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Fractional processes in finance: long-range to ‘rough vol.’ M
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Since Mandelbrot & VanNess (1968) Fractional Brownian motion have been used as a building
block in stochastic models.
o Long-range dependence, as measured by the slow decay ~ T2"~2 of autocorrelation
functions of increments, where 0 < H < 1 is the Hurst exponent.

@ Roughness: Generate trajectories which have varying levels of Holder regularity.
For fBM, the two properties are linked through self-similarity.
o In early applications to financial data, fractional processes were used to model long range

dependence in financial time series (see Baillie 1996). Long-range dependence is modeled by
choosing 1 > H > 1/2 (Comte and Renault 1998)

o A recent strand of literature, starting with Gatheral et al.(2018) has suggested the use of
fractional Brownian models with H < 1/2 for modeling volatility. Gatheral et al (2018)
present empirical data on volatility estimators suggesting that volatility is ‘rough’ i.e. has an
(Holder) roughness < 1/2.

Follow-up studies based on parametric models (Fukasawa et al 2022, Pakkanen et al 2020).
We re-examine empirical evidence for these claims with a new model-free methodology.
Idea: assess the roughness of a signal/process from a (discrete) sample of its path.
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Roughness and Holder regularity

A function X : [0, T] — R has Holder exponent « if

IX(t+A) = X(t)] < C A%, ie.  sup W <o
t,A

The ‘roughness’ of X is measured by the smallest o« > 0 for which this holds: then

X(t+ A) — X(t)] ~ cAl
[X(t+A) ()|A~>OC

In that case if we choose t!" = jT/n (grid with step 1/n) then the sum

n

>

j=1

n n P n
X(thq) — X(t")| ~ yr

will go to zero for p > 1/H,
will converge to a non-zero limit for p =1/H
while it will blow up to oo for p < 1/H.
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p-th variation along a sequence of partitions M
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Consider a sequence 7 = (7"),>1 of partitions of [0, T]
T=0=tg <t < o <tym=T)
representing observation times,with resolution |7"| = sup(¢t/ ; — t!) — 0.

Definition (p-th variation)

Let x € CO([0, T],R). x has finite p-th variation along 7 if there exists a continuous function
[x]SrP) such that

veel0 T, WOM= S |x) - x| 2 MO ). (1)

[tj",tj”ﬂ]evr":
tj"gt

If this property holds, then the convergence in (1) is uniform. Define,

VP([0, T],R) = {x e C%([o, T],R)

x has finite p-th variation along w} .
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Variation and roughness index of a path M
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Definition (Variation index)

For a continuous function x € C°([0, T],R) we define the variation index as the smallest p > 1
for which p-th variation along 7 is finite:

p"(x)=inf{p>1 : x e VE([0, T],R)}.

Definition (Roughness index)

For a continuous function x € C°([0, T],R) the roughness index is defined as:

1

=Gt

o Fractional Brownian motion B has variation index p™(B") = % and roughness index H.
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Existence of Variation index M
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Define, g™ (x, ) and g~ (x, ) as follows:

gt (x,7) = sup {Iim supz |x(tf1) — x(t)]” = oo} and,
p>0 ntoo

on

q~ (x,7) = ‘S)L;[[)) {Iinn%oigf; !x(t;"H) — x(tl.")“’ _ oo} .

Lemma (Existence of variation index)

Let x € C°([0, T],R). For any partition sequence T with vanishing mesh, the variation index
p™(x) exists if and only if g*(x,7) = q~ (x, 7). In this case, p™(x) = qT(x,7) = ¢~ (x, 7).
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p-th variation and roughness M
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For a continuous path, the pathwise p-th variation plays an important role in determining the
‘roughness’ of a function.

Lemma

Let 7 be a sequence of partitions with vanishing mesh |z"| | 0. If x € C°([0, T],R) has variation
index p™(x) and x € VF (X)([O, T],R) then:

0 if g > p™(x)
MO =d0< WP <00 ifg=pT(x)- @)
0o if g < p™(x)

@ For two continuous functions x,y if p™(x) < p™(y), then x is smoother than y with respect
to the sequence of partition .

Purba DAS (purbadas@umich.edu) Rough volatility: fact or artefact? 8



Spot volatility and realized volatility M
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o Unlike prices, volatility is not directly observable and must be estimated from prices.

