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Fractional processes in finance: long-range to ‘rough vol.’

Since Mandelbrot & VanNess (1968) Fractional Brownian motion have been used as a building
block in stochastic models.

Long-range dependence, as measured by the slow decay ∼ T 2H−2 of autocorrelation
functions of increments, where 0 < H < 1 is the Hurst exponent.

Roughness: Generate trajectories which have varying levels of Hölder regularity.

For fBM, the two properties are linked through self-similarity.

In early applications to financial data, fractional processes were used to model long range
dependence in financial time series (see Baillie 1996). Long-range dependence is modeled by
choosing 1 > H > 1/2 (Comte and Renault 1998)

A recent strand of literature, starting with Gatheral et al.(2018) has suggested the use of
fractional Brownian models with H < 1/2 for modeling volatility. Gatheral et al (2018)
present empirical data on volatility estimators suggesting that volatility is ‘rough’ i.e. has an
(Hölder) roughness < 1/2.

Follow-up studies based on parametric models (Fukasawa et al 2022, Pakkanen et al 2020).
We re-examine empirical evidence for these claims with a new model-free methodology.
Idea: assess the roughness of a signal/process from a (discrete) sample of its path.
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Roughness and Hölder regularity

A function X : [0,T ]→ R has Hölder exponent α if

|X (t + ∆)− X (t)| ≤ C ∆α, i .e. sup
t,∆

|X (t + ∆)− X (t)|
∆α

<∞

The ‘roughness’ of X is measured by the smallest α > 0 for which this holds: then

|X (t + ∆)− X (t)| ∼
∆→0

c∆H

In that case if we choose tnj = jT/n (grid with step 1/n) then the sum

n∑
j=1

∣∣∣∣X (tnj+1)− X (tnj )

∣∣∣∣p ∼ c
n

npH

will go to zero for p > 1/H,
will converge to a non-zero limit for p = 1/H
while it will blow up to ∞ for p < 1/H.
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p-th variation along a sequence of partitions

Consider a sequence π = (πn)n≥1 of partitions of [0,T ]

πn = (0 = tn0 < tn1 < · · · < tnN(πn) = T )

representing observation times,with resolution |πn| = sup(tni+1 − tni )→ 0.

Definition (p-th variation)

Let x ∈ C0([0,T ],R). x has finite p-th variation along π if there exists a continuous function

[x]
(p)
π such that

∀t ∈ [0,T ], [x]
(p)
πn (t) :=

∑
[tnj ,t

n
j+1]∈πn :

tnj ≤t

∣∣∣∣x(tnj+1)− x(tnj )

∣∣∣∣p n→∞−→ [x]
(p)
π (t). (1)

If this property holds, then the convergence in (1) is uniform. Define,

V p
π([0,T ],R) =

{
x ∈ C0([0,T ],R)

∣∣∣∣ x has finite p-th variation along π

}
.
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Variation and roughness index of a path

Definition (Variation index)

For a continuous function x ∈ C0([0,T ],R) we define the variation index as the smallest p ≥ 1
for which p-th variation along π is finite:

pπ(x) = inf{p ≥ 1 : x ∈ V p
π([0,T ],R)}.

Definition (Roughness index)

For a continuous function x ∈ C0([0,T ],R) the roughness index is defined as:

Hπ(x) =
1

pπ(x)
.

Fractional Brownian motion BH has variation index pπ(BH) = 1
H

and roughness index H.
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Existence of Variation index

Define, q+(x , π) and q−(x , π) as follows:

q+(x , π) := sup
p>0

{
lim sup
n↑∞

∑
πn

∣∣x(tni+1)− x(tni )
∣∣p =∞

}
and,

q−(x , π) := sup
p>0

{
lim inf
n↑∞

∑
πn

∣∣x(tni+1)− x(tni )
∣∣p =∞

}
.

