u of this problem with
PINNs.




PINNs approach (stepl)

Residuals functions

Before we proceed, let us introduce the residuals Rpge, Rini and Rpoy by :

Rode[u](x,r,t) = Di(x,t) + Da(x,r, t) + D3(x, t) + Da(x, t)
Rinilu](x,r,0) = h(x,0)+ h(x,r,0)+ k(x,0) + l4(x, 0)
Rooult](x,r,t) = [B1+ Ba](x,t) + [Bs + Ba](x, t)

+[Bs + Bs](x, t) + [B7 + Bg](x, r, t)



PINNs approach (step2)

where
o {D,-} represents the four equations in order in the system (1),
© {/;} represents the four equations in order in the system (2),
© and {B;} represents the eight equations in order in the system (3).

Using these residuals, one measures how well a function u satisfies our BIVP. Note
that the exact solution v, will satisfy :

dee[ue] = Rini[ue] = Rbou[ue] = 0. (5)



PINNs approach (step3)

Our goal is to approximate the solution u of our BIVP with deep neural networks
ug, where 6 represents the neural network’s parameters. To this end, we have the
following minimization problem :

mein L(Q) = Hdee[Ug](X,r, f)”i-i-||R,'ni[U6](Xar70)H§+||Rbou[U9](X7 r t)”i (6)

This formula (6) is called the generalization error. It involves integrals (due to the
Lp-norm) and can therefore not be directly minimized in practice.



PINNs approach (step4)

Since the training is done on these sampling points {{(xs, rs, ts)}tl} for
s =1,j, k, equation (6) is replaced by the empirical loss function (e.g., training
error) :

N;
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Schematic diagram of PINNs

Figure:



Expected results

@ A model that can be interpreted with a level of confidence.

@ Obtain certifiable methods i.e., we want to be able to stick a label on the
solution saying that it is going to be accurate for all reasonable inputs.

© Good agreement with the experiment.



Further works

@ Sampling methods (e.g., numerical integration)
@ Approximation theory

© Data-driven Loss function

@ Optimisation (by using ML tools)
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End

Thanks for listening !
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