Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o	o	0
000000000	0000	000000000000000

Short time existence and smoothness of the nonlocal mean curvature flow of graphs

Anoumou Attiogbé African Institute for Mathematical Sciences AIMS-Senegal (Joint work with M. M. Fall and T. Weth)

AIMS-UoL Joint Postgraduate Conference University of Liverpool: from 12^{th} to 16^{th} June 2023

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0	o	0
000000000	0000	0000000000000000

Short time existence and smoothness of the nonlocal mean curvature flow of graphs

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
00000000	0 0000	0 000000000000000

- 2 Nonlocal mean curvature
- 3 Short time existence and smoothness of the nonlocal mean curvature flow of graphs

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o ●oooooooo	0 0000	0 000000000000000
Mean curvature flow		

- W.W. Mullins (1956). Two-dimensional motion of idealized grain boundaries. Journal of Applied Physics, 27(8), 900-904.
- Progrès ► 1980.
- K. A. Brakke, (1978). The motion of a surface by its mean curvature, in Math. Notes, Princeton Univ. Press, Princeton, NJ.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o o●ooooooo	o 0000	0 000000000000000
Mean curvature flow		

- Differential geometry,
- Partial diefferential equations,
- Stochastic control,
- Mathematical finance ...

Some applications

- Industrial transformation of metals,
- Crystal growth,
- Image processing . . .

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 00●000000	0 0000	0 000000000000000
Mean curvature flow		

Definition 1.1

We will say that the boundary of E_0 is moving by mean curvature if $\{E_t\}_{0 \le t \le T}$ of \mathbb{R}^N such that

$$\begin{cases} \partial_t X(t) \cdot \nu(X(t)) = -H(X(t)), \forall X(t) \in \partial E_t, \ t \in [0, T] \\ X(0) = X_0 \in \partial E_0, \end{cases}$$
(1)

where

- $\nu(X(t))$ is the unit normal vector to ∂E_t at X(t),
- ▶ H(X(t)) is the mean curvature of ∂E_t at X(t), and
- $v := \partial_t X(t) \cdot \nu(X(t))$ is the normal velocity at X(t).

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 000●00000	o 0000	0 000000000000000
Mean curvature flow		

In two dimensional case \implies curve shortening flow.

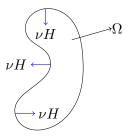


Figure: A domain Ω with its mean curvature vector νH .

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 0000●0000	0 0000	0 000000000000000
Mean curvature flow		

Formation of singularities

Example 1.1 (Evolution of the circle S^1 (N = 2))

The evolution of the circle $S_{r(t)}^1$ is given by $r(t) = \sqrt{r_0^2 - 2t}$, where $t \in (-\infty, \frac{r_0^2}{2})$.

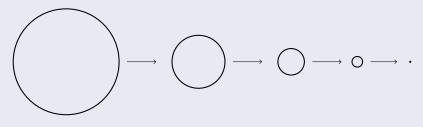


Figure: Shrinking circle $S^1 \subset \mathbb{R}^2$.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 00000●000	0 0000	0 000000000000000
Mean curvature flow		

Formation of singularities

Example 1.2 (Evolution of the sphere S^2 (N = 3))

Similarly, the evolution of the sphere $S_{r(t)}^2$ is given by $r(t) = \sqrt{r_0^2 - 4t}$, where $t \in (-\infty, \frac{r_0^2}{4})$.