Lemma (Existence of variation index)

Let x ∈ C0([0,T ],R). For any partition sequence π with vanishing mesh, the variation index
pπ(x) exists if and only if q+(x , π) = q−(x , π). In this case, pπ(x) = q+(x , π) = q−(x , π).
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p-th variation and roughness

For a continuous path, the pathwise p-th variation plays an important role in determining the
‘roughness’ of a function.

Lemma

Let π be a sequence of partitions with vanishing mesh |πn| ↓ 0. If x ∈ C0([0,T ],R) has variation

index pπ(x) and x ∈ V
pπ(x)
π ([0,T ],R) then:

[x]
(q)
π (t) =


0 if q > pπ(x)

0 ≤ [x]
(q)
π <∞ if q = pπ(x)

∞ if q < pπ(x)

. (2)

For two continuous functions x , y if pπ(x) < pπ(y), then x is smoother than y with respect
to the sequence of partition π.
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Spot volatility and realized volatility

Unlike prices, volatility is not directly observable and must be estimated from prices.

The realized volatility of a price process S over time interval [t, t + δ] sampled along the
time partition πn is defined as:

RVt,t+∆(πn) =

√√√√ ∑
πn∩[t,t+∆]

(
X (tni+1)− X (tni )

)2
=
√

[X ]πn (t + ∆)− [X ]πn (t) (3)

where X = log S .

The realized variance is sum of square increments of log price =
(
RVt,t+∆(πn)

)2
.

If the price St follows a stochastic volatility model with instantaneous volatility σt :

dSt = σtStdBt + µtStdt

then realized variance converges to the quadratic variation of log S (also called ‘integrated
variance’) as sampling frequency increases:

RVt(π
n)2 P→

n→∞
IVt :=

∫ t

0
σ2
udu, RVt,t+∆(πn)

P→
n→∞

√
IVt,t+∆ =

√∫ t+∆

t
σ2
udu. (4)
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No Hölder norm convergence

Sample paths of BM are almost surely continuous.

∃ piecewise linear functions Bn which converge to BM

Bn → BM.

(Hölder) roughness of Bn is of order 1 Vs. (Hölder) roughness of BM is 1
2
−.

(Hölder) roughness of Bn 9 (Hölder) roughness of BM.
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‘Volatility is rough’: Gatheral et al. (2018)

Linear regression to compute the roughness of S&P500 realized volatility:

m(q,∆) =
1

n
[log RV ]qπn =

1

n

n∑
t=1

| log(RVt+∆)− log(RVt)|q ≈ Cq∆ξq

The exponent ξq are shown to behave linearly in q: ξq ≈ Hq with Ĥ = 0.13.

Based on this they propose a fractional SDE for volatility: dlogσ2
t ≈ ηdBH

t .
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‘Things we think we know’: Rogers (2019)

Rogers (2019) showed that roughness estimators based on linear-regression of p−th variation
have poor accuracy: they exhibit similar behavior over a range of time scales even in a simple
Brownian OU model for volatility (so: not rough!), so this cannot be taken at face value as
evidence of ’rough volatility’.
Similar evidence of the lack of accuracy of such linear-regressions in shown in Takabatake,
Fukusawa and Westphal (2021).

Purba DAS (purbadas@umich.edu) Rough volatility: fact or artefact? 12



p-th variation as roughness: Theory Vs reality

Lemma

For any sequence of partition π and for any x ∈ C0([0,T ],R),

[x]
(q)
π (t) =


0 if q > pπ(x)

0 ≤ [x]
(q)
π <∞ if q = pπ(x)

∞ if q < pπ(x)

. (5)

Practical example: N=250000 Left: fBM with H = 0.6 Right: fBM with H = 0.3.
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Estimating the roughness of a path:

Normalized p-th variation
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Normalized p-th variation

We propose an alternative estimator for measuring the roughness of a path from discrete
observations.