@ The realized volatility of a price process S over time interval [t, t 4+ ¢] sampled along the
time partition 7" is defined as:

RVeralm) = | 3 (X)) - X)) = VKTt 4 8) - KI(®  (3)
7 A[t, t+A]

where X = log S.
o The realized variance is sum of square increments of log price = (RVt,tJrA(Tr”))z.

o If the price S; follows a stochastic volatility model with instantaneous volatility o:
dSt = UtstdBt + ,u,tStdt

then realized variance converges to the quadratic variation of log S (also called ‘integrated
variance') as sampling frequency increases:

5 P t 2 P t+A
RVi(x")" — Vi 1:/0 oudu,  RViea(m") = \/[IViein = / ohdu.  (4)
t
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No Holder norm convergence M
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@ Sample paths of BM are almost surely continuous.

o I piecewise linear functions B” which converge to BM

B" — BM.

@ (Halder) roughness of B" is of order 1 Vs. (Hdlder) roughness of BM is %—.
o (Halder) roughness of B" - (Holder) roughness of BM.
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‘Volatility is rough’: Gatheral et al. (2018)

o Linear regression to compute the roughness of S&P500 realized volatility:

1 1<
m(q, ) = _llog RV]%, = = > |log(RVsa) — log(RVo)|? ~ CyA%
t=1

The exponent &y are shown to behave linearly in q: £ ~ Hq with A =0.13.

Estimated H = 0.135

=3
T
=1
=1
= <@
<1 o
=z o -
E g
=3 a4
L (=1
o
=1

log(A) q

Based on this they propose a fractional SDE for volatility: dlogo? ~ ndB}'.
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‘Things we think we know’: Rogers (2019) M
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Plots for FIX2000

log m{g.A) against log(A)
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Rogers (2019) showed that roughness estimators based on linear-regression of p—th variation
have poor accuracy: they exhibit similar behavior over a range of time scales even in a simple
Brownian OU model for volatility (so: not rough!), so this cannot be taken at face value as
evidence of 'rough volatility'.

Similar evidence of the lack of accuracy of such linear-regressions in shown in Takabatake,
Fukusawa and Westphal (2021).
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p-th variation as roughness: Theory Vs reality M
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For any sequence of partition m and for any x € C°([0, T],R),

0 if g > p™(x)
MP()=30< WP <00 ifq=pT(x)- (5)
00 if g < p™(x)

g-th variation
2
P11l
g-th variation
15
LLLLd

. -
£ T T T T 1 =R I I T T |
15 1.7 19 25 30 35 40 45 50
q g

Practical example: N=250000 Left: fBM with H = 0.6 Right: fBM with H = 0.3.
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Estimating the roughness of a path:
Normalized p-th variation
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Normalized p-th variation M
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We propose an alternative estimator for measuring the roughness of a path from discrete
observations.

Definition (Normalized p-th variation along a partition sequence (Cont & Das) )

Let 7 be a sequence of partitions of [0, T] with mesh |7"| — 0. We say a path x € C°([0, T],R)
has finite normalized p-th variation along a sequence of partition 7 if and only if there exists a
continuous function w(x, p,7) : [0, T] — R such that:

x (£ —t1) "= w(x, p, 7)(t).

(6)

Ix(er,1) — x(tM)|P
vt € [0, T], w(x, p,m)(t) :=
P %] P er ) — P ()

@ Notation: The class of all functions with finite Normalized p-th variation along 7 is denoted
as NE([0, T],R).
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Properties of normalized p-th variations M
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Theorem (Normalized p-th variations and roughness (Cont & Das))

Let x € CO(([0, T],R)).
p = p™(x) is the variation index of x. Then:

00 ifq>p

. 7
0 ifq<p )

vVt €[0, T], w(x,q,n)(t)= {

Furthermore, If p-th variation [x]srﬁ ) is strictly increasing and the derivative %[X];ﬁ)(u) exists and
continuous then:
9 ifq>p
Vpe[l,p]l: x€ NE([0, T],R) and, Vte[0,T], w(x,q,m)(t)=<t ifg=p. (8)
0 ifqg<p
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BM, fBM and stochastic integrals M
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o Let B be a Wiener process on a probability space (2, F,P), T > 0 and
(7")n>1 a sequence of partitions of [0, T] with [7"[log(n) — 0. Then:

P(w(B,2,7)(t) =t) = 1.

o Let B be a fBM with Hurst parameter H, on a probability space (2, F,P), T > 0. Then
for any sequence of partitions m with mesh |w| — 0, we have

n—oo

1
w (BH7 e ) (t) —— t in probability.

Furthermore for dyadic partition T = (T"),>; the convergence is in almost sure sense. ie.

P (nimoo w (BH, %,w") (t) = t) =1.