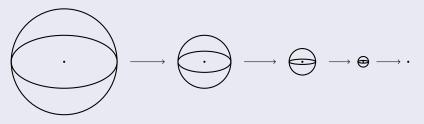


Figure: Shrinking sphere $S^2 \subset \mathbb{R}^3$.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 000000●00	0 0000	o oooooooooooooo
Mean curvature flow		

Formation of singularities

- ► Convex closed hypersurfaces, Gerhard Huisken (N ≥ 3) and Gage Michael and S. Richard Hamilton (N = 2).
- Nonconvex hypersurfaces, M. A. Grayson, (1987). The heat equation shrinks embedded plane curves to round points. Journal of Differential geometry, 26(2), 285-314.
- Compact hypersurfaces, R. Alessandroni, (2008). Introduction to mean curvature flow. Séminaire de théorie spectrale et géométrie, 27, 1-9.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 0000000●0	0 0000	0 000000000000000
Mean curvature flow		

Evolution of graphs

where

For $\forall t \geq 0$, $\partial E_t = \operatorname{graph}(u(t, \cdot))$, $u(t, \cdot) : \Omega \subseteq \mathbb{R}^{N-1} \to \mathbb{R}$. Then,

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right), \quad u(0, \cdot) = u_0$$

$$H = \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right).$$
(2)

Theorem 1.1 (Klaus Ecker and Gerhard Huisken)

Let ∂E_0 be a locally Lipschitz continuous graph. Then, the initial value problem (2) has a smooth solution ∂E_t for all t > 0. Moreover, each ∂E_t is a graph.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
 00000000●	0 0000	0 000000000000000
Mean curvature flow		

Evolution of graphs

Example 1.3 (Grim reaper)

For N = 2, $u(t, \cdot) : (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ given by $u(t, x) = t - \log(\cos(x))$ is an explicit solution of the equation (2).

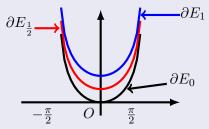


Figure: Evolution of the graph of the function $u(t, x) = t - \log(\cos(x))$.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	0000	0 000000000000000

3 Short time existence and smoothness of the nonlocal mean curvature flow of graphs

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o 000000000	o ●000	0 000000000000000
Nonlocal mean curvature		

Nonlocal mean curvature

 $M \subset \mathbb{R}^N$ is a hypersurface of class $C^{1,\beta}$ for some $\beta > s$. $\forall x \in M$

$$H^{s}(x) = \frac{2}{s} \int_{M} \frac{(y-x) \cdot \nu_{M}(y)}{|y-x|^{N+s}} d\sigma_{M}(y), \quad s \in (0,1).$$
(3)

The integral in (3) is absolutely convergent in the Lebesgue sense if

$$\int_M \frac{1}{(1+|y|)^{N+s-1}} d\sigma_M(y) < \infty.$$
(4)

Mean cui	rvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 0000000		o o●oo	0 000000000000000
Nonlocal mean curvature		ture	

Nonlocal mean curvature

Convergence to the classical mean curvature as $s \rightarrow 1$

• The nonlocal mean curvature of $M = \partial E \subset \mathbb{R}^N$

$$H^{s}(x) := (1-s) \mathbf{P.V.} \int_{\mathbb{R}^{N}} \frac{\mathbb{1}_{E^{c}}(y) - \mathbb{1}_{E}(y)}{|y-x|^{N+s}} \mathrm{d}y.$$
(5)

where $\mathbb{1}_A$ is characteristic function of A.

• The classical mean curvature of $M = \partial E$ (of class C^2)

$$H(x) = C_N \lim_{r \to 0} \frac{-1}{r|B_r(x)|} \int_{B_r(x)} \left(\mathbb{1}_{E^c}(y) - \mathbb{1}_E(y) \right) dy.$$
(6)

$$H^s \longrightarrow H, \quad s \nearrow 1.$$

	Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
	o 000000000	o 00●0	0 000000000000000
Nonlocal mean curvature			