Definition (Normalized p-th variation along a partition sequence (Cont & Das) )

Let π be a sequence of partitions of [0,T ] with mesh |πn| → 0. We say a path x ∈ C0([0,T ],R)
has finite normalized p-th variation along a sequence of partition π if and only if there exists a
continuous function w(x , p, π) : [0,T ]→ R such that:

∀t ∈ [0,T ], wn(x , p, π)(t) :=
∑

πn∩[0,t]

|x(tni+1)− x(tni )|p

[x]
(p)
π (tni+1)− [x]

(p)
π (tni )

×(tni+1− tni )
n→∞−→ w(x , p, π)(t).

(6)

Notation: The class of all functions with finite Normalized p-th variation along π is denoted
as Np

π([0,T ],R).
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Properties of normalized p-th variations

Theorem (Normalized p-th variations and roughness (Cont & Das))

Let x ∈ C0(([0,T ],R)).
p̄ = pπ(x) is the variation index of x . Then:

∀t ∈ [0,T ], w(x , q, π)(t) =

{
∞ if q > p̄

0 if q < p̄
. (7)

Furthermore, If p̄-th variation [x]
(p̄)
π is strictly increasing and the derivative d

du
[x]

(p̄)
π (u) exists and

continuous then:

∀p ∈ [1, p̄] : x ∈ Np
π([0,T ],R) and, ∀t ∈ [0,T ], w(x , q, π)(t) =


∞ if q > p̄

t if q = p̄

0 if q < p̄

. (8)
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BM, fBM and stochastic integrals

Let B be a Wiener process on a probability space (Ω,F ,P), T > 0 and
(πn)n≥1 a sequence of partitions of [0,T ] with |πn| log(n)→ 0. Then:

P (w (B, 2, π) (t) = t) = 1.

Let BH be a fBM with Hurst parameter H, on a probability space (Ω,F ,P), T > 0. Then
for any sequence of partitions π with mesh |π| → 0, we have

w

(
BH ,

1

H
, πn

)
(t)

n→∞−−−−→ t in probability.

Furthermore for dyadic partition T = (Tn)n≥1 the convergence is in almost sure sense. ie.

P
(

lim
n→∞

w

(
BH ,

1

H
, πn

)
(t) = t

)
= 1.

Stochastic integrals: Let X (t) =
∫ t

0 σ(u)dBu where σ is an adapted process with

∀t ∈ [0,T ];
∫ t

0 σ
2(u)du <∞. Then for any refining partition sequence π with vanishing

mesh,
P (w(X , 2, π)(t) = t) = 1.
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Normalized p-th variation: examples

Schied (2016) and Schied and Mishura (2016) provide several examples of functions
with prescribed p-th variation. Schied defines a class of functions X p

XH =

x ∈ C0([0, 1],R)

∣∣∣∣ x(t) =
∞∑
m=0

2m( 1
2
−H)

2m−1∑
k=0

θm,kem,k (t) for coeff. θm,k ∈ {−1,+1}

 .

The graph of em,k is a wedge with height 2−
m+2

2 , width 2−m, centred at c = 2
k− 1

2
2m .

Lemma (Generalized Takagi functions have unit normalized p-th variation)

Let T be the dyadic partition sequence. For any generalized Takagi function x ∈ XH the
normalized quadratic variation is given by t:

∀x ∈ XH , ∀t ∈ [0, 1], w(x ,
1

H
,T) = t.
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Graph of eπm,k

Figure: Plot of Schauder basis eπm,k for m = 0, 1, 2, 3 along non-uniform non balanced doubly refining partition
sequence π.
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Normalized p-th variation statistics

Given observations on a refining time partition πL, we define the ‘normalized p-th variation
statistic’ which is the discrete counterpart of the normalized p-th variation:

W (L,K , π, p, t,X ) :=
∑

πK∩[0,t]

∣∣∣X (tKi+1)− X (tKi )
∣∣∣p∑

πL∩[tKi ,t
K
i+1]

∣∣∣X (tLj+1)− X (tLj )
∣∣∣p ×

(
tKi+1 − tKi

)
. (9)

The definition of the statistic (9) involves two frequencies: a ‘block’ frequency K and a sampling
frequency L� K .

