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Healthcare challenge

Cellular spheroids

• 2D in vitro systems used to assess hepatotoxicity tend to lack physiological and 
xenobiotic competence. 

• 3D spheroid cultures of hepatocytes in vitro are an improved platform to recapitulate 
the in vivo liver microarchitecture and function compared with 2D cultures. 

Kyffin J.A., Sharma P., Leedale J., Colley H.E., Murdoch C., Mistry P. and Webb S.D. (2018). Impact of cell types and culture methods 
on the functionality of in vitro liver systems-A review of cell systems for hepatotoxicity assessment. Toxicol. In Vitro 48: 262-275.



Microscale: drug diffusion & transport kinetics
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Inside cell: 
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Effects of membrane barrier
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Effects of carrier-mediated transport

• Only small, lipophilic drugs enter 
the cell via diffusion directly 
through membrane. 

• Other drugs use carrier proteins.

• Depend on carrier protein (or transporter) availability and properties of 
the transporter and this process can become saturated.
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Effects of carrier-mediated transport

Wood, B. D. and S. Whitaker, 1998. Diffusion and reaction 
in biofilms. Chemical Engineering Science 53: 397-425.
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What if 𝛼1 < 1?
Active drug transport against 
concentration gradient. 



Macroscale: hepatocyte spheroids

Craig Murdoch, Helen E. Colley,  
University of Sheffield

TEM – small intercellular gaps



Simulate multiscale model
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Effect of permeability on spatial distribution
Steady state distribution

LogD7.4=5 LogD7.4=3 LogD7.4=1



Concentration after ~3.5 min

Uptake of fixed bolus of drug

LogD7.4=6 LogD7.4=4 LogD7.4=1



Drug uptake

A bit absorbent, LogD7.4=4

Very absorbent cells, LogD7.4=6

Nearly impermeable, LogD7.4=1

13% increase

1250% increase

Total drug uptake

219% increase

Concentration after ~3.5 min



Homogenized sphere



Music and mathematics interrogate 
brain tumour dissemination 

Marianne Scott
Violaine See, Raphael Levy, Rachel Bearon, Emily Howard, Dave Mason

"Going into a project thinking like a biologist, keeps you focussed on the 
important biological questions. Bringing a mathematician on-board has helped 
us think about new ways to ask questions of our system."

Kamila Zychaluk



The Multicellular Tumour Spheroid Model 

Phung et al. (2011) J Cancer  2: 507-514

Collaboration with Violaine See & Dave Mason



Single trajectory analysis

Rosalie Richards



Persistent random walk model for cell motility 

M. SCOTT, K. ZYCHALUK AND R. N. BEARON (2021), Math. Medicine & Biol. 
A mathematical framework for modelling 3D cell motility; applications to Glioblastoma cell migration

v Cell velocity

P Correlation time

S RMS speed

D=S2P/n Spatial Diffusion in n
dimensions





Statistical properties (in-silico), S=1; P=1  

t

Velocity autocorrelation (P=1)

δt



Statistical properties (experimental) (S=?, P =?):

(a) S=27microns/h [25.3-29.3] P=0.086h [0.070,0.113]

(b) S=27microns/h [26.0-27.9] P=0.079h [0.068-0.095]

(c) S=28microns/h [27.4-28.7] P=0.098h [0.080-0.124]

Outliers?





https://www.youtube.com/watch?source_ve_
path=Mjg2NjQsMTY0NTA2&feature=emb_shar
e&v=0_obEP1Nl4U



Mathematical modelling of trans-

oromucosal drug permeation
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In silico models

Application

Diffusion
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The dynamics of swimming bugs 

Purcell 1976 ‘Life at Low Reynolds number’

Lauga 2016,`Bacterial Hydrodynamics’

L
U

Fluid density ρ
Fluid viscosityμ

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
~𝑅 =

𝜌𝑈𝐿

𝜇

Bacteria in water
𝑈~30 𝑚𝑖𝑐𝑟𝑜𝑛𝑠/𝑠
𝐿~1 𝑚𝑖𝑐𝑟𝑜𝑛
𝑅~3 x 10−5

Cara Neal:
Swimming in complex fluids



Trapping of swimmers in high shear

Illustrative IBM simulation of 
random walk of ellipsoids in 
periodic Poiseuille flow

Red line: histogram of cell position in shear

Smitha Maretvadakethope 
Shape, shear, search & strife; mathematical 
models of bacteria



Closing comments

• 3D micro-tissues provide fantastic data for developing mathematical 
models

• Data can be used to parameterise and test models

• Validated models can then be used to extrapolate from 3D micro-tissue 
to more complex 3D geometries/PKPB models 

• Examine effects of perturbation (e.g. drug dosing, mutants)

• Combine rigorous statistical methodology to parameterise & test 
models, leading to better understanding

• Follow your interests
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