Nonlocal mean curvature

Convergence as $s \to 0$

If $M = \partial E$ where E is of class C^2 , then $\forall x \in M$, $H^s(x)$ converges as $s \to 0$ to

$$H^{0}(x) := \begin{cases} \lim_{R \to +\infty} \lim_{r \to 0^{+}} H^{r}_{R}(x) - N\omega_{N} \log R, & \text{if } E \subset \mathbb{R}^{N} \\ \\ \lim_{R \to +\infty} \lim_{r \to 0^{+}} H^{r}_{R}(x) + N\omega_{N} \log R, & \text{if } E^{c} \subset \mathbb{R}^{N}, \end{cases}$$
(7)

$$H_R^r(x) := \int_{B_R(x) \setminus B_r(x)} \frac{\mathbb{1}_{E^c}(y) - \mathbb{1}_E(y)}{|x - y|^N} dy.$$
(8)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	o 000●	o oooooooooooooo
Nonlocal mean curvature		

Example of Nonlocal (fractional) mean curvature

Example 2.1 (Nonlocal (fractional) mean curvature of sphere)

Let $x \in S_R^{N-1}(0)$. We have

$$H^{s}_{S^{N-1}_{R}(0)}(x) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^{N} \setminus B_{\epsilon}(x)} \frac{\mathbb{1}_{\mathbb{R}^{N} \setminus S^{N-1}_{R}(0)}(y) - \mathbb{1}_{S^{N-1}_{R}(0)}(y)}{|x-y|^{N+s}} dy$$
$$= R^{-s} H^{s}_{S^{N-1}_{1}(0)}(\overline{x}),$$

where

$$H^{s}_{S^{N-1}_{1}(0)}(\overline{x}) = \frac{1}{s} \int_{S^{N-1}_{1}(0)} \frac{1}{|\overline{x} - y|^{N+s-2}} d\sigma_{S^{N-1}_{1}(0)}(y) < +\infty.$$
(9)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	0	00000000000000
00000000	00000	

Short time existence and smoothness of the nonlocal mean curvature flow of graphs

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	o 0000	o ●00000000000000
Short time existence a	and smoothness of the nonl	local mean curvature flow of graphs

Nonlocal mean curvature of graphs

Let
$$s \in (0,1)$$
 and $u : [0,T] \times \mathbb{R}^{N-1} \to \mathbb{R}$, such that for all $t \ge 0$,
 $u(t, \cdot) \in C_{loc}^{1+\beta}(\mathbb{R}^{N-1})$, where $\beta > s$. Consider

$$\begin{cases} E_u(t) = \{(x(t), y(t)) \in \mathbb{R}^{N-1} \times \mathbb{R} : y(t) < u(t, x(t))\}, \ t > 0 \end{cases}$$
(10)

$$E_u(0) = E_{u_0} = \{ (x, y) \in \mathbb{R}^{N-1} \times \mathbb{R} : y < u_0(x) \}.$$

By change of variables,

$$H(u)(t,x) := H^s(x(t), u(x(t))) = P.V. \int_{\mathbb{R}^{N-1}} \frac{\mathcal{G}(p_u(t,x,y))}{|x-y|^{N-1+s}} dy, \quad (11)$$

$$p_u(t,x,y) = \frac{u(t,y) - u(t,x)}{|x-y|}, \qquad \mathcal{G}(p) = -\int_{-p}^{p} \frac{d\tau}{(1+\tau^2)^{\frac{N+s}{2}}}.$$
 (12)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
000000000	0000	00000000000000
Short time existence a	and smoothness of the non	local mean curvature flow of graphs

The associated quasilinear equation

$$\nu(X(t)) = \frac{(-\nabla u(t, x(t)), 1)}{\sqrt{1 + |\nabla u(t, x(t))|^2}}, \quad \forall X(t) \in \partial E_u(t).$$
(13)

$$\partial_t X(t) \cdot \nu(X(t)) = \frac{\partial_t u(t, x(t))}{\sqrt{1 + |\nabla u(t, x(t))|^2}}.$$
(14)

Therefore, the evolution of u is

$$\partial_t u = -\sqrt{1 + |\nabla u|^2} H(u), \quad t \in (0, T], \quad u(0) = u_0.$$
 (15)

(15) was recently considered by Julin and La Manna (2020) \implies starting from a bounded $C^{1,1}$ initial set.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	0 0000	o ⊙o●ooooooooooo
Short time existence	and smoothness of the non	local mean curvature flow of graphs

Soient
$$\beta \in (s, 1)$$
, $\rho \in (0, 1)$ et $\gamma_{\rho} := \beta + \rho(1 + s)$.

Theorem 3.1 (Attiogbé-Fall-Weth (2022))

Let $\nu > 0$. $\forall u_0 \in C^{1+\gamma_{\rho}}_{loc}(\mathbb{R}^{N-1})$ with $\|\nabla u_0\|_{C^{\gamma_{\rho}}(\mathbb{R}^{N-1})} \leq \nu$, there exists $T = T(\rho, s, \beta, \gamma, N, \nu) > 0$ and $C_0 = C_0(\rho, s, \beta, \gamma, N, \nu) > 0$ such that

$$\begin{cases} \partial_t u + \sqrt{1 + |\nabla u|^2} H(u) = 0 & \text{in } [0, T] \times \mathbb{R}^{N-1} \\ u(0) = u_0 & \text{in } \mathbb{R}^{N-1} \end{cases}$$
(16)

admets a unique solution $u \in C^{\rho}([0,T], C^{1+\beta}_{loc}(\mathbb{R}^{N-1})) \cap C^{1+\rho}([0,T], C^{\beta-s}_{loc}(\mathbb{R}^{N-1})) \text{ satisfying }$

$$\|u - u_0\|_{C^{\rho}([0,T], C^{1+\beta}(\mathbb{R}^{N-1})) \cap C^{1+\rho}([0,T], C^{\beta-s}(\mathbb{R}^{N-1}))} \le C_0.$$
(17)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 00000000	o 0000	0 000000000000000000
Short time existence a	and smoothness of the nonl	local mean curvature flow of graphs

Moreover, if $\nabla u_0 \in C^{1+\gamma_\rho}(\mathbb{R}^{N-1})$ then, $\forall \beta' \in (s,\beta)$ there exists $C = (\rho, s, \beta, \gamma, N, \nu, T, \beta') > 0$ such that

$$\|\nabla u\|_{C^{\rho}([0,T],C^{1+\beta'}(\mathbb{R}^{N-1}))} \le C \|\nabla u_0\|_{C^{1+\gamma\rho}(\mathbb{R}^{N-1})}.$$
(18)

Theorem 3.2 (Attiogbé-Fall-Weth (2022))

Under the assumptions of Theorem 3.1, we have $u(t, \cdot) \in C^{\infty}(\mathbb{R}^{N-1})$ for all $t \in (0,T]$. Moreover, for all $\beta' \in (s,\beta)$, $\rho \in (0, \frac{s}{1+s}]$ and $k \in \mathbb{N} \setminus \{0\}$, there exists $C_k = C_k(\rho, s, \beta, \gamma, N, \nu, \beta', T, k) > 0$ such that

$$\|t^k \nabla u\|_{C^{\rho}([0,T], C^{k+\beta'}(\mathbb{R}^{N-1}))} \le C_k.$$
(19)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	0 0000	o oooo•ooooooooooo
Short time existence	and smoothness of the nonl	local mean curvature flow of graphs

Theorem 3.3 (Attiogbé-Fall-Weth (2022))

Under the assumptions of Theorem 3.1, we have

$$\|\nabla u\|_{L^{\infty}((0,T)\times\mathbb{R}^{N-1})} \le \|\nabla u_0\|_{L^{\infty}(\mathbb{R}^{N-1})}$$
(20)

and

$$\|\partial_t u\|_{L^{\infty}((0,T)\times\mathbb{R}^{N-1})} \le \|\sqrt{1+|\nabla u_0|^2}H(u_0)\|_{L^{\infty}(\mathbb{R}^{N-1})}.$$
 (21)

Moreover, if $u_0 \in L^{\infty}(\mathbb{R}^{N-1})$, then $\|u\|_{L^{\infty}((0,T)\times\mathbb{R}^{N-1})} \leq \|u_0\|_{L^{\infty}(\mathbb{R}^{N-1})}$.

Proof of Theorems 3.1, 3.2 and 3.3.

The proof of Theorems 3.1, 3.2 and 3.3 are based on the strongly coutinuous analytic semigroups theory and the maximum principle.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 00000000	o 0000	0 00000000000000000
Short time existence	and smoothness of the nonl	local mean curvature flow of graphs

Next, we consider the Banach space defined by

$$\mathcal{C}_0^{\theta}(\mathbb{R}^{N-1}) = \overline{C_c^{\infty}(\mathbb{R}^{N-1})}^{\|\cdot\|_{C^{\theta}(\mathbb{R}^{N-1})}} \quad \text{for } \theta \in \mathbb{R}_+ \setminus \mathbb{N},$$
 (22)

endowed with $C^{\theta}(\mathbb{R}^{N-1})$ norm. Set

$$E_T = C^{\rho}([0,T], \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1})) \cap C^{1+\rho}([0,T], \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})), \qquad (23)$$

endowed with the norm

$$\|\cdot\|_{E_T} = \|\cdot\|_{C^{\rho}([0,T],C^{1+\beta})} + \|\cdot\|_{C^{1+\rho}([0,T],C^{\beta-s})}.$$
(24)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 000000000	0	0
Short time existence and smoothness of the nonlocal mean curvature flow of graphs		

Main results (general case)

Theorem 3.4 (Attiogbé-Fall-Weth (2022))

Let $\nu > 0$ et $\gamma_{\rho} := \beta + \rho(1+s)$. Then, $\forall u_0 \in \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1})$ with $\|\nabla u_0\|_{C^{\gamma_{\rho}}(\mathbb{R}^{N-1})} \leq \nu$, there exists $T = T(\rho, s, \beta, N, \nu) > 0$, such that

$$\begin{cases} \partial_t u + \sqrt{1 + |\nabla u|^2} H(u) = 0 & \text{in } [0, T] \times \mathbb{R}^{N-1} \\ u(0) = u_0 & \text{in } \mathbb{R}^{N-1} \end{cases}$$
(25)

admets a unique solution $u \in E_T$. Moreover, there exists $C_0 = C_0(\rho, s, \beta, N, \nu) > 0$ such that

$$\|u - u_0\|_{E_T} \le C_0. \tag{26}$$

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl	
000000000	0000	00000000000000	
Short time existence and smoothness of the nonlocal mean curvature flow of graphs			

Sketch of the proof

$$\begin{cases} \partial_t u + \sqrt{1 + |\nabla u|^2} H(u) = 0 & \text{dans } [0, T] \times \mathbb{R}^{N-1} \\ u(0) = u_0 & \text{dans } \mathbb{R}^{N-1} \end{cases}$$
(27)

The problem (27) becomes

$$\begin{cases} \partial_t u - \mathcal{L}_0 u = F(u) & \text{ in } [0,T] \times \mathbb{R}^{N-1} \\ u(0) = u_0 & \text{ in } \mathbb{R}^{N-1}, \end{cases}$$
(28)

where $\mathcal{L}_0 := -D\mathcal{H}(u_0) : \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1}) \to \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})$ $u \mapsto \mathcal{H}(u) := \sqrt{1+|\nabla u|^2}H(u)$

at u_0 and the nonlinear function F is defined form $\mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1})$ to $\mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})$ by $u \mapsto F(u) = -\mathcal{H}(u) - \mathcal{L}_0 u$.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl	
o 000000000	0 0000	o oooooooooooooo	
Short time existence and smoothness of the nonlocal mean curvature flow of graphs			

Sketch of the proof

For all
$$u_0 \in \mathcal{C}^{1+eta}_0(\mathbb{R}^{N-1})$$
, our strategy is

• to prove that the nonlinear function
$$F: \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1}) \to \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})$$
 is of class C^{∞} .

- Ito apply Banach's fixed point theorem.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o 000000000	o 0000	o oooooooooooooo
Short time existence and smoothness of the nonlocal mean curvature flow of graphs		

We have the following lemma.

Lemma 3.1

For all
$$u_0 \in \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1})$$
,
 $F : \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1}) \to \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1}), \qquad F(u) = D\mathcal{H}(u_0)[u] - \mathcal{H}(u)$

is of class C^{∞} .

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
o 000000000	o 0000	o oooooooooooooo
Short time existence and smoothness of the nonlocal mean curvature flow of graphs		

On the strongly continuous analytic semigroup generated by \mathcal{L}_0

We start by the decomposition of \mathcal{L}_0 as $\mathcal{L}_0 = L_1 + L_2 + L_3$, where

$$L_1 u(x) = -\frac{Q(u_0)(x)}{2} \int_{\mathbb{R}^{N-1}} \frac{(2u(x) - u(x+y) - u(x-y))}{|y|^{N+s}} A(x,y) \, dy,$$
(29)

$$L_2 u(x) = -Q(u_0)(x) \int_{\mathbb{R}^{N-1}} \frac{(u(x) - u(x+y))}{|y|^{N+s}} B(x,y) \, dy, \qquad (30)$$

$$L_3 w(x) = H(u_0)(x) \frac{\nabla u_0(x) \cdot \nabla w(x)}{Q(u_0)(x)}$$
(31)

where

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl	
00000000	0000	00000000000000	
Short time existence and smoothness of the nonlocal mean curvature flow of graphs			

$$Q(u_0)(x) = \sqrt{1 + |\nabla u_0(x)|^2}$$
(32)

and the kernels A(x, y) and B(x, y) are such that

L₁: C₀^{1+β}(ℝ^{N-1}) → C₀^{β-s}(ℝ^{N-1}) falls into a class of integrodifferential operators studied by Abels-Kassmann (2009). In particular, they proved that each element of this class is generator of a strongly continuous analytic semigroup on C₀^{β-s}(ℝ^{N-1}).

2 $\forall \epsilon > 0, \forall u \in \mathcal{C}_0^{1+\beta}(\mathbb{R}^{N-1})$, there exists $C_{\epsilon} > 0$ such that

$$\|(L_2+L_3)u\|_{C_0^{\beta-s}(\mathbb{R}^{N-1})} \le \epsilon \|L_1u\|_{C_0^{\beta-s}(\mathbb{R}^{N-1})} + C_\epsilon \|u\|_{C_0^{\beta-s}(\mathbb{R}^{N-1})}.$$

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl		
0 000000000	0	o oooooooooooooo		
Short time existence and smoothness of the nonlocal mean curvature flow of graphs				

Sketch of the proof: Step 2 (end)

By the perturbations of infinitesimal generators of analytic aemigroups theorem by Pazy (1983), we can conclude that $\mathcal{L}_0 = L_1 + L_2 + L_3$ generates a strongly continuous analytic semigroup on $\mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})$.

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature f
o	o	o
000000000	0000	ooooooooooooooo

Short time existence and smoothness of the nonlocal mean curvature flow of graphs

The space
$$\mathcal{D}_{\mathcal{L}_0}(
ho,\infty)=(\mathcal{C}_0^{eta-s}(\mathbb{R}^{N-1}),\mathcal{C}_0^{1+eta}(\mathbb{R}^{N-1}))_{
ho,\infty}$$