As the partition is refining, πK is a subpartition of πL.

The denominator is estimated by grouping the sample of size L into K many groups, where each
group contains L

K
consecutive data points.
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Estimating the roughness index

Lemma (Cont & Das)

The statistic (9) converges to the normalized p-th variation (6) as the sampling frequency L and
block frequency K increase:

lim
K→∞

lim
L→∞

W (L,K , π, p, t, x) = w(x , p, π)(t).

The variation index estimator p̂L,K (X ) associated with the signal sampled on πL is then obtained
by computing W (L,K , π, p, t,X ) for different values of p and solving the following equation for
pπL,K (X ),

W (L,K , π, p̂πL,K (X ),T ,X ) = T . (10)

One can either fix a window length T or solve (10) in a least squares sense across several values
of T .
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Consistency of estimators

Theorem (Pathwise consistency of estimator)

For any balanced partition sequence π, under some regularity assumptions on X there exists
sequence (Ln,Kn) such that Ln > Kn and

lim
n→∞

ĤπLn,Kn
(X ) = Hπ(X ) and,

lim
n→∞

p̂πLn,Kn
(X ) = pπ(X )

Balanced ∼ step sizes are asymptotically comparable.
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Finite sample behaviour of the roughness estimator

Figure: For H ∈ {0.1, 0.3, 0.5, 0.8} we simulate a fBM with Hurst parameter H. The black line is log of
normalized p-th variation statistics plotted against H = 1/p. The blue vertical line represents the estimated H
value using the normalized p-th variation statistics (K = 300, L = 300× 300), whereas the green line
represents the true value of H, with which we simulated the fBM.
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FBM: Distribution of estimator for Hurst index

Figure: For H ∈ {0.1, 0.3, 0.5, 0.8} we simulate a fBM with Hurst parameter H. Then use our normalized p-th
variation statistics to estimate H with (K = 300, L = 300× 300). The histogram is generated from 150
independent runs.
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fBM with Hurst index H = 0.1

Figure: fBM simulated with H = 0.1. Left: The log of normalized p-th variation statistic is plotted against
H = 1/p in black. The blue vertical line represents the estimated roughness index ĤL,K (with
M = 2000, L = 2000× 2000), whereas the green line represents for true Hurst index H = 0.1. Right:

Histogram of estimated roughness index ĤL,K generated by simulating n = 150 independent fractional
Brownian motion with Hurst parameter 0.1. The blue line represents the corresponding kernel plot generated by
Gaussian density.
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Summery statistics for roughness index

For K = 300 and L = 300× 300, total simulation size 150:

H Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1 0.0450 0.0920 0.1030 0.1009 0.1100 0.1440
0.3 0.2730 0.2940 0.2980 0.2976 0.3020 0.3180
0.5 0.4820 0.4940 0.4980 0.4978 0.5020 0.5140
0.8 0.7570 0.7820 0.7900 0.7891 0.7940 0.8220

For K = 2000 and L = 2000× 2000, total simulation size 150:

H Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1 0.086 0.096 0.099 0.099 0.103 0.117
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Dependence on K

Figure: The solid line represents the estimated p-th variation statistic W (L = 300× 300,K , π, q, t = 1)
plotted against different values of K for a simulated fBM with H = 0.1. The blue vertical line represents for
K = 300, L = 300× 300.

W (L,K , π, q, t) :=
∑
πK

∣∣∣x(tKi+1)− x(tKi )
∣∣∣q∑

πL∩[tK
i
,tK
i+1

]

∣∣∣x(tLj+1)− x(tLj )
∣∣∣q ×

(
tKi+1 ∧ t − tKi ∧ t

)
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Highlights of roughness estimators

Pathwise (Model free) estimator with no prior assumption on underlying distributions.

Can estimate roughness of data observed on a irregular time scale πn.

Scale invariant.