@ Stochastic |ntegra|s Let X(t fO u)dB, where o is an adapted process with

vtel[o, T]; fo (u)du < co. Then for any refining partition sequence 7 with vanishing

mesh,
P(w(X,2,7)(t)=t)=1.
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Normalized p-th variation: examples M
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Schied (2016) and Schied and Mishura (2016) provide several examples of functions
with prescribed p-th variation. Schied defines a class of functions X'P

oo 2m—1
xt = {xe c0,1],R) | x(t) = Z 2m(3—H) Z Om,kem,k(t) for coeff. 0, € {-1,+1}
m=0 k=0

m- k=3
The graph of e, , is a wedge with height 2_T+2, width 27 centred at ¢ = 27t

Lemma (Generalized Takagi functions have unit normalized p-th variation)

Let T be the dyadic partition sequence. For any generalized Takagi function x € XH the
normalized quadratic variation is given by t:

1
vx e XM vielo,1], W(x,ﬁ,T):t.
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Graph of ¢] M
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Figure: Plot of Schauder basis e’mr’k for m =0, 1, 2, 3 along non-uniform non balanced doubly refining partition
sequence 7.
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Normalized p-th variation statistics M
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Given observations on a refining time partition 7t, we define the ‘normalized p-th variation

statistic’ which is the discrete counterpart of the normalized p-th variation:
i+1

[x(tf5y) = x (@)’

W(LK.mpt,X) = 3

5 X <t,ﬁ1 - t,K) . (9)
7KN[o,t] ZwLm[th,t/.’jrl] ‘

X(th,) — X(tb)

The definition of the statistic (9) involves two frequencies: a ‘block’ frequency K and a sampling
frequency L > K.

As the partition is refining, 7% is a subpartition of =l.

The denominator is estimated by grouping the sample of size L into K many groups, where each

group contains % consecutive data points.
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Estimating the roughness index M
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Lemma (Cont & Das)

The statistic (9) converges to the normalized p-th variation (6) as the sampling frequency L and
block frequency K increase:

lim lim W(L, K,,p,t,x) = w(x,p,7)(t).

K—o0 L—o0

The variation index estimator py i (X) associated with the signal sampled on 7L is then obtained
by computing W(L, K, m, p, t, X) for different values of p and solving the following equation for
Pk (X),

W(L,K,ﬂ-,ﬁny(X), T,X)=T. (10)

One can either fix a window length T or solve (10) in a least squares sense across several values
of T.
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Consistency of estimators M
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Theorem (Pathwise consistency of estimator)

For any balanced partition sequence T, under some regularity assumptions on X there exists
sequence (Ln, Kp) such that L, > K, and

lim HE ., (X) = H™(X) and,

H =7 — T
Jim P, (X) = p"(X)

Balanced ~ step sizes are asymptotically comparable.

Purba DAS (purbadas@umich.edu) Rough volatility: fact or artefact? 22



Finite sample behaviour of the roughness estimator M
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Figure: For H € {0.1,0.3,0.5,0.8} we simulate a fBM with Hurst parameter H. The black line is log of
normalized p-th variation statistics plotted against H = 1/p. The blue vertical line represents the estimated H
value using the normalized p-th variation statistics (K = 300, L = 300 x 300), whereas the green line
represents the true value of H, with which we simulated the fBM.
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FBM: Distribution of estimator for Hurst index M
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Figure: For H € {0.1,0.3,0.5, 0.8} we simulate a fBM with Hurst parameter H. Then use our normalized p-th
variation statistics to estimate H with (K = 300, L = 300 x 300). The histogram is generated from 150
independent runs.
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fBM with Hurst index H = 0.1 M

UNIVERSITY OF

MICHIGAN
H=0.1

g

4

2 ° -

8

&

%
2 g
1% -
S 2
S <
4 21
=

2 &

®

o
: : . T T T T 1
0.05 0.10 0.15 0.08 0.09 0.10 0.11 0.12
H=1/p H=1/p

Figure: fBM simulated with H = 0.1. Left: The log of normalized p-th variation statistic is plotted against

H = 1/p in black. The blue vertical line represents the estimated roughness index H; x (with

M = 2000, L = 2000 x 2000), whereas the green line represents for true Hurst index H = 0.1. Right:
Histogram of estimated roughness index I:IL,K generated by simulating n = 150 independent fractional
Brownian motion with Hurst parameter 0.1. The blue line represents the corresponding kernel plot generated by
Gaussian density.
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Summery statistics for roughness index M
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For K = 300 and L = 300 x 300, total simulation size 150:

H Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1 | 0.0450 | 0.0920 0.1030 | 0.1009 | 0.1100 | 0.1440
0.3 | 0.2730 | 0.2940 0.2980 | 0.2976 | 0.3020 | 0.3180
0.5 | 0.4820 | 0.4940 0.4980 | 0.4978 | 0.5020 | 0.5140
0.8 | 0.7570 | 0.7820 0.7900 | 0.7891 | 0.7940 | 0.8220

For K = 2000 and L = 2000 x 2000, total simulation size 150:

H Min. 1st Qu. Median | Mean | 3rd Qu. Max.
0.1 | 0.086 0.096 0.099 0.099 0.103 0.117
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Dependence on K M
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K

Figure: The solid line represents the estimated p-th variation statistic W/(L = 300 x 300, K, 7, q,t = 1)
plotted against different values of K for a simulated fBM with H = 0.1. The blue vertical line represents for
K =300, L = 300 x 300.

K Ky|9
x(ti ) — x(t; )‘

x(th ) = (D)

WL K, 7, q,1) = = x (At —tf )
K 2l feK K ]
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Highlights of roughness estimators M
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o Pathwise (Model free) estimator with no prior assumption on underlying distributions.
o Can estimate roughness of data observed on a irregular time scale 7".
@ Scale invariant.

@ Invariant under smooth transformations.
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Roughness index of realized volatility:
Numerical experiments
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Simulated Brownian diffusion model M
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Consider the following price process where volatility follows a simple Brownian diffusion:

dSt = UtstdBt, with Ot = |Bé|, (11)

where S; is the price of the underline asset at time t and B, B} are two Brownian paths
independent of each other.

Purba DAS (purbadas@umich.edu) Rough volatility: fact or artefact? 30



Realized volatility and estimation M
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volatiity
log{IV)-lag(RY)

fime

Figure: Simulation model: ¢ =| B; |, dS; = S¢c+dB;, where B; and B] are Brownian motions independent of
each other. Left: The red line is the plot of instantaneous volatility o whereas the black line represents
realized volatility RV; from Model 11. Right: Corresponding estimation error for the simulated sample-path.
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Roughness of estimated-realized vs instantaneous volatility M
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Figure: Left: Estimated roughness index I:IL)K (via normalized p-variation statistic with
K =500, L =500 x 500), for realized volatility derived from a Brownian diffusion model. Right: Estimated

roughness index ":’L,K for instantaneous volatility of the same price path.
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Varying the window size K: realized volatility M
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028
I

Estimated Hurst index
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K

Figure: The solid black line represents the estimated p-th variation statistic W/(L = 500 x 500, K, 7, q,t = 1)
plotted against different values of K for the realized volatility shown in Figure 6. The blue vertical line
represents for K = 500, L = 500 x 500 whereas the blue horizontal line represents H = 0.273.

() = x(tf)| /K «
W(L K, 7, q,t) = = X (g At—t \t)
<> ¢ x(tk ) — x(tb) ‘
e A A P A j
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Varying window size K: spot volatility M
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Figure: The solid black line represents the estimated p-th variation statistic W/(L = 500 x 500, K, 7, q,t = 1)
plotted against different values of K for the instantaneous volatility shown in Figure 6. The blue vertical line
represents for K = 500, L = 500 x 500 whereas the blue horizontal line represents true Hurst parameter

H =0.5.
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Gatheral et al.’s Linear regression method: spot volatility M
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Applying the log-regression method to instantaneous volatility gives H =~ 0.5

Estimated H = 0.499
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Figure: Left: Scaling analysis of instantaneous volatility simulated using a Brownian stochastic volatility model
using the method of Gatheral et al. (2014). Right: linear regression coefficients &4 as a function of q. The

estimated roughness index is A = 0.499.
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Gatheral et al.’s linear-regression method: realized vol M
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Applying the linear-regression method to realized vol for same data gives H = 0.34!

Estimated H = 0.342
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Figure: Left: Scaling analysis of realized volatility estimated from simulated paths from the Brownian

stochastic volatility model using the method of Gatheral et al. (2014). Right:

as a function of q. The estimated roughness index is A =0.342.

linear regression coefficients &g
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Simulated price model: Brownian OU process M
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Example
Take a stochastic volatility model where the volatility follows a Ornstein—Uhlenbeck process.

dS: = Sto+dB:,  where,
ot =00et, dY: = —vY:dt + 0dB] (12)

B: and B{ are two Brownian motions independent of each other. For our simulation
oo=1,Yp=0and y=0=1.
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Price process and estimation error
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Figure: Left: Black = realized volatility. Red= instantanenous (spot) volatility. Right: estimation error for OU
stochastic volatility model.
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Kernel plot M
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Figure: Distribution of the estimated roughness index I:IL,K for (K = 300, L = 300 x 300) across 2500
independent simulations for the OU-SV model (12). True value is H = 0.5.
Left: realized volatility. Right: instantaneous volatility respectively.
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Summary Statistics
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The following table provides summary statistics across 2500 independent samples for the
roughness exponent estimator H;—300x300,k=300 for realized volatility and spot volatility.