$$\begin{split} L &:= -(-\Delta)^{\frac{1+\sigma}{2}} : \mathcal{C}_0^{1+\alpha}(\mathbb{R}^{N-1}) \to \mathcal{C}_0^{\alpha-\sigma}(\mathbb{R}^{N-1}) \text{ generates a strongly} \\ \text{continuous analytic semigroup on } E &= \mathcal{C}_0^{\alpha-\sigma}(\mathbb{R}^{N-1}) \text{ with} \\ \mathcal{D}(L) &= \mathcal{C}_0^{1+\alpha}(\mathbb{R}^{N-1}), \text{ where } \sigma \in (-1,1) \text{ and } \alpha \in (\sigma, 1+\sigma). \text{ Define} \\ \mathcal{D}_L(\rho,\infty) &= \{f \in E : [f]_{\mathcal{D}_L(\rho,\infty)} = \sup_{0 < t \leq 1} \|t^{1-\rho} L e^{Lt} f\|_E < \infty\}. \end{split}$$

Proposition 1

$$\mathcal{D}_L(\rho,\infty) = \mathcal{C}_0^{\alpha-\sigma}(\mathbb{R}^{N-1}) \cap C^{\alpha+\rho(1+\sigma)-\sigma}(\mathbb{R}^{N-1}).$$
(34)

In the paricular case where $\sigma=s\in(0,1)$ and $\alpha=\beta\in(s,1)\text{,}$

$$\mathcal{D}_{\mathcal{L}_0}(\rho,\infty) = \mathcal{D}_L(\rho,\infty) = \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1}) \cap C^{\beta+\rho(1+s)-s}(\mathbb{R}^{N-1}).$$
(35)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
Short time existence and smoothness of the nonlocal mean curvature flow of graphs		

For all $u_0 \in \mathcal{C}^{1+\beta}_0(\mathbb{R}^{N-1})$, we have

•
$$F(u) \in C^{\rho}([0,T], \mathcal{C}_0^{\beta-s}(\mathbb{R}^{N-1})), \forall u \in E_T.$$

• $\mathcal{L}_0 u_0 + F(u_0) = -\mathcal{H}(u_0) \in \mathcal{D}_{\mathcal{L}_0}(\rho,\infty).$

Then, there exists a unique function $\Phi(u) \in E_T$ satisfying

$$\begin{cases} \partial_t \Phi(u) - \mathcal{L}_0 \Phi(u) = F(u) & \text{ in } [0,T] \times \mathbb{R}^{N-1} \\ \Phi(u)(0) = u_0 & \text{ in } \mathbb{R}^{N-1}. \end{cases}$$
(36)

$$\mathcal{E}_{T,R} := \{ u \in E_T : u(0) = u_0, \| u - u_0 \|_{E_T} \le R \}.$$
(37)

A fixed point of function $\Phi: E_T \to E_T$ in $\mathcal{E}_{T,R}$ will be a solution of

$$\begin{cases} \partial_t u - \mathcal{L}_0 u &= F(u) & \text{ in } [0,T] \times \mathbb{R}^{N-1} \\ u(0) &= u_0 & \text{ in } \mathbb{R}^{N-1}, \end{cases}$$
(38)

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl
0 00000000	o 0000	0 00000000000000000
Short time existence and smoothness of the nonlocal mean curvature flow of graphs		

Sketch of the proof: Step 3 (end)

Provided $\|\nabla u_0\|_{C^{\beta+\rho(1+s)}(\mathbb{R}^{N-1})} \leq \nu$, there exists $R = R(N, s, \beta, \rho, \gamma, \nu) > 0$ and $T = T(N, s, \beta, \rho, \gamma, \nu) > 0$ such that

- $\Phi(\mathcal{E}_{T,R}) \subset \mathcal{E}_{T,R} .$
- **2** Φ is a contraction on $\mathcal{E}_{T,R}$.

We can apply the Banach fixed point on $\mathcal{E}_{T,R}$ to obtain a unique fixed point $u \in \mathcal{E}_{T,R}$ of Φ .

Mean curvature flow	Nonlocal mean curvature	Short time existence and smoothness of the nonlocal mean curvature fl		
		0		
000000000	0000	000000000000000		
Short time existence and smoothness of the nonlocal mean curvature flow of graphs				