Invariant under smooth transformations.
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Roughness index of realized volatility:

Numerical experiments
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Simulated Brownian diffusion model

Example

Consider the following price process where volatility follows a simple Brownian diffusion:

dSt = σtStdBt , with σt = |B′t |, (11)

where St is the price of the underline asset at time t and Bt ,B′t are two Brownian paths
independent of each other.
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Realized volatility and estimation

Figure: Simulation model: σt =| Bt |, dSt = StσtdB
′
t , where Bt and B′t are Brownian motions independent of

each other. Left: The red line is the plot of instantaneous volatility σt whereas the black line represents
realized volatility RVt from Model 11. Right: Corresponding estimation error for the simulated sample-path.
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Roughness of estimated-realized vs instantaneous volatility

Figure: Left: Estimated roughness index ĤL,K (via normalized p-variation statistic with
K = 500, L = 500× 500), for realized volatility derived from a Brownian diffusion model. Right: Estimated

roughness index ĤL,K for instantaneous volatility of the same price path.
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Varying the window size K: realized volatility

Figure: The solid black line represents the estimated p-th variation statistic W (L = 500× 500,K , π, q, t = 1)
plotted against different values of K for the realized volatility shown in Figure 6. The blue vertical line
represents for K = 500, L = 500× 500 whereas the blue horizontal line represents H = 0.273.

W (L,K , π, q, t) :=
∑
πK

∣∣∣x(tKi+1)− x(tKi )
∣∣∣q∑

πL∩[tK
i
,tK
i+1

]

∣∣∣x(tLj+1)− x(tLj )
∣∣∣q ×

(
tKi+1 ∧ t − tKi ∧ t

)
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Varying window size K: spot volatility

Figure: The solid black line represents the estimated p-th variation statistic W (L = 500× 500,K , π, q, t = 1)
plotted against different values of K for the instantaneous volatility shown in Figure 6. The blue vertical line
represents for K = 500, L = 500× 500 whereas the blue horizontal line represents true Hurst parameter
H = 0.5.
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Gatheral et al.’s Linear regression method: spot volatility

Applying the log-regression method to instantaneous volatility gives H ≈ 0.5

Figure: Left: Scaling analysis of instantaneous volatility simulated using a Brownian stochastic volatility model
using the method of Gatheral et al. (2014). Right: linear regression coefficients ξq as a function of q. The

estimated roughness index is Ĥ = 0.499.
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Gatheral et al.’s linear-regression method: realized vol

Applying the linear-regression method to realized vol for same data gives H = 0.34!

Figure: Left: Scaling analysis of realized volatility estimated from simulated paths from the Brownian
stochastic volatility model using the method of Gatheral et al. (2014). Right: linear regression coefficients ξq
as a function of q. The estimated roughness index is Ĥ = 0.342.
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Simulated price model: Brownian OU process

Example

Take a stochastic volatility model where the volatility follows a Ornstein–Uhlenbeck process.

dSt = StσtdBt , where,

σt = σ0e
Yt , dYt = −γYtdt + θdB′t (12)

Bt and B′t are two Brownian motions independent of each other. For our simulation
σ0 = 1,Y0 = 0 and γ = θ = 1.
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Price process and estimation error

Figure: Left: Black = realized volatility. Red= instantanenous (spot) volatility. Right: estimation error for OU
stochastic volatility model.
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Kernel plot

Figure: Distribution of the estimated roughness index ĤL,K for (K = 300, L = 300× 300) across 2500
independent simulations for the OU-SV model (12). True value is H = 0.5.
Left: realized volatility. Right: instantaneous volatility respectively.
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Summary Statistics

The following table provides summary statistics across 2500 independent samples for the
roughness exponent estimator ĤL=300×300,K=300 for realized volatility and spot volatility.

Realized volatility Instantaneous volatility
Min. 0.087 0.528

1st Quantile 0.128 0.552
Median 0.136 0.556
Mean 0.137 0.557

3rd Quantile 0.148 0.563
Max. 0.181 0.581
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Fractional stochastic volatility process

Example (Fractional OU volatility process)

Consider the following price process where the volatility is coming from a fractional
Ornstein–Uhlenbeck process.

dSt = σtStdBt , where,

σt = σ0e
Yt ; dYt = −γYtdt + θdBH

t , (13)

where B and BH are respectively Brownian motion and fractional Brownian motion correspond to
Hurst index H ∈ (0, 1).