Realized volatility | Instantaneous volatility
Min. 0.087 0.528
1st Quantile 0.128 0.552
Median 0.136 0.556
Mean 0.137 0.557
3rd Quantile 0.148 0.563
Max. 0.181 0.581
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Fractional stochastic volatility process M
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Example (Fractional OU volatility process)

Consider the following price process where the volatility is coming from a fractional
Ornstein—Uhlenbeck process.

dS; = 0+S¢dB;,  where,
ot = ope"t; dYy = —vYidt + 0dBH, (13)

where B and B are respectively Brownian motion and fractional Brownian motion correspond to
Hurst index H € (0,1).

Then spot volatility has roughness index 0 < H < 1
We use vy =0 =09 =1and Yo =0.
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Fractional OU volatility process
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Left:

OU process with H={0.05,0.1,0.2} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Fractional OU volatility process
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Figure: Left: OU process with H={0.3,0.4,0.5} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Fractional OU volatility process
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Figure: Left:

OU process with H={0.6,0.7,0.8} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Summary statistics M
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The roughness index ’:/L,K (with, L =300 x 300, K = 300) of instantaneous and realized volatility
are compared in the following table.

H H| k of Instantaneous volatility | Hj x of Realized volatility
0.10 0.130 0.190
0.20 0.215 0.250
0.30 0.310 0.258
0.40 0.413 0.207
0.50 0.507 0.130
0.60 0.601 0.087
0.70 0.678 0.061
0.80 0.756 0.052
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Comparing H for realized Vol. and instantaneous Vol. M
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Figure: Estimated values of roughness exponent A from high-frequency realized volatility for a fractional-OU
stochastic volatility model with different values of H. X axis: True Hurst index H. Y axis: Estimated roughness
index Hp k
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Comparing A of RV and IV for 200 simulations M
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Figure: Estimated values of roughness exponent A from high-frequency realized volatility for 200 simulated
fractional-OU stochastic volatility model with different values of H.
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Application to high-frequency financial data
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AAPL (high frequency) stock price data: year 2016 M
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Figure: Left: plot of 1-sec price of AAPL 04/Jan/2016 - 11/May/2016 (90 days). Right: Estimation of I:IL,K(via
normalized p-variation statistic with L = 1400 x 1400, K = 1400) for the apple stock price plotted in left figure.
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Roughness: AAPL (2016) realized volatility M
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Figure: Left: plot of 1-min realised volatility of ‘apple’(year 2016). Right: Estimation of I:IL,K(via normalized
p-variation statistic with L = 310 x 310, K = 310) for the 1-min realised volatility (estimated H € [.08 — .22]).
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Roughness: S&P 500 (Source: Oxford-Man Institute) M
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Figure: Left: plot of 5-min realised volatility . Right: normalized p-variation statistic with L = 70 x 70, K = 70
for SPX 5-min realised volatility, as a function of H = 1/p € [.05 — .25].
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Rough volatility ... or estimation noise? M
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When one has a powerful hammer, everything Tooks like a nail...

but it is important to check the robustness of 'stylized facts’ to estimation error before
jumping into complex models to 'explain’ them.

@ We introduce a nonparametric method for estimating the roughness of a path based on
the notion of normalized p-th variation.

For stochastic-volatility diffusion models driven by Brownian motion (so H = 1/2), the
realized volatility exhibits an estimated roughness index I:IL,K =~ 0.3 so seems to exhibit
significantly ‘rougher’ behaviour than spot volatility, both in terms of normalized p-th
variation and in terms of the linear-regression method used by Gatheral et al. (2018). In this
case roughness in realized vol is a pure "statistical artefact” i.e. entirely attributable to
estimation error.

@ These results suggest that the regression method is not robust to estimation noise: one
cannot take the roughness observed in realized volatility as evidence of similar behaviour in
spot volatility, as implicitly assumed in the ‘rough volatility’ literature.

@ As shown in fOU example, the rough behaviour of realized volatility does not lead us to
reject the hypothesis that the underlying spot volatility may be modeled with a Brownian
diffusion model.

@ The notion that volatility is "rough”, that is, governed by a fractional Brownian motion
(with H < 1/2), is not an incontrovertible established fact; simpler diffusion models explain
the empirical observations just as well.
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