Then spot volatility has roughness index 0 < H < 1
We use γ = θ = σ0 = 1 and Y0 = 0.
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Fractional OU volatility process

Figure: Left: OU process with H={0.05,0.1,0.2} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Fractional OU volatility process

Figure: Left: OU process with H={0.3,0.4,0.5} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Fractional OU volatility process

Figure: Left: OU process with H={0.6,0.7,0.8} respectively, Middle: Realized Vol., Right: Instantaneous Vol.
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Summary statistics

The roughness index ĤL,K (with, L = 300× 300,K = 300) of instantaneous and realized volatility
are compared in the following table.

H ĤL,K of Instantaneous volatility ĤL,K of Realized volatility
0.10 0.130 0.190
0.20 0.215 0.250
0.30 0.310 0.258
0.40 0.413 0.207
0.50 0.507 0.130
0.60 0.601 0.087
0.70 0.678 0.061
0.80 0.756 0.052
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Comparing Ĥ for realized Vol. and instantaneous Vol.

Figure: Estimated values of roughness exponent Ĥ from high-frequency realized volatility for a fractional-OU
stochastic volatility model with different values of H. X axis: True Hurst index H. Y axis: Estimated roughness
index ĤL,K
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Comparing Ĥ of RV and IV for 200 simulations

Figure: Estimated values of roughness exponent Ĥ from high-frequency realized volatility for 200 simulated
fractional-OU stochastic volatility model with different values of H.
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Application to high-frequency financial data
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AAPL (high frequency) stock price data: year 2016

Figure: Left: plot of 1-sec price of AAPL 04/Jan/2016 - 11/May/2016 (90 days). Right: Estimation of ĤL,K (via
normalized p-variation statistic with L = 1400× 1400,K = 1400) for the apple stock price plotted in left figure.
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Roughness: AAPL (2016) realized volatility

Figure: Left: plot of 1-min realised volatility of ‘apple’(year 2016). Right: Estimation of ĤL,K (via normalized
p-variation statistic with L = 310× 310,K = 310) for the 1-min realised volatility (estimated H ∈ [.08− .22]).
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Roughness: S&P 500 (Source: Oxford-Man Institute)

Figure: Left: plot of 5-min realised volatility . Right: normalized p-variation statistic with L = 70× 70,K = 70
for SPX 5-min realised volatility, as a function of H = 1/p ∈ [.05− .25].
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Rough volatility ... or estimation noise?

When one has a powerful hammer, everything looks like a nail...

but it is important to check the robustness of ’stylized facts’ to estimation error before
jumping into complex models to ’explain’ them.

We introduce a nonparametric method for estimating the roughness of a path based on
the notion of normalized p-th variation.

For stochastic-volatility diffusion models driven by Brownian motion (so H = 1/2), the

realized volatility exhibits an estimated roughness index ĤL,K ≈ 0.3 so seems to exhibit
significantly ‘rougher’ behaviour than spot volatility, both in terms of normalized p-th
variation and in terms of the linear-regression method used by Gatheral et al. (2018). In this
case roughness in realized vol is a pure ”statistical artefact” i.e. entirely attributable to
estimation error.

These results suggest that the regression method is not robust to estimation noise: one
cannot take the roughness observed in realized volatility as evidence of similar behaviour in
spot volatility, as implicitly assumed in the ‘rough volatility’ literature.

As shown in fOU example, the rough behaviour of realized volatility does not lead us to
reject the hypothesis that the underlying spot volatility may be modeled with a Brownian
diffusion model.

The notion that volatility is ”rough”, that is, governed by a fractional Brownian motion
(with H < 1/2), is not an incontrovertible established fact; simpler diffusion models explain
the empirical observations just as well.